ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2020-2023  (3.647)
  • 1965-1969  (8)
  • 2021  (3.655)
Sammlung
Sprache
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2022-12-27
    Beschreibung: La frange littorale Rades – Hammam lif est une zone côtière fortement urbanisée et industrialisée exposée depuis longtemps à la contamination par les polluants provenant essentiellement de l’oued Meliane qui constitue la voie principale de la pénétration des ETMs. Le mercure est un élément connu par sa toxicité, il se trouve naturellement sur la terre et aussi dans l’environnement à cause des activités anthropiques intenses. Le Golfe de Tunis est influencé par les apports des principaux cours d'eaux exoréiques, provenant de diverses sources de rejets d'origine domestique, industrielle et agricole. La partie sud-ouest du Golfe de Tunis, en particulier la frange littorale Rades - Hammam lif, subit depuis des années les apports des rejets provenant de l’oued Meliane. La concentration de mercure au niveau de l’oued Meliane s’échelonne de 0,02 à 0,61 (µg.g-1) et de 0,01 à 0,97 (µg.g-1) respectivement pendant la saison estivale et hivernale. Le facteur d’enrichissement indique un enrichissement modéré à extrêmement élevé d’où la pollution provient d’une origine anthropique. Le facteur de contamination montre une contamination considérable à très forte au niveau de l’oued Meliane et les stations du littoral. La répartition spatio-temporelle de Hg varie en fonction des sources de rejets installées sur la zone côtière et sur la bordure de l’oued Meliane ainsi que la direction de la dérive littorale au niveau de la côte.
    Beschreibung: The Rades - Hammam lif coast is a highly urbanized and industrialized area exposed for a long time to the contamination by pollutants coming essentially from the Meliane River which constitutes the main source of trace metals.Mercury is an element known for his toxicity, it is found naturally on earth and also in the environment due to intense human activities. The Gulf of Tunis is influenced by the contributions of the main exoreic rivers, coming from various sources of domestic, industrial and agricultural discharges. The southwestern part of the Gulf of Tunis, in particular the Rades - Hammam lif coastal fringe, has for years been subjected to the influx of discharges from the oued Meliane. The mercury concentration at the level of the oued Meliane ranges from 0.02 to 0.61 (µg.g-1) and from 0.01 to 0.97 (µg.g-1) respectively during the summer season and winter. The enrichment factor indicates moderate to extremely high enrichment where the pollution is of anthropogenic origin. The contamination factor shows considerable to very strong contamination at the level of the Meliane oued and the coastal stations. The spatio-temporal distribution of Hg varies according to the sources of releases installed on the coastal zone and on the edge of the oued Meliane as well as the direction of the littoral drift at the level of the coast..
    Beschreibung: Published
    Beschreibung: Refereed
    Schlagwort(e): Mercure ; Sédiments de surface ; pollution ; contamination
    Repository-Name: AquaDocs
    Materialart: Journal Contribution , Refereed
    Format: 139-147
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-12-22
    Beschreibung: The Zinkgruvan mining area is located on the south-eastern part of the Bergslagen district, one of the three major mineral producing regions in Sweden. In this study, we present the results from three (P1, P2 and P8) reflection seismic profiles each approximately 3000 m-long crossing the Zinkgruvan Zn-Pb-Ag-(Cu) mining area. P1 was acquired using cabled geophones with 10 m receiver and source interval and crossed major geological features. The other two profiles (P2 and P8) were acquired by wireless recorders with 20 m receiver and 10 m source interval and ran perpendicular to P1. Through a special data processing workflow adapted to this dataset, good quality seismic sections were obtained along these profiles, although a high noise level due to high voltage electric power lines was present. The interpretations were constrained by (1) seismic P-wave velocity and density data from a series of downhole logging measurements, (2) 3D forward reflection traveltime modelling in both pre- and post-stack domains, and (3) other geophysical and geological observations available from the site. Despite the notably complex geology, the processed seismic sections clearly reveal a series of horizontal to gently dipping reflections associated with known geological formations. Results indicate that most structures and lithological contacts dip or plunge to the northeast, including the targeted Zinkgruvan Formation. The results from this seismic survey are encouraging regarding the potential of the seismic method for base-metal exploration in Sweden and in particular in the Bergslagen district. It shows the high resolving power of the reflection seismic methods for imaging complex geological structures in a cost-effective and environmentally-friendly way.
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-12-22
    Beschreibung: The Alpine Fault zone in New Zealand marks a major transpressional plate boundary that is late in its typical earthquake cycle. Understanding the subsurface structures is crucial to understand the tectonic processes taking place. A unique seismic survey including 2D lines, a 3D array, and borehole recordings, has been performed in the Whataroa Valley and provides new insights into the Alpine Fault zone down to ∼2 km depth at the location of the Deep Fault Drilling Project (DFDP)-2 drill site. Seismic images are obtained by focusing prestack depth migration approaches. Despite the challenging conditions for seismic imaging within a sediment filled glacial valley and steeply dipping valley flanks, several structures related to the valley itself as well as the tectonic fault system are imaged. A set of several reflectors dipping 40°–56° to the southeast are identified in a ∼600 m wide zone that is interpreted to be the minimum extent of the damage zone. Different approaches image one distinct reflector dipping at ∼40°, which is interpreted to be the main Alpine Fault reflector located only ∼100 m beneath the maximum drilled depth of the DFDP-2B borehole. At shallower depths (z 〈 0.5 km), additional reflectors are identified as fault segments with generally steeper dips up to 56°. Additionally, a glacially over-deepened trough with nearly horizontally layered sediments and a major fault (z 〈 0.5 km) are identified 0.5–1 km south of the DFDP-2B borehole. Thus, a complex structural environment is seismically imaged and shows the complexity of the Alpine Fault at Whataroa.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    GEOMAR
    Publikationsdatum: 2022-12-22
    Beschreibung: Dates of Cruise: 02.-06.08.2021 Areas of Research: Aquarium West Shore Port Calls: Grenå DK (03.08. - 05.08.2021, 2 nights) Institute: GEOMAR Helmholtz Centre for Ocean Research Kiel Acquisition of living marine organism for the institute’s own aquarium in the northern Kattegat.
    Materialart: Report , NonPeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-12-22
    Materialart: Report , NonPeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-12-21
    Beschreibung: We present an extensive dataset of highly accurate absolute travel times and travel-time residuals of teleseismic P waves recorded by the AlpArray Seismic Network and complementary field experiments in the years from 2015 to 2019. The dataset is intended to serve as the basis for teleseismic travel-time tomography of the upper mantle below the greater Alpine region. In addition, the data may be used as constraints in full-waveform inversion of AlpArray recordings. The dataset comprises about 170 000 onsets derived from records filtered to an upper-corner frequency of 0.5 Hz and 214 000 onsets from records filtered to an upper-corner frequency of 0.1 Hz. The high accuracy of absolute and residual travel times was obtained by applying a specially designed combination of automatic picking, waveform cross-correlation and beamforming. Taking travel-time data for individual events, we are able to visualise in detail the wave fronts of teleseismic P waves as they propagate across AlpArray. Variations of distances between isochrons indicate structural perturbations in the mantle below. Travel-time residuals for individual events exhibit spatially coherent patterns that prove to be stable if events of similar epicentral distance and azimuth are considered. When residuals for all available events are stacked, conspicuous areas of negative residuals emerge that indicate the lateral location of subducting slabs beneath the Apennines and the western, central and eastern Alps. Stacking residuals for events from 90∘ wide azimuthal sectors results in lateral distributions of negative and positive residuals that are generally consistent but differ in detail due to the differing direction of illumination of mantle structures by the incident P waves. Uncertainties of travel-time residuals are estimated from the peak width of the cross-correlation function and its maximum value. The median uncertainty is 0.15 s at 0.5 Hz and 0.18 s at 0.1 Hz, which is more than 10 times lower than the typical travel-time residuals of up to ±2 s. Uncertainties display a regional dependence caused by quality differences between temporary and permanent stations as well as site-specific noise conditions.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-12-21
    Beschreibung: The Alpine orogeny is characterized by tectonic sequences of subduction and collision accompanied by break-off events and possibly preceded by a flip of subduction polarity. The tectonic evolution of the transition to the Eastern Alps has thus been under debate. The dense SWATH-D seismic network as a complementary experiment to the AlpArray seismic network provides unprecedented lateral resolution to address this ongoing discussion. We analyze the shear-wave splitting of this data set including stations of the AlpArray backbone in the region to obtain new insights into the deformation at depth from seismic anisotropy. Previous studies indicate two-layer anisotropy in the Eastern Alps. This is supported by the azimuthal pattern of the measured fast axis direction across all analyzed stations. However, the temporary character of the deployment requires a joint analysis of multiple stations to increase the number of events adding complementary information of the anisotropic properties of the mantle. We, therefore, perform a cluster analysis based on a correlation of energy tensors between all stations. The energy tensors are assembled from the remaining transverse energy after the trial correction of the splitting effect from two consecutive anisotropic layers. This leads to two main groups of different two-layer properties, separated approximately at 13°E. We identify a layer with a constant fast axis direction (measured clockwise with respect to north) of about 60° over the whole area, with a possible dip from west to east. The lower layer in the west shows N–S fast direction and the upper layer in the east shows a fast axis of about 115°. We propose two likely scenarios, both accompanied by a slab break-off in the eastern part. The continuous layer can either be interpreted as frozen-in anisotropy with a lithospheric origin or as an asthenospheric flow evading the retreat of the European slab that would precede the break-off event. In both scenarios, the upper layer in the east is a result of a flow through the gap formed in the slab break-off. The N–S direction can be interpreted as an asthenospheric flow driven by the retreating European slab but might also result from a deep-reaching fault-related anisotropy.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-12-21
    Beschreibung: We perform a teleseismic P-wave travel-time tomography to examine the geometry and structure of subducted lithosphere in the upper mantle beneath the Alpine orogen. The tomography is based on waveforms recorded at over 600 temporary and permanent broadband stations of the dense AlpArray Seismic Network deployed by 24 different European institutions in the greater Alpine region, reaching from the Massif Central to the Pannonian Basin and from the Po Plain to the river Main. Teleseismic travel times and travel-time residuals of direct teleseismic P waves from 331 teleseismic events of magnitude 5.5 and higher recorded between 2015 and 2019 by the AlpArray Seismic Network are extracted from the recorded waveforms using a combination of automatic picking, beamforming and cross-correlation. The resulting database contains over 162 000 highly accurate absolute P-wave travel times and travel-time residuals. For tomographic inversion, we define a model domain encompassing the entire Alpine region down to a depth of 600 km. Predictions of travel times are computed in a hybrid way applying a fast TauP method outside the model domain and continuing the wave fronts into the model domain using a fast marching method. We iteratively invert demeaned travel-time residuals for P-wave velocities in the model domain using a regular discretization with an average lateral spacing of about 25 km and a vertical spacing of 15 km. The inversion is regularized towards an initial model constructed from a 3D a priori model of the crust and uppermost mantle and a 1D standard earth model beneath. The resulting model provides a detailed image of slab configuration beneath the Alpine and Apenninic orogens. Major features are a partly overturned Adriatic slab beneath the Apennines reaching down to 400 km depth still attached in its northern part to the crust but exhibiting detachment towards the southeast. A fast anomaly beneath the western Alps indicates a short western Alpine slab whose easternmost end is located at about 100 km depth beneath the Penninic front. Further to the east and following the arcuate shape of the western Periadriatic Fault System, a deep-reaching coherent fast anomaly with complex internal structure generally dipping to the SE down to about 400 km suggests a slab of European origin limited to the east by the Giudicarie fault in the upper 200 km but extending beyond this fault at greater depths. In its eastern part it is detached from overlying lithosphere. Further to the east, well-separated in the upper 200 km from the slab beneath the central Alps but merging with it below, another deep-reaching, nearly vertically dipping high-velocity anomaly suggests the existence of a slab beneath the eastern Alps of presumably the same origin which is completely detached from the orogenic root. Our image of this slab does not require a polarity switch because of its nearly vertical dip and full detachment from the overlying lithosphere. Fast anomalies beneath the Dinarides are weak and concentrated to the northernmost part and shallow depths. Low-velocity regions surrounding the fast anomalies beneath the Alps to the west and northwest follow the same dipping trend as the overlying fast ones, indicating a kinematically coherent thick subducting lithosphere in this region. Alternatively, these regions may signify the presence of seismic anisotropy with a horizontal fast axis parallel to the Alpine belt due to asthenospheric flow around the Alpine slabs. In contrast, low-velocity anomalies to the east suggest asthenospheric upwelling presumably driven by retreat of the Carpathian slab and extrusion of eastern Alpine lithosphere towards the east while low velocities to the south are presumably evidence of asthenospheric upwelling and mantle hydration due to their position above the European slab.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-12-21
    Beschreibung: In this study, we analyzed a large seismological dataset from temporary and permanent networks in the southern and eastern Alps to establish high-precision hypocenters and 1-D VP and VP/VS models. The waveform data of a subset of local earthquakes with magnitudes in the range of 1–4.2 ML were recorded by the dense, temporary SWATH-D network and selected stations of the AlpArray network between September 2017 and the end of 2018. The first arrival times of P and S waves of earthquakes are determined by a semi-automatic procedure. We applied a Markov chain Monte Carlo inversion method to simultaneously calculate robust hypocenters, a 1-D velocity model, and station corrections without prior assumptions, such as initial velocity models or earthquake locations. A further advantage of this method is the derivation of the model parameter uncertainties and noise levels of the data. The precision estimates of the localization procedure is checked by inverting a synthetic travel time dataset from a complex 3-D velocity model and by using the real stations and earthquakes geometry. The location accuracy is further investigated by a quarry blast test. The average uncertainties of the locations of the earthquakes are below 500 m in their epicenter and ∼ 1.7 km in depth. The earthquake distribution reveals seismicity in the upper crust (0–20 km), which is characterized by pronounced clusters along the Alpine frontal thrust, e.g., the Friuli-Venetia (FV) region, the Giudicarie–Lessini (GL) and Schio-Vicenza domains, the Austroalpine nappes, and the Inntal area. Some seismicity also occurs along the Periadriatic Fault. The general pattern of seismicity reflects head-on convergence of the Adriatic indenter with the Alpine orogenic crust. The seismicity in the FV and GL regions is deeper than the modeled frontal thrusts, which we interpret as indication for southward propagation of the southern Alpine deformation front (blind thrusts).
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-12-17
    Beschreibung: This dataset was collected during field-based monitoring in the Kali Gandaki River catchment be-tween the years 2013 and 2017. The monitoring aims to understand the hydrological fluxes and feedback with weathering and erosion processes across the mountain range. The Kali Gandaki River sources its water in the North and traverses through the Himalayan Mountain Range, along a north-south transect. The field-based monitoring comprises targeted field campaigns to revisit locations at different years and seasons in order to constrain the annual and intra-annual variability. This is complemented by permanent installations and routine river and rain sampling at two loca-tions, Lete and Purtighat. Lete is situated at the orographic barrier, at ~2500 m asl. and the up-stream catchment integrates the northern part of the Himalayan Range as well as some of the southern edge of the Tibetan Plateau. Purtighat is located further south and integrates the north-ern part as well as south-facing flanks of the Higher and Lower Himalayas. At both locations, auto-mated river monitoring is installed as well as a trained station ward for daily routine sampling. At Lete, rainfall samples are obtained on a daily resolution during the monsoon. This sampling was not feasible at Purtighat for logistic reasons. Instead, rain was sampled daily in Kathmandu. This dataset contains five tables of stable water isotope analysis. One containing grab samples from the Kali Gandaki river in its vicinities and 4 tables with time series sampling from the Kali Gandaki River and from rainfall.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/workingPaper
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...