ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (2)
  • Other Sources  (37)
  • 2020-2023  (35)
  • 1910-1914
  • 1
    Publication Date: 2022-03-21
    Description: This introductory chapter, written by the editors, provides an overview of their conceptual approach, the book’s line of argumentation, and an insight into the different chapters of the book “Sustainable Land Management in a European Context—a co-design approach”. The synopsis highlights the various approaches and possible applications of a co-design approach.
    Type: info:eu-repo/semantics/bookPart
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-07-13
    Description: The Andean-Amazon foothills region, shaped by Andean moist forests and Amazon forests in southwestern Colombia, Napo province in Ecuador, and Ucayali Province and Napo Basin in Peru, provides local and global ecosystem services as food, water, world climate regulation, water purification, and carbon absorption. However, it faces major problems of land-use change that are exacerbated by climate change that affects these ecosystem services. For instance, conventional agriculture contribute to deforestation, soil degradation, and biodiversity loss, which might be further aggravated by climate change–induced droughts, thus reducing staple crop production and, consequently, food security. Cassava (Manihot esculenta Crantz), maize (Zea mays L.), and plantain (Musa paradisiaca L.) are major staple crops in the region. They play a key role for food security and local farmers’ income but are highly exposed to climate risks. This article aims to quantify the level of exposure to climate change (measured as climatic suitability) of these crops in the Andean-Amazon foothills by using the EcoCrop model by the 2030s, 2050s, and 2080s under Representative Concentration Pathway 2.6, 4.5, and 8.5 scenarios. EcoCrop results showed that, whereas cassava will not lose climatic suitability, maize will lose more than half of its current suitable area, and plantain will gain and lose area, which would affect local food security. Globally, these results are important in highlighting adaptive and cost-effective strategies in agriculture and suggest that agricultural crop diversification may improve resilience by promoting the use of local crops varieties.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-31
    Description: As the largest river basin on Earth, the Amazon is of major importance to the world's climate and water resources. Over the past decades, advances in satellite-based remote sensing (RS) have brought our understanding of its terrestrial water cycle and the associated hydrological processes to a new era. Here, we review major studies and the various techniques using satellite RS in the Amazon. We show how RS played a major role in supporting new research and key findings regarding the Amazon water cycle, and how the region became a laboratory for groundbreaking investigations of new satellite retrievals and analyses. At the basin-scale, the understanding of several hydrological processes was only possible with the advent of RS observations, such as the characterization of "rainfall hotspots" in the Andes-Amazon transition, evapotranspiration rates, and variations of surface waters and groundwater storage. These results strongly contribute to the recent advances of hydrological models and to our new understanding of the Amazon water budget and aquatic environments. In the context of upcoming hydrology-oriented satellite missions, which will offer the opportunity for new synergies and new observations with finer space-time resolution, this review aims to guide future research agenda toward integrated monitoring and understanding of the Amazon water from space. Integrated multidisciplinary studies, fostered by international collaborations, set up future directions to tackle the great challenges the Amazon is currently facing, from climate change to increased anthropogenic pressure.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-07
    Description: A realistic simulation of the surface mass balance (SMB) is essential for simulating past and future ice-sheet changes. As most state-of-the-art Earth system models (ESMs) are not capable of realistically representing processes determining the SMB, most studies of the SMB are limited to observations and regional climate models and cover the last century and near future only. Using transient simulations with the Max Planck Institute ESM in combination with an energy balance model (EBM), we extend previous research and study changes in the SMB and equilibrium line altitude (ELA) for the Northern Hemisphere ice sheets throughout the last deglaciation. The EBM is used to calculate and downscale the SMB onto a higher spatial resolution than the native ESM grid and allows for the resolution of SMB variations due to topographic gradients not resolved by the ESM. An evaluation for historical climate conditions (1980–2010) shows that derived SMBs compare well with SMBs from regional modeling. Throughout the deglaciation, changes in insolation dominate the Greenland SMB. The increase in insolation and associated warming early in the deglaciation result in an ELA and SMB increase. The SMB increase is caused by compensating effects of melt and accumulation: the warming of the atmosphere leads to an increase in melt at low elevations along the ice-sheet margins, while it results in an increase in accumulation at higher levels as a warmer atmosphere precipitates more. After 13 ka, the increase in melt begins to dominate, and the SMB decreases. The decline in Northern Hemisphere summer insolation after 9 ka leads to an increasing SMB and decreasing ELA. Superimposed on these long-term changes are centennial-scale episodes of abrupt SMB and ELA decreases related to slowdowns of the Atlantic meridional overturning circulation (AMOC) that lead to a cooling over most of the Northern Hemisphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Lipsius & Tischer
    Publication Date: 2023-05-09
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Lipsius & Tischer
    Publication Date: 2023-05-11
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-21
    Description: 2020 and 2021 have been unprecedented years due to the rapid spread of the modified severe acute respiratory syndrome coronavirus around the world. The coronavirus disease 2019 (COVID-19) causes atypical infiltrated pneumonia with many neurological symptoms, and major sleep changes. The exposure of people to stress, such as social confinement and changes in daily routines, is accompanied by various sleep disturbances, known as ‘coronasomnia’ phenomenon. Sleep disorders induce neuroinflammation, which promotes the blood–brain barrier (BBB) disruption and entry of antigens and inflammatory factors into the brain. Here, we review findings and trends in sleep research in 2020–2021, demonstrating how COVID-19 and sleep disorders can induce BBB leakage via neuroinflammation, which might contribute to the ‘coronasomnia’ phenomenon. The new studies suggest that the control of sleep hygiene and quality should be incorporated into the rehabilitation of COVID-19 patients. We also discuss perspective strategies for the prevention of COVID-19-related BBB disorders. We demonstrate that sleep might be a novel biomarker of BBB leakage, and the analysis of sleep EEG patterns can be a breakthrough non-invasive technology for diagnosis of the COVID-19-caused BBB disruption.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-21
    Description: Scenario-based modelling is a powerful tool to describe relationships between plausible trajectories of drivers, possible policy interventions, and impacts on biodiversity and ecosystem services. Model inter-comparisons are key in quantifying uncertainties and identifying avenues for model improvement but have been missing among the global biodiversity and ecosystem services modelling communities. The biodiversity and ecosystem services scenario-based inter-model comparison (BES-SIM) aims to fill this gap. We used global land-use and climate projections to simulate possible future impacts on terrestrial biodiversity and ecosystem services using a variety of models and a range of harmonized metrics. The goal of this paper is to reflect on the steps taken in BES-SIM, identify remaining methodological challenges, and suggest pathways for improvement. We identified five major groups of challenges; the need to: 1) better account for the role of nature in future human development storylines; 2) improve the representation of drivers in the scenarios by increasing the resolution (temporal, spatial and thematic) of land-use as key driver of biodiversity change and including additional relevant drivers; 3) explicitly integrate species- and trait-level biodiversity in ecosystem services models; 4) expand the coverage of the multiple dimensions of biodiversity and ecosystem services; and finally, 5) incorporate time-series or one-off historical data in the calibration and validation of biodiversity and ecosystem services models. Addressing these challenges would allow the development of more integrated global projections of biodiversity and ecosystem services, thereby improving their policy relevance in supporting the interlinked international conservation and sustainable development agendas.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-08-23
    Description: Given their historic emissions and economic capability, we analyze a leadership role for representative industrialized regions (EU, US, Japan, and Australia) in the global climate mitigation effort. Using the global integrated assessment model REMIND, we systematically compare region-specific mitigation strategies and challenges of reaching domestic net-zero carbon emissions in 2050. Embarking from different emission profiles and trends, we find that all of the regions have technological options and mitigation strategies to reach carbon neutrality by 2050. Regional characteristics are mostly related to different land availability, population density and population trends: While Japan is resource limited with respect to onshore wind and solar power and has constrained options for carbon dioxide removal (CDR), their declining population significantly decreases future energy demand. In contrast, Australia and the US benefit from abundant renewable resources, but face challenges to curb industry and transport emissions given increasing populations and high per-capita energy use. In the EU, lack of social acceptance or EU-wide cooperation might endanger the ongoing transition to a renewable-based power system. CDR technologies are necessary for all regions, as residual emissions cannot be fully avoided by 2050. For Australia and the US, in particular, CDR could reduce the required transition pace, depth and costs. At the same time, this creates the risk of a carbon lock-in, if decarbonization ambition is scaled down in anticipation of CDR technologies that fail to deliver. Our results suggest that industrialized economies can benefit from cooperation based on common themes and complementary strengths. This may include trade of electricity-based fuels and materials as well as the exchange of regional experience on technology scale-up and policy implementation.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Sustainable Land Management in a European Context: Human-Environment Interactions | Human-Environment Interactions
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/bookPart
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-09-20
    Description: Cruise SO288 served two scientific projects. The main objective of the COMBO project was the recovery of three seafloor geodetic networks of the GeoSEA array which were installed on the continental margin and outer rise offshore Iquique in northern Chileduring RV SONNE cruise SO244. This work was flanked by additional seismic and bathymetric surveys to characterize the sub-seafloor structure. The South American subduction system around 21°S has last ruptured in an earthquake in 1877 and wasidentified as a seismic gap prior to the 2014 Iquique earthquake (Mw=8.1). The southern portion of the segment remains unbroken by a recent earthquake and is currently in the latest stage of the interseismic phase of the seismic cycle. The seafloor geodetic measurements of the GeoSEA array provide a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The GeoSEA array consists of autonomous seafloor transponders installed on 4 m high tripods. The transponders within an array intercommunicate via acoustic signals for a period of up to three years. Recovery of the GeoSEA array using a remotely operated vehicle (ROV KIEL6000) required dedicated dives in the three network locations on the middle and lower continental slope (AREA1 and AREA3, respectively) and the outer rise of the Nazca plate (AREA2). All 23 GeoSEA transponders were successfully recovered and showed an 100% uptime during the monitoring period.The GeoSEA survey represents the first seafloor geodetic transect across a subduction zone, spanning from the oceanic outer rise to the lower and middle slope of the continental upper plate. The second project, HOMER, focused on biogeochemical and microbiological processes that affect carbon cycling of the Humboldt Current System off Northern Chile down to the deep ocean. For this purpose, water samples were collected for the detailed chemical characterization of organic matter and the activity of microorganisms. The work was complemented by onboard incubations of microbial populations from deep waters with naturally occurring organic matter.Cruise SO288 was the first expedition of RV SONNE back to the Pacific Ocean starting from a South American port during the COVID-19 pandemic. Despite strict safety and health requirements prior to boarding RV SONNE in Guayaquil, several members of the scientific and ship’s crew tested positive to COVID-19 two days after we left port. Containment measures were immediately put to action, flanked by a tight testing regime. Ten days after leaving Guayaquil, we were able to break the chains of infection and the scientific working program commenced.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-03-21
    Description: The past and future evolution of the Antarctic Ice Sheet is largely controlled by interactions between the ocean and floating ice shelves. To investigate these interactions, coupled ocean and ice sheet model configurations are required. Previous modelling studies have mostly relied on high resolution configurations, limiting these studies to individual glaciers or regions over short time scales of decades to a few centuries. We present a framework to couple the dynamic ice sheet model PISM with the global ocean general circulation model MOM5 via the ice-shelf cavity module PICO. Since ice-shelf cavities are not resolved by MOM5, but parameterized with the box model PICO, the framework allows the ice sheet and ocean model to be run at resolution of 16 km and 3 degree, respectively. This approach makes the coupled configuration a useful tool for the analysis of interactions between the entire Antarctic Ice Sheet and the Earth system over time spans on the order of centuries to millennia. In this study we describe the technical implementation of this coupling framework: sub-shelf melting in the ice sheet model is calculated by PICO from modeled ocean temperatures and salinities at the depth of the continental shelf and, vice versa, the resulting mass and energy fluxes from the melting at the ice-ocean interface are transferred to the ocean model. Mass and energy fluxes are shown to be conserved to machine precision across the considered model domains. The implementation is computationally efficient as it introduces only minimal overhead. The framework deals with heterogeneous spatial grid geometries, varying grid resolutions and time scales between the ice and ocean model in a generic way, and can thus be adopted to a wide range of model setups.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-03-21
    Description: Goals and pathways to achieve sustainable urban development have multiple interlinkages with human health and wellbeing. However, these interlinkages have not been examined in depth in recent discussions on urban sustainability and global urban science. This paper fills that gap by elaborating in detail the multiple links between urban sustainability and human health and by mapping research gaps at the interface of health and urban sustainability sciences. As researchers from a broad range of disciplines, we aimed to: 1) define the process of urbanization, highlighting distinctions from related concepts to support improved conceptual rigour in health research; 2) review the evidence linking health with urbanization, urbanicity, and cities and identify cross-cutting issues; and 3) highlight new research approaches needed to study complex urban systems and their links with health. This novel, comprehensive knowledge synthesis addresses issue of interest across multiple disciplines. Our review of concepts of urban development should be of particular value to researchers and practitioners in the health sciences, while our review of the links between urban environments and health should be of particular interest to those outside of public health. We identify specific actions to promote health through sustainable urban development that leaves no one behind, including: integrated planning; evidence-informed policy-making; and monitoring the implementation of policies. We also highlight the critical role of effective governance and equity-driven planning in progress towards sustainable, healthy, and just urban development.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-03-21
    Description: The Paris Agreement does not only stipulate to limit the global average temperature increase to well below 2°C, it also calls for "making finance flows consistent with a pathway towards low greenhouse gas emissions". Consequently, there is an urgent need to understand the implications of climate targets for energy systems and quantify the associated investment requirements in the coming decade. A meaningful analysis must however consider the near-term mitigation requirements to avoid the overshoot of a temperature goal. It must also include the recently observed fast technological progress in key mitigation options. Here, we use a new and unique scenario ensemble that limit peak warming by construction and that stems from seven up-to-date integrated assessment models (IAMs). This allows us to study the near-term implications of different limits to peak temperature increase under a consistent and up-to-date set of assumptions. We find that ambitious immediate action allows for limiting median warming outcomes to well below 2°C in all models. By contrast, current nationally determined contributions for 2030 would add around 0.2°C of peak warming, leading to an unavoidable transgression of 1.5°C in all models, and 2°C in some. In contrast to the incremental changes as foreseen by current plans, ambitious peak warming targets require decisive emission cuts until 2030, with the most substantial contribution to decarbonization coming from the power sector. Therefore, investments into low-carbon power generation need to increase beyond current levels to meet the Paris goals, especially for solar and wind technologies and related system enhancements for electricity transmission, distribution and storage. In scenarios limiting peak warming to below 2°C, while coal is phased out quickly, oil and gas are still being used significantly until 2030, albeit at lower than current levels. This requires continued investments into existing oil and gas infrastructure, but investments into new fields in such scenarios might not be needed. The results show that credible and effective policy action is essential for ensuring efficient allocation of investments aligned with medium-term climate targets.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-03-21
    Description: Air temperature has been the most commonly used exposure metric in assessing relationships between thermal stress and mortality. Lack of the high-quality meteorological station data necessary to adequately characterize the thermal environment has been one of the main limitations for the use of more complex thermal indices. Global climate reanalyses may provide an ideal platform to overcome this limitation and define complex heat and cold stress conditions anywhere in the world. In this study, we explored the potential of the Universal Thermal Climate Index (UTCI) based on ERA5 – the latest global climate reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) – as a health-related tool. Employing a novel ERA5-based thermal comfort dataset ERA5-HEAT, we investigated the relationships between the UTCI and daily mortality data in 21 cities across 9 European countries. We used distributed lag nonlinear models to assess exposure-response relationships between mortality and thermal conditions in individual cities. We then employed meta-regression models to pool the results for each city into four groups according to climate zone. To evaluate the performance of ERA5-based UTCI, we compared its effects on mortality with those for the station-based UTCI data. In order to assess the additional effect of the UTCI, the performance of ERA5-and station-based air temperature (T) was evaluated. Whilst generally similar heat- and cold-effects were observed for the ERA5-and station-based data in most locations, the important role of wind in the UTCI appeared in the results. The largest difference between any two datasets was found in the Southern European group of cities, where the relative risk of mortality at the 1st percentile of daily mean temperature distribution (1.29 and 1.30 according to the ERA5 vs station data, respectively) considerably exceeded the one for the daily mean UTCI (1.19 vs 1.22). These differences were mainly due to the effect of wind in the cold tail of the UTCI distribution. The comparison of exposure-response relationships between ERA5-and station-based data shows that ERA5-based UTCI may be a useful tool for definition of life-threatening thermal conditions in locations where high-quality station data are not available.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-02
    Description: Integrated assessment models (IAMs) have emerged as key tools for building and assessing long term climate mitigation scenarios. Due to their central role in the recent IPCC assessments, and international climate policy analyses more generally, and the high uncertainties related to future projections, IAMs have been critically assessed by scholars from different fields receiving various critiques ranging from adequacy of their methods to how their results are used and communicated. Although IAMs are conceptually diverse and evolved in very different directions, they tend to be criticised under the umbrella of 'IAMs'. Here we first briefly summarise the IAM landscape and how models differ from each other. We then proceed to discuss six prominent critiques emerging from the recent literature, reflect and respond to them in the light of IAM diversity and ongoing work and suggest ways forward. The six critiques relate to (a) representation of heterogeneous actors in the models, (b) modelling of technology diffusion and dynamics, (c) representation of capital markets, (d) energy-economy feedbacks, (e) policy scenarios, and (f) interpretation and use of model results.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    IPCC
    In:  In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth : Assessment Report of the Intergovernmental Panel on Climate Change : Chapter 4. , ed. by Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R. and Zhou, B. IPCC, Genf, Switzerland, pp. 1-195.
    Publication Date: 2022-01-05
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-03-21
    Description: The Parallel Ice Sheet Model (PISM) is applied to the Antarctic Ice Sheet over the last two glacial cycles (≈210 000 years) with a resolution of 16 km. An ensemble of 256 model runs is analyzed in which four relevant model parameters have been systematically varied using full-factorial parameter sampling. Parameters and plausible parameter ranges have been identified in a companion paper (Albrecht et al., 2020) and are associated with ice dynamics, climatic forcing, basal sliding and bed deformation and represent distinct classes of model uncertainties. The model is scored against both modern and geologic data, including reconstructed grounding-line locations, elevation–age data, ice thickness, surface velocities and uplift rates. An aggregated score is computed for each ensemble member that measures the overall model–data misfit, including measurement uncertainty in terms of a Gaussian error model (Briggs and Tarasov, 2013). The statistical method used to analyze the ensemble simulation results follows closely the simple averaging method described in Pollard et al. (2016). This analysis reveals clusters of best-fit parameter combinations, and hence a likely range of relevant model and boundary parameters, rather than individual best-fit parameters. The ensemble of reconstructed histories of Antarctic Ice Sheet volumes provides a score-weighted likely range of sea-level contributions since the Last Glacial Maximum (LGM) of 9.4±4.1 m (or 6.5±2.0×106km3 ), which is at the upper range of most previous studies. The last deglaciation occurs in all ensemble simulations after around 12 000 years before present and hence after the meltwater pulse 1A (MWP1a). Our ensemble analysis also provides an estimate of parametric uncertainty bounds for the present-day state that can be used for PISM projections of future sea-level contributions from the Antarctic Ice Sheet.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-03-21
    Description: Integrated assessment models (IAMs) form a prime tool in informing about climate mitigation strategies. Diagnostic indicators that allow comparison across these models can help describe and explain differences in model projections. This increases transparency and comparability. Earlier, the IAM community has developed an approach to diagnose models (Kriegler (2015 Technol. Forecast. Soc. Change 90 45–61)). Here we build on this, by proposing a selected set of well-defined indicators as a community standard, to systematically and routinely assess IAM behaviour, similar to metrics used for other modeling communities such as climate models. These indicators are the relative abatement index, emission reduction type index, inertia timescale, fossil fuel reduction, transformation index and cost per abatement value. We apply the approach to 17 IAMs, assessing both older as well as their latest versions, as applied in the IPCC 6th Assessment Report. The study shows that the approach can be easily applied and used to indentify key differences between models and model versions. Moreover, we demonstrate that this comparison helps to link model behavior to model characteristics and assumptions. We show that together, the set of six indicators can provide useful indication of the main traits of the model and can roughly indicate the general model behavior. The results also show that there is often a considerable spread across the models. Interestingly, the diagnostic values often change for different model versions, but there does not seem to be a distinct trend.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-03-21
    Description: The planetary boundaries framework defines the “safe operating space for humanity” represented by nine global processes that can destabilize the Earth System if perturbed. The water planetary boundary attempts to provide a global limit to anthropogenic water cycle modifications, but it has been challenging to translate and apply it to the regional and local scales at which water problems and management typically occur. We develop a cross‐scale approach by which the water planetary boundary could guide sustainable water management and governance at subglobal contexts defined by physical features (e.g., watershed or aquifer), political borders (e.g., city, nation, or group of nations), or commercial entities (e.g., corporation, trade group, or financial institution). The application of the water planetary boundary at these subglobal contexts occurs via two approaches: (i) calculating fair shares, in which local water cycle modifications are compared to that context's allocation of the global safe operating space, taking into account biophysical, socioeconomic, and ethical considerations; and (ii) defining a local safe operating space, in which interactions between water stores and Earth System components are used to define local boundaries required for sustaining the local water system in stable conditions, which we demonstrate with a case study of the Cienaga Grande de Santa Marta wetlands in Colombia. By harmonizing these two approaches, the water planetary boundary can ensure that water cycle modifications remain within both local and global boundaries and complement existing water management and governance approaches.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-03-21
    Description: There exists a range of subsystems in the climate system exhibiting threshold behaviour which could be triggered under global warming within this century resulting in severe consequences for biosphere and human societies. While their individual tipping thresholds are fairly well understood, it is of yet unclear how their interactions might impact the overall stability of the Earth's climate system. This cannot be studied yet with state-of-the-art Earth system models due to computational constraints as well as missing and uncertain process representations of some tipping elements. Here, we explicitly study the effects of known physical interactions between the Greenland and West Antarctic Ice Sheet, the Atlantic Meridional Overturning Circulation, the El-Nino Southern Oscillation and the Amazon rainforest using a conceptual network approach. We analyse the risk of domino effects being triggered by each of the individual tipping elements under global warming in equilibrium experiments, propagating uncertainties in critical temperature thresholds and interaction strengths via a Monte-Carlo approach. Overall, we find that the interactions tend to destabilise the network. Furthermore, our analysis reveals the qualitative role of each of the five tipping elements showing that the polar ice sheets on Greenland and West Antarctica are oftentimes the initiators of tipping cascades, while the AMOC acts as a mediator, transmitting cascades. This implies that the ice sheets, which are already at risk of transgressing their temperature thresholds within the Paris range of 1.5 to 2 °C, are of particular importance for the stability of the climate system as a whole.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-03-21
    Description: Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Monograph available for loan
    Monograph available for loan
    Potsdam : Teubner
    Associated volumes
    Call number: 21/Q 472(52d) ; Q 65(52d) / Regal 14 ; Q 315(52d) / Regal 43
    In: Veröffentlichungen des Königlich Preussischen Geodätischen Institutes. Neue Folge
    Type of Medium: Monograph available for loan
    Pages: IX, 172 S. : graph. Darst.
    Series Statement: Veröffentlichung des Königlich Preussischen Geodätischen Instituts : N.F. 52
    Location: Reading room
    Location: Magazine - must be ordered
    Location: Magazine - must be ordered
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-03-21
    Description: The stratopause is by definition the transition between the stratosphere and mesosphere. During winter the circulation at mid-latitudes and high latitudes in the stratosphere is mainly driven by quasi-stationary planetary waves (PWs), while the circulation in the mesosphere is mainly driven by gravity waves (GWs). The question arises of whether PWs or GWs dominate the variability of the stratopause. The most famous and dramatic variability of the middle atmosphere is a sudden stratospheric warming (SSW) generated by PWs interacting with the polar vortex. A similar phenomenon but smaller in magnitude and more regional is stratopause temperature enhancements (STEs) initially observed by local measurements and generated by breaking PWs. Thus it seems that PWs dominate the variability of the stratopause. In this study we want to quantify to which extent quasi-stationary PWs contribute to the stratopause variability. To do that we combine local lidar observations at Kühlungsborn (54∘ N, 11∘ E) and Andenes (69∘ N, 16∘ E) with global MERRA-2 reanalysis data bringing the local variability of the stratopause into the global context. Therefore we compare the temperature time series at Kühlungsborn and Andenes at 2 hPa, the altitude where STEs maximize, with characteristics (amplitude and phase) of PWs with wave numbers 1, 2 and 3. We found that for Kühlungsborn and Andenes 98 % of the local day-to-day variability of the stratopause can be explained by the variability of PWs with wave number 1, 2 and 3. Thus, the winter stratopause day-to-day variability is highly dominated by the variability of PWs.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  Journal of Geophysical Research: Atmospheres
    Publication Date: 2022-03-21
    Description: Gravity waves (GWs) are important for coupling the mesosphere to the lower atmosphere during sudden stratospheric warmings (SSWs). Here, a minor SSW is internally generated in a simulation with the upper‐atmosphere configuration of the ICOsahedral Nonhydrostatic model. At a horizontal resolution of 20 km the simulation uses no GW drag parameterizations but resolves large fractions of the GW spectrum explicitly, including orographic and nonorographic sources. Consistent with previous studies, the simulated zonal‐mean stratospheric warming is accompanied by zonal‐mean mesospheric cooling. During the course of the SSW the mesospheric GW momentum flux (GWMF) turns from mainly westward to mainly eastward. Waves of large phase speed (40–80 m s urn:x-wiley:jgrd:media:jgrd55943:jgrd55943-math-0001) dominate the eastward GWMF during the peak phase of the warming. The GWMF is strongest along the polar night jet axis. Parameterizations of GWs usually assume straight upward propagation, but this assumption is often not satisfied. In the case studied here, a substantial amount of the GWMF is significantly displaced horizontally between the source region and the dissipation region, implying that the local impact of GWs on the mesosphere does not need to be above their local transmission through the stratosphere. The simulation produces significant vertically misaligned anomalies between the stratosphere and mesosphere. Observations by the Microwave Limb Sounder confirm the poleward tilt with height of the polar night jet and horizontal displacements between mesospheric cooling and stratospheric warming patterns. Thus, lateral GW propagation may be required to explain the middle‐atmosphere temperature evolution in SSW events with significant zonally asymmetric anomalies.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-03-21
    Description: Single- and multi-layer complex networks have been proven as a powerful tool to study the dynamics within social, technological, or natural systems. An often observed common goal is to optimize these systems for specific purposes by minimizing certain costs while maximizing a desired output. Acknowledging that especially real-world systems from the coupled socio-ecological realm are highly intertwined this work exemplifies that in such systems the optimization of a certain subsystem, e.g. to increase the resilience against external pressure in an ecological network, may unexpectedly diminish the stability of the whole coupled system. For this purpose we utilize an adaptation of a previously proposed conceptual bi-layer network model composed of an ecological network of diffusively coupled resources co-evolving with a social network of interacting agents that harvest these resources and learn each other's strategies depending on individual success. We derive an optimal coupling strength that prevents collapse in as many resources as possible if one assumes that the agents' strategies remain constant over time. We then show that if agents socially learn and adapt strategies according to their neighbors' success, this optimal coupling strength is revealed to be a critical parameter above which the probability for a global collapse in terms of irreversibly depleted resources is high—an effect that we denote the tragedy of the optimizer. We thus find that measures which stabilize the dynamics within a certain part of a larger co-evolutionary system may unexpectedly cause the emergence of novel undesired globally stable states. Our results therefore underline the importance of holistic approaches for managing socio-ecological systems because stabilizing effects which focus on single subsystems may be counter-beneficial for the system as a whole.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-06-28
    Description: The transit of RV SONNE from Las Palmas (departure: 11.12.2021) to Guayaquil, Ecuador (arrival: 11.01.2022) is directly related to the international collaborative project SO287-CONNECT of GEOMAR in cooperation with Hereon and the University of Bremen, supported by the German Federal Ministry of Education and Research (BMBF) between October 15 2021 and January 15 2024. The research expedition was conducted to decipher the coupling of biogeochemical and ecological processes and their influence on atmospheric chemistry along the transport pathway of water from the upwelling zones off Africa into the Sargasso Sea and further to the Caribbean and the equatorial Pacific. Nutrient-rich water rises from the deep and promotes the growth of plant and animal microorganisms, and fish at the ocean surface off West Africa. The North Equatorial Current water carries the water from the upwelling, which contains large amounts of organic material across the Atlantic to the Caribbean, supporting bacterial activity along the way. But how the nutritious remnants of algae and other substances are processed on their long journey, biochemically transformed, decomposed into nutrients and respired to carbon dioxide, has so far only been partially investigated. Air, seawater and particles were sampled in order to provide new details about the large cycles of carbon and nitrogen, but also of many other elements such as oxygen, iodine, bromine and sulfur. Inorganic and organic bromine and iodine compounds are generally emitted naturally from the ocean into the atmosphere, promote cloud formation and affect climate, and some even reach the stratosphere where they contribute to ozone depletion. We measured how much of these compounds are released from the ocean, and at what locations and how they are transformed in the ocean and in the atmosphere. Sargassum algae, which have become a nuisance on beaches in the western and eastern Atlantic, support life and contribute to carbon cycling in the middle of the Atlantic, the Sargasso Sea and in the Caribbean, while their contribution to halogen cycling and marine bromine and iodine emissions was previously unknown. We investigated the influence of various natural parameters such as temperature and solar radiation on the biogeochemical transformation processes in order to understand the influence of climate change on these processes in incubation experiments with seawater and algae. We investigated how anthropogenic signals such as shipping traffic influence the nitrogen and sulphur cycle in the ocean, as well as the impact of nitrogen oxides from ship exhaust and sulphurous, acidic and dirty water from purification systems on organisms and biochemical processes. Plastic debris was sampled from the surface waters to investigate its contribution to global biogeochemical transformation processes. The working hypotheses of the research program were:  Bioavailability of dissolved organic carbon in surface waters decreases along the productivity gradient and transport pathway from the Eastern to the Western Tropical North Atlantic.  Nutrient gradients from East to West constrain the microbial utilization of organic matter- contributing to an accumulation of C-rich organic matter due to a) limited mineralization and b) enhanced exudation- also leading to gel-like particles accumulation in the western tropical North Atlantic and Sargasso Sea.  Tropospheric and stratospheric ozone are strongly impacted by biogeochemical and ecological processes occurring around and in the NA gyre system related to marine iodine and bromine cycles.  The long-range transport of natural and anthropogenic organic matter in water and of gases and aerosols in the air impact carbon-export, biogeochemical cycles in the water column, and the release of gases and particles from the ocean significantly. 4 SONNE -Berichte, SO287, Las Palmas - Guayaquil, 11.12.2021 - 11.01.202 The data and samples obtained specifically target carbon, nutrient and halogen cycling, the composition of phytoplankton, bacteria, the transport and sequestration of macro algae and the air-sea exchange processes of climate relevant gases and aerosols. The influence of ecological and transport processes, as well as anthropogenic impacts on the North Atlantic gyre system, specifically in the Sargasso Sea and the influence of ship emissions throughout the Atlantic towards the west and into the Pacific will be investigated with the data.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-03-21
    Description: Climate reconstructions for the whole of the Common Era are compromised by the paucity of annually-resolved and absolutely-dated proxy records prior to medieval times. Where reconstructions are based on combinations of different climate archive types of varying spatiotemporal resolution, dating uncertainty, record length and predictive skill, it is challenging to estimate past amplitude ranges, disentangle the relative roles of natural and anthropogenic forcing, and probe deeper interrelationships between climate variability and human history. Here, we compile and analyse updated versions of all the existing summer temperature sensitive treering width chronologies from the Northern Hemisphere that span the entire Common Era. We apply a novel ensemble approach to reconstruct extra-tropical summer temperatures from 1–2010 CE, and calculate uncertainties at continental to hemispheric scales. Peak warming in the 280s, 990s and 1020s, when volcanic forcing was low, was comparable to modern conditions until 2010 CE. The lowest June–August temperature anomaly in 536 not only marks the beginning of the coldest decade, but also defines the onset of the Late Antique Little Ice Age (LALIA). While prolonged warmth during Roman and medieval times roughly coincides with the tendency towards societal prosperity across much of the North Atlantic/European sector and East Asia, major episodes of volcanically-forced summer cooling often presaged widespread famines, plague outbreaks and political upheavals. Our study reveals a larger amplitude of spatially synchronized summer temperature variation during the first millennium of the Common Era than previously recognised. Uncertainties associated with the available tree-ring width measurements emphasize the need to develop more and longer chronologies of wood density and cell anatomy from temperature sensitive sites on both hemispheres where living and relict materials are abundant.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-11-23
    Description: The Andean-Amazon foothills region, one of the richest biodiversity eco-regions on earth, is threatened by climate change, in combination with unsustainable agricultural and extensive livestock farming. These land-use practices tend to reduce the diversification of rural farming, which in turn decreases households’ livelihood alternatives, rendering them more vulnerable to climate change. We studied the relationship between rural livelihood diversification and household-level vulnerability to climate change, in a sample of Andean-Amazon foothills households in Colombia and Peru. Firstly, we determined typologies of households, based on their rural livelihood diversification, including farming diversification (agrobiodiversity and farming activities) and agroecological management practices. Secondly, we evaluated each household typology’s vulnerability to climate change by assessing two components -sensitivity and adaptive capacity- based on the ‘livelihood assets pentagon’, which encompasses the five human ‘capitals’: natural; social; human; physical; and financial. We concluded that households with higher rural livelihood diversification are less vulnerable to climate change. However, it is not possible to draw major conclusions about the relationship between the factors of ‘diversification of management practices’ and ‘vulnerability to climate change’, because most households had few agroecological practices. Results may inform future interventions that aim to decrease Andean-Amazon foothills households’ sensitivity and strengthen their adaptive capacity to climate change.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  Environment and Planning B: Urban Analytics and City Science
    Publication Date: 2022-03-21
    Description: We propose an upgraded gravitational model which provides population counts beyond the binary (urban/non-urban) city simulations. Numerically studying the model output, we find that the radial population density gradients follow power-laws where the exponent is related to the preset gravity exponent γ. Similarly, the urban fraction decays exponentially, again determined by γ. The population density gradient can be related to radial fractality and it turns out that the typical exponents imply that cities are basically zero-dimensional. Increasing the gravity exponent leads to extreme compactness and the loss of radial symmetry. We study the shape of the major central cluster by means of another three fractal dimensions and find that overall its fractality is dominated by the size and the influence of γ is minor. The fundamental allometry, between population and area of the major central cluster, is related to the gravity exponent but restricted to the case of higher densities in large cities. We argue that cities are shaped by power-law proximity. We complement the numerical analysis by economics arguments employing travel costs as well as housing rent determined by supply and demand. Our work contributes to the understanding of gravitational effects, radial gradients, and urban morphology. The model allows to generate and investigate city structures under laboratory conditions.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-03-21
    Description: Cerebral small vessel disease (CSVD) is a leading cause of cognitive decline in elderly people and development of Alzheimer’s disease (AD). Blood–brain barrier (BBB) leakage is a key pathophysiological mechanism of amyloidal CSVD. Sleep plays a crucial role in keeping health of the central nervous system and in resistance to CSVD. The deficit of sleep contributes to accumulation of metabolites and toxins such as beta-amyloid in the brain and can lead to BBB disruption. Currently, sleep is considered as an important informative platform for diagnosis and therapy of AD. However, there are no effective methods for extracting of diagnostic information from sleep characteristics. In this review, we show strong evidence that slow wave activity (SWA) (0–0.5 Hz) during deep sleep reflects glymphatic pathology, the BBB leakage and memory deficit in AD. We also discuss that diagnostic and therapeutic targeting of SWA in AD might lead to be a novel era in effective therapy of AD. Moreover, we demonstrate that SWA can be pioneering non-invasive and bed–side technology for express diagnosis of the BBB permeability. Finally, we review the novel data about the methods of detection and enhancement of SWA that can be biomarker and a promising therapy of amyloidal CSVD and CSVD associated with the BBB disorders. View Full-Text
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-10-21
    Description: Societal transformations are necessary to address critical global challenges, such as mitigation of anthropogenic climate change and reaching UN sustainable development goals. Recently, social tipping processes have received increased attention, as they present a form of social change whereby a small change can shift a sensitive social system into a qualitatively different state due to strongly self-amplifying (mathematically positive) feedback mechanisms. Social tipping processes with respect to technological and energy systems, political mobilization, financial markets and sociocultural norms and behaviors have been suggested as potential key drivers towards climate action. Drawing from expert insights and comprehensive literature review, we develop a framework to identify and characterize social tipping processes critical to facilitating rapid social transformations. We find that social tipping processes are distinguishable from those of already more widely studied climate and ecological tipping dynamics. In particular, we identify human agency, social-institutional network structures, different spatial and temporal scales and increased complexity as key distinctive features underlying social tipping processes. Building on these characteristics, we propose a formal definition for social tipping processes and filtering criteria for those processes that could be decisive for future trajectories towards climate action. We illustrate this definition with the European political system as an example of potential social tipping processes, highlighting the prospective role of the FridaysForFuture movement. Accordingly, this conceptual framework for social tipping processes can be utilized to illuminate mechanisms for necessary transformative climate change mitigation policies and actions.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-10-24
    Description: On rare occasions, a sudden stratospheric warming (SSW) occurs in the Southern Hemisphere (SH), drastically weakening or even reversing the strong winter polar vortex. During SSW events, circulation changes occur that can have significant effects from the upper stratosphere down to the surface. ECHAM6 model data are used to study these impacts. In the atmosphere-only experiment with a perpetual 2018 conditions setup, 13 SSWs are found in 142 simulated years. Since these events coincide with a negative phase of the southern annular mode (SAM), SAM and temperature indexes are created to better track the downward propagating SSW anomalies. The anomalies in the SAM index also make it possible to divide the SSWs into two groups: those followed by significant, long-lasting effects on the tropospheric circulation and those where this is not the case, although the latter are a minority. As soon as the anomalies reach the surface, a change in the regional climate of the SH can be found. The Antarctic, for example, experiences significantly higher temperatures and pressures than average. This condition shifts the storm tracks on the SH to the north, resulting in significantly drier and warmer conditions than usual in western South Africa and Australia, whereas an increase in precipitation in southern Australia and New Zealand is simulated. Apart from South America, where no significant results were found, ECHAM6 generally simulates SSW effects on nearsurface climate in the SH very well, consistent with literature on observed negative SAM phases or weak vortex years.
    Keywords: Course of study: BSc Physics of the Earth System
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Springer
    In:  Human-Environment Interactions
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/book
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    In:  Journal of Economic Surveys
    Publication Date: 2022-03-21
    Description: Economic rents have long been identified as an efficient tax base. In addition, the recent literature documents that rent income is highly concentrated and that rents are quickly increasing. Rent taxation thus seems attractive for reasons of both efficiency and equity. Nevertheless, rent taxation remains a marginal topic in research and policy making. In a systematic review of the neoclassical literature on different rent types, we find that some types of rents reflect inefficiencies and should thus be minimized, while others reward investments and should be supported in line with social welfare. What remains for taxation are land rents, one of the few true scarcity rents. Land rents have significant potential to improve the efficiency of the tax system. We then begin to develop a comprehensive theory of land rent taxation by identifying relevant efficiency and equity effects. The interaction of many of these effects remains unexplored, which might explain policymakers' hesitation in using land taxes to date.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-03-21
    Description: Mass loss from the Antarctic Ice Sheet constitutes the largest uncertainty in projections of future sea-level rise. Ocean-driven melting underneath the floating ice shelves and subsequent acceleration of the inland ice streams is the major reason for currently observed mass loss from Antarctica and is expected to become more important in the future. Here we show that for projections of future mass loss from the Antarctic Ice Sheet, it is essential (1) to better constrain the sensitivity of sub-shelf melt rates to ocean warming, and (2) to include the historic trajectory of the ice sheet. In particular, we find that while the ice-sheet response in simulations using the Parallel Ice Sheet Model is comparable to the median response of models in three Antarctic Ice Sheet Intercomparison projects – initMIP, LARMIP-2 and ISMIP6 – conducted with a range of ice-sheet models, the projected 21st century sea-level contribution differs significantly depending on these two factors. For the highest emission scenario RCP8.5, this leads to projected ice loss ranging from 1.4 to 4.0 cm of sea-level equivalent in the ISMIP6 simulations where the sub-shelf melt sensitivity is comparably low, opposed to a likely range of 9.2 to 35.9 cm using the exact same initial setup, but emulated from the LARMIP-2 experiments with a higher melt sensitivity based on oceanographic studies. Furthermore, using two initial states, one with and one without a previous historic simulation from 1850 to 2014, we show that while differences between the ice-sheet configurations in 2015 are marginal, the historic simulation increases the susceptibility of the ice sheet to ocean warming, thereby increasing mass loss from 2015 to 2100 by about 50 %. Our results emphasize that the uncertainty that arises from the forcing is of the same order of magnitude as the ice-dynamic response for future sea-level projections.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-03-21
    Description: Global municipal waste production causes multiple environmental impacts, including greenhouse gas emissions, ocean plastic accumulation, and nitrogen pollution. However, estimates of both past and future development of waste and pollution are scarce. We apply compositional Bayesian regression to produce the first estimates of past and future (1965–2100) waste generation disaggregated by composition and treatment, along with resultant environmental impacts, for every country. We find that total wastes grow at declining speed with economic development, and that global waste generation has increased from 635 Mt in 1965 to 1999 Mt in 2015 and reaches 3539 Mt by 2050 (median values, middle-of-the-road scenario). From 2015 to 2050, the global share of organic waste declines from 47% to 39%, while all other waste type shares increase, especially paper. The share of waste treated in dumps declines from 28% to 18%, and more sustainable recycling, composting, and energy recovery treatments increase. Despite these increases, we estimate environmental loads to continue increasing in the future, although yearly plastic waste input into the oceans has reached a peak. Waste production does not appear to follow the environmental Kuznets curve, and current projections do not meet UN SDGs for waste reduction. Our study shows that a continuation of current trends and improvements is insufficient to reduce pressures on natural systems and achieve a circular economy. Relative to 2015, the amount of recycled waste would need to increase from 363 Mt to 740 Mt by 2030 to begin reducing unsustainable waste generation, compared to 519 Mt currently projected.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Call number: 21/Q 372(60d) ; Q 68(60d) ; Q 475(60d) / Regal 43
    In: Veröffentlichungen des Königlich Preussischen Geodätischen Institutes. Neue Folge
    Type of Medium: Monograph available for loan
    Pages: 43 S. : Ill.
    Series Statement: Veröffentlichung des Königlich Preussischen Geodätischen Instituts : N.F. 60
    Location: Reading room
    Location: Magazine - must be ordered
    Location: Magazine - must be ordered
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...