ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-09-29
    Description: It is well accepted that summer precipitation can be altered by soil moisture condition. Coupled land surface – atmospheric models have been routinely used to quantify soil moisture – precipitation feedback processes. However, most of the land surface models (LSMs) assume a vertical soil water transport and neglect lateral terrestrial water flow at the surface and in the subsurface, which potentially reduces the realism of the simulated soil moisture – precipitation feedback. In this study, the contribution of lateral terrestrial water flow to summer precipitation is assessed in two different climatic regions, Europe and West Africa, for the period June–September 2008. A version of the coupled atmospheric‐hydrological model WRF‐Hydro with an option to tag and trace land surface evaporation in the modelled atmosphere, named WRF‐Hydro‐tag, is employed. An ensemble of 30 simulations with terrestrial routing and 30 simulations without terrestrial routing is generated with random realizations of turbulent energy with the stochastic kinetic energy backscatter scheme, for both Europe and West Africa. The ensemble size allows to extract random noise from continental‐scale averaged modelled precipitation. It is found that lateral terrestrial water flow increases the relative contribution of land surface evaporation to precipitation by 3.6% in Europe and 5.6% in West Africa, which enhances a positive soil moisture – precipitation feedback and generates more uncertainty in modelled precipitation, as diagnosed by a slight increase in normalized ensemble spread. This study demonstrates the small but non‐negligible contribution of lateral terrestrial water flow to precipitation at continental scale.
    Description: Ensembles of coupled atmospheric ‐ hydrological simulations are presented for a summer season in Europe and West Africa. The model is enhanced with a water tagging procedure to evaluate the fate of land surface evaporation. The figure shows the change in continental precipitation recycling, that is the fraction of precipitation originating from land surface evaporation, induced by the consideration of lateral terrestrial water flow in the coupled simulations.
    Description: German Science Foundation
    Keywords: 551.48 ; continental scale ; coupled modelling ; ensemble ; feedback ; summer precipitation ; terrestrial hydrology
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-29
    Description: Dinitrogen (N2) fixation is a major source of bioavailable nitrogen to oligotrophic ocean communities. Yet, we have limited understanding how ongoing climate change could alter N2 fixation. Most of our understanding is based on short‐term laboratory experiments conducted on individual N2‐fixing species whereas community‐level approaches are rare. In this longer‐term in situ mesocosm study, we aimed to improve our understanding on the role of rising atmospheric carbon dioxide (CO2) and simulated deep water upwelling on N2 and carbon (C) fixation rates in a natural oligotrophic plankton community. We deployed nine mesocosms in the subtropical North Atlantic Ocean and enriched seven of these with CO2 to yield a range of treatments (partial pressure of CO2, pCO2 = 352–1025 μatm). We measured rates of N2 and C fixation in both light and dark incubations over the 55‐day study period. High pCO2 negatively impacted light and dark N2 fixation rates in the oligotrophic phase before simulated upwelling, while the effect reversed in the light N2 fixation rates in the bloom decay phase after added nutrients were consumed. Dust deposition and simulated upwelling of nutrient‐rich deep water increased N2 fixation rates and nifH gene abundances of selected clades including the unicellular diazotrophic cyanobacterium clade UCYN‐B. Elevated pCO2 increased C fixation rates in the decay phase. We conclude that elevated pCO2 and pulses of upwelling have pronounced effects on diazotrophy and primary producers, and upwelling and dust deposition modify the pCO2 effect in natural assemblages.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Exzellenzcluster Ozean der Zukunft http://dx.doi.org/10.13039/501100010783
    Description: H2020 Environment http://dx.doi.org/10.13039/100010681
    Description: Villum Foundation http://dx.doi.org/10.13039/100008398
    Description: Horizon 2020 http://dx.doi.org/10.13039/100010661
    Description: Research Foundation http://dx.doi.org/10.13039/100005930
    Description: Federal Ministry of Education and Research http://dx.doi.org/10.13039/501100002347
    Keywords: 551 ; subtropical North Atlantic Ocean ; N2 fixation ; C fixation
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-29
    Description: The Special Issue (SI) of Hydrological Processes features invited contributions led by women scientists at an advanced career stage who have made sustained contributions to the study of hydrological processes, advancing the field. This preface article briefly introduce the contributors and their papers.
    Keywords: 551.48 ; hydrology ; women scientists
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-05
    Description: We compared stable isotopes of water in plant stem (xylem) water and soil collected over a complete growing season from five well‐known long‐term study sites in northern/cold regions. These spanned a decreasing temperature gradient from Bruntland Burn (Scotland), Dorset (Canadian Shield), Dry Creek (USA), Krycklan (Sweden), to Wolf Creek (northern Canada). Xylem water was isotopically depleted compared to soil waters, most notably for deuterium. The degree to which potential soil water sources could explain the isotopic composition of xylem water was assessed quantitatively using overlapping polygons to enclose respective data sets when plotted in dual isotope space. At most sites isotopes in xylem water from angiosperms showed a strong overlap with soil water; this was not the case for gymnosperms. In most cases, xylem water composition on a given sampling day could be better explained if soil water composition was considered over longer antecedent periods spanning many months. Xylem water at most sites was usually most dissimilar to soil water in drier summer months, although sites differed in the sequence of change. Open questions remain on why a significant proportion of isotopically depleted water in plant xylem cannot be explained by soil water sources, particularly for gymnosperms. It is recommended that future research focuses on the potential for fractionation to affect water uptake at the soil‐root interface, both through effects of exchange between the vapour and liquid phases of soil water and the effects of mycorrhizal interactions. Additionally, in cold regions, evaporation and diffusion of xylem water in winter may be an important process.
    Description: We compared stable isotopes of water in plant stem (xylem) water and soil collected over a complete growing season from five well‐known long‐term study sites in northern/cold regions. Xylem water was isotopically depleted compared to soil waters, most notably for deuterium. At all sites except one, water sources of angiosperms could be associated with soil water, while the sources of water uptake by gymnosperms were much less easily explained.
    Description: FP7 Ideas: European Research Council http://dx.doi.org/10.13039/100011199
    Description: KAW Branch‐Point project
    Description: SITES (VR)
    Description: Boise State University http://dx.doi.org/10.13039/100007233
    Description: US National Science Foundation
    Description: Leverhulme Trust through the ISO‐LAND project
    Keywords: 551.9 ; cold regions ; critical zone ; northern environments ; stable isotopes ; soil isotopes ; xylem isotopes
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-05
    Description: Large urban areas are typically characterized by a mosaic of different land uses, with contrasting mixes of impermeable and permeable surfaces that alter “green” and “blue” water flux partitioning. Understanding water partitioning in such heterogeneous environments is challenging but crucial for maintaining a sustainable water management during future challenges of increasing urbanization and climate warming. Stable isotopes in water have outstanding potential to trace the partitioning of rainfall along different flow paths and identify surface water sources. While isotope studies are an established method in many experimental catchments, surprisingly few studies have been conducted in urban environments. Here, we performed synoptic sampling of isotopes in precipitation, surface water and groundwater across the complex city landscape of Berlin, Germany, for a large ‐scale overview of the spatio‐temporal dynamics of urban water cycling. By integrating stable isotopes of water with other hydrogeochemical tracers we were able to identify contributions of groundwater, surface runoff during storm events and effluent discharge on streams with variable degrees of urbanization. We could also assess the influence of summer evaporation on the larger Spree and Havel rivers and local wetlands during the exceptionally warm and dry summers of 2018 and 2019. Our results demonstrate that using stable isotopes and hydrogeochemical data in urban areas has great potential to improve our understanding of water partitioning in complex, anthropogenically‐affected landscapes. This can help to address research priorities needed to tackle future challenges in cities, including the deterioration of water quality and increasing water scarcity driven by climate warming, by improving the understanding of time‐variant rainfall‐runoff behaviour of urban streams, incorporating field data into ecohydrological models, and better quantifying urban evapotranspiration and groundwater recharge.
    Description: Seasonal isotope and hydrogeochemical dynamics of surface‐ and groundwater in a large urban area following the dry summer of 2018, which was characterized by a temperature anomaly and precipitation deficit.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: 551 ; ecohydrology ; hydrogeochemistry ; isotopes ; tracers ; urban green spaces ; urban hydrology
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-05
    Description: N‐acyl homoserine lactones (AHLs) are molecules produced by many Gram‐negative bacteria as mediators of cell‐cell signaling in a mechanism known as quorum sensing (QS). QS is widespread in marine bacteria regulating diverse processes, such as virulence or excretion of polymers that mediate biofilm formation. Associated eukaryotes, such as microalgae, respond to these cues as well, leading to an intricate signaling network. To date, only very few studies attempted to measure AHL concentrations in phototrophic microbial communities, which are hot spots for bacteria‐bacteria as well as microalgae‐bacteria interactions. AHL quantification in environmental samples is challenging and requires a robust and reproducible sampling strategy. However, knowing about AHL concentrations opens up multiple perspectives from answering fundamental ecological questions to deriving guidelines for manipulation and control of biofilms. Here, we present a method for sampling and AHL identification and quantification from marine intertidal sediments. The use of contact cores for sediment sampling ensures reproducible sample surface area and volume at each location. Flash‐freezing of the samples with liquid nitrogen prevents enzymatic AHL degradation between sampling and extraction. After solvent extraction, samples were analyzed with an ultra‐high performance liquid chromatography‐high resolution mass spectrometry (UHPLC‐HRMS) method that allows to baseline‐separate 16 different AHLs in less than 10 min. The sensitivity of the method is sufficient for detection and quantification of AHLs in environmental samples of less than 16 cm3.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: H2020 Marie Skłodowska‐Curie Actions
    Keywords: 551.9 ; intertidal sediments ; biogeochemical analytics
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-07-05
    Description: Mercury accumulation in lake sediments is a widespread environmental problem due to the biomagnification of Hg in the aquatic food chain. Soil Hg concentrations, catchment vegetation, erosion, and lake productivity are major factors controlling the accumulation of Hg in lakes. However, their influence on the Hg mass balance in lakes with different catchment characteristics and trophic state is poorly understood. In this multilake study, we decipher the effects of catchment vegetation (coniferous vs. deciduous forest), soil Hg content, and trophic state on Hg sedimentation at six lakes in Germany. We investigated Hg concentrations in leaves, soils, and the lake's water phase. Soils under coniferous stands show slightly higher Hg concentrations than under deciduous forest. Hg concentrations in the water phase were higher in the oligotrophic brown water lakes (8.1 ± 5.6 ng L−1 vs. 3.0 ± 1.9 ng L−1). Lower Hg concentrations in sediment trap material indicate dilution by algae organic matter in the mesotrophic lakes (0.12–0.17 μg g−1 vs. 0.57–0.89 μg g−1). However, Hg accumulation rates in sediment traps were up to 14‐fold higher in the mesotrophic lakes (113–443 μg m−2 yr−1) than in the brown water lakes (32–144 μg m−2 yr−1), which could not be explained by higher Hg fluxes to the productive lakes. Hg mass balance calculation reveals that water phase Hg scavenging by algae is the major reason for the intense Hg export to the sediments of productive lakes which makes them significantly larger sedimentary sinks than oligotrophic brown water lakes.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: 551.9 ; lake sediments ; Hg concentrations
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-07-05
    Description: The partial pressure of carbon dioxide (pCO2) in surface seawater is an important biogeochemical variable because, together with the pCO2 in the atmosphere, it determines the direction of air–sea carbon dioxide exchange. Large‐scale observations of pCO2 are facilitated by Ships‐of‐Opportunity (SOOP‐CO2) equipped with underway measuring instruments. The need for expanding the observation capacity and the challenges involving the sustainability and maintenance of traditional equilibrator systems led the community toward developing simpler and more autonomous systems. Here we performed a comparison between a membrane‐based sensor and a showerhead equilibration sensor installed on two SOOP‐CO2 between 2013 and 2018. We identified time‐ and space‐adequate crossovers in the Skagerrak Strait, where the two ship routes often crossed. We found a mean total difference of 1.5 ± 10.6 μatm and a root mean square error of 11 μatm. The pCO2 values recorded by the two instruments showed a strong linear correlation with a coefficient of 0.91 and a slope of 1.07 (± 0.14), despite the dynamic nature of the environment and the difficulty of comparing measurements from two different vessels. The membrane‐based sensor was integrated with a FerryBox system on a ship with a high sampling frequency in the study area. We showed the strength of having a sensor‐based network with a high spatial coverage that can be validated against conventional SOOP‐CO2 methods. Proving the validity of membrane‐based sensors in coastal and continental shelf seas and using the higher frequency measurements they provide can enable a thorough characterization of pCO2 variability in these dynamic environments.
    Keywords: 551.46 ; surface seawater ; carbon dioxide ; partial pressure ; measurements
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-07-03
    Description: By interacting with radiation, clouds modulate the flow of energy through the Earth system, the circulation of the atmosphere, and regional climate. We review the impact of cloud‐radiation interactions for the atmospheric circulation in the present‐day climate, its internal variability and its response to climate change. After summarizing cloud‐controlling factors and cloud‐radiative effects, we clarify the scope and limits of the Clouds On‐Off Klimate Model Intercomparison Experiment (COOKIE) and cloud‐locking modeling methods. COOKIE showed that the presence of cloud‐radiative effects shapes the circulation in the present‐day climate in many important ways, including the width of the tropical rain belts and the position of the extratropical storm tracks. Cloud locking, in contrast, identified how clouds affect internal variability and the circulation response to global warming. This includes strong, but model‐dependent, shortwave and longwave cloud impacts on the El‐Nino Southern Oscillation, and the finding that most of the poleward circulation expansion in response to global warming can be attributed to radiative changes in clouds. We highlight the circulation impact of shortwave changes from low‐level clouds and longwave changes from rising high‐level clouds, and the contribution of these cloud changes to model differences in the circulation response to global warming. The review in particular draws attention to the role of cloud‐radiative heating within the atmosphere. We close by raising some open questions which, among others, concern the need for studying the cloud impact on regional scales and opportunities created by the next generation of global storm‐resolving models. This article is categorized under: Climate Models and Modeling 〉 Knowledge Generation with Models
    Description: Clouds interact with radiation. We review the role of cloud‐radiation interactions in shaping the atmospheric circulation and thus regional climate and climate change. Figure from Blue Marble Collection of NASA Visible Earth.
    Description: U.S. Department of Energy's Office of Biological & Environmental Research
    Description: U.S. National Science Foundation
    Description: NERC CIRCULATES project
    Description: FONA: Research for Sustainable Development
    Description: German Ministry of Education and Research (BMBF) http://dx.doi.org/10.13039/501100002347
    Keywords: 551.5 ; circulation ; climate and climate change ; clouds ; global models ; radiation
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-07-01
    Description: Subtropical seagrass meadows play a major role in the coastal carbon cycle, but the nature of air–water CO2 exchanges over these ecosystems is still poorly understood. The complex physical forcing of air–water exchange in coastal waters challenges our ability to quantify bulk exchanges of CO2 and water (evaporation), emphasizing the need for direct measurements. We describe the first direct measurements of evaporation and CO2 flux over a calcifying seagrass meadow near Bob Allen Keys, Florida. Over the 78‐d study, CO2 emissions were 36% greater during the day than at night, and the site was a net CO2 source to the atmosphere of 0.27 ± 0.17 μmol m−2 s−1 (x̅ ± standard deviation). A quarter (23%) of the diurnal variability in CO2 flux was caused by the effect of changing water temperature on gas solubility. Furthermore, evaporation rates were ~ 10 times greater than precipitation, causing a 14% increase in salinity, a potential precursor of seagrass die‐offs. Evaporation rates were not correlated with solar radiation, but instead with air–water temperature gradient and wind shear. We also confirm the role of convective forcing on night‐time enhancement and day‐time suppression of gas transfer. At this site, temperature trends are regulated by solar heating, combined with shallow water depth and relatively consistent air temperature. Our findings indicate that evaporation and air–water CO2 exchange over shallow, tropical, and subtropical seagrass ecosystems may be fundamentally different than in submerged vegetated environments elsewhere, in part due to the complex physical forcing of coastal air–sea gas transfer.
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Keywords: 551.5 ; Florida ; Bob Allen Keys ; seagrass meadows ; air–water CO2 exchanges ; biometeorological measurements
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...