ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (32,945)
  • 1975-1979  (10)
  • 2022  (32,945)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2024-06-05
    Description: The high surface productivity triggered by nutrient-rich Benguela upwelled waters results in significant enrichment of organic carbon in the sub-surface waters due to enhanced mineralization in the water column and benthic fluxes. Hence, microbial O2-consuming processes are promoted, driving oxygen depletion that favors trace gases i.e. methane (CH4) and nitrous oxide (N2O) production at relatively shallow depths. During upwelling, gas-rich subsurface waters are also transported towards the surface waters, enhancing trace gas sea-air fluxes. We investigate the variability of these fluxes on seasonal and shorter timescales to understand the intensity of the Benguela upwelling system in gas emissions. The data might serve as a base for projections under a changing climate. The fieldwork took place during the cruise M157 (August 4th – September 16th, 2019) onboard the R/V METEOR, which encompassed close-coastal and open ocean regions between Mindelo (Cape Verde) and Walvis Bay. The main transect lines around 18, 23 and 25°S represents the Angola-Benguela frontal zone, Walvis Bay and Lüderitz upwelling cells respectively, which are suggested to represent some regional hotspots of trace gas emissions to the atmosphere, in particular in the vicinity of the upwelling cells. The partial pressures of CH4, N2O, and CO2 as well as oxygen saturation in surface water were determined using IOW's self-built Mobile Equilibrator Sensor System (MESS). The system was described in details elsewhere (Sabbaghzadeh et al., 2021) but in brief, it consists of a custom-built equilibrator (combined shower-head/bubble type) with a water flow rate of about 5 l min-1 and an airflow rate of ~ 4 l min-1, which is linked to two off-axis integrated cavity output laser spectrometers (oa-ICOS, Los Gatos Instruments) for the detection of CH4 / CO2 and N2O / CO. Seawater was supplied by a pump installed at a water depth of about 6 m in the moon pool on board of RV METEOR. oa-ICOS sensors combine a highly specific infrared band laser with a set of reflective mirrors and achieve an effective absorption path length of several kilometers. This enables the detection of the trace gases with high accuracy. Three standard gases, provided by the central calibration lab of the European Integrated Carbon Observation System Research Infrastructure (ICOS RI) were used to calibrate the sensors almost daily throughout the entire expedition. To estimate sea-air gas fluxes, the atmospheric concentration of trace gases was also measured at several positions during the cruise using a tube with the inlet positioned to minimize ship contamination. All other ancillary parameters out of the MESS system were synchronized with D-ship data with a simultaneous data reduction to one-minute intervals.
    Keywords: Benguela Upwelling System; BUSUC 1; Carbon dioxide, dry air; Carbon monoxide, dry air; CT; DATE/TIME; EVAR; M157; M157-track; Meteor (1986); Methane, dry air; Namibia; Nitrous oxide, dry air; oxygen deficient zones; Ship speed; The Benguela Upwelling System under climate change – Effects of VARiability in physical forcing on carbon and oxygen budgets; Threshold; trace gases; Underway cruise track measurements; Wind direction, relative; Wind speed, relative
    Type: Dataset
    Format: text/tab-separated-values, 260 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-05
    Description: The high surface productivity triggered by nutrient-rich Benguela upwelled waters results in significant enrichment of organic carbon in the sub-surface waters due to enhanced mineralization in the water column and benthic fluxes. Hence, microbial O2-consuming processes are promoted, driving oxygen depletion that favors trace gases i.e. methane (CH4) and nitrous oxide (N2O) production at relatively shallow depths. During upwelling, gas-rich subsurface waters are also transported towards the surface waters, enhancing trace gas sea-air fluxes. We investigate the variability of these fluxes on seasonal and shorter timescales to understand the intensity of the Benguela upwelling system in gas emissions. The data might serve as a base for projections under a changing climate. The fieldwork took place during the cruise M157 (August 4th – September 16th, 2019) onboard the R/V METEOR, which encompassed close-coastal and open ocean regions between Mindelo (Cape Verde) and Walvis Bay. The main transect lines around 18, 23 and 25°S represents the Angola-Benguela frontal zone, Walvis Bay and Lüderitz upwelling cells respectively, which are suggested to represent some regional hotspots of trace gas emissions to the atmosphere, in particular in the vicinity of the upwelling cells. To explore further, nearly 300 discrete water samples were collected from the Niskin bottles at different stations for determination of the concentrations of CH4, N2O, and total inorganic carbon (CT). Analysis for CH4 and N2O was performed using an in-house designed purge and trap system with a dynamic headspace. In brief, a subsample of the water is purged with an inert ultrapure carrier gas of Helium, and the gases are focused on a cryo-trap operated at about -120°C. The volatile compounds are desorbed by rapid heating and analyzed by a gas chromatograph (Agilent 7890 B), equipped with a Flame Ionization Detector for CH4 and an Electron Capture Detector for N2O measurements, respectively. Samples for CT were taken to investigate the carbonate system. CT was measured using an automated Infra-Red Inorganic Carbon Analyzer (AIRICA) system (Marianda e.K., 24145 Kiel) from discrete 250 ml samples. In brief, a subsample is drawn into a volume-calibrated syringe and injected into a purge vessel, where the discrete sample is acidified. All species of the inorganic carbon system are converted to CO2, which is purged from the water using a carrier gas that streams through the acidified probe. Then the gas flows through a Peltier cooler and a NAFION dryer to be dried. The concentration of CO2 is then measured by an infrared detector (LICOR 7000), which integrates the peak of the purged sample. The integrated signal is directly proportional to the carbon released, allowing the CT concentration to be calculated with high precision. Certified reference material (CRM) of known CT-concentration is used for standardization and to account for drift of the sensor response.
    Keywords: Benguela Upwelling System; BUSUC 1; Carbon dioxide; CTD/Rosette; CTD-RO; DEPTH, water; EVAR; Event label; Gas chromatography, Agilent 7820B, coupled with a flame ionization detector and an Electron Capture Detector; Infrared detector LICOR 7000; LATITUDE; LONGITUDE; M157; M157_10-7; M157_11-4; M157_12-2; M157_14-2; M157_15-14; M157_16-3; M157_17-2; M157_24-1; M157_25-1; M157_26-2; M157_27-1; M157_2-8; M157_28-1; M157_31-1; M157_34-4; M157_36-2; M157_38-2; M157_39-2; M157_40-2; M157_41-14; M157_42-2; M157_43-2; M157_44-2; M157_45-2; M157_46-3; M157_49-3; M157_6-1; M157_8-2; M157_9-2; Meteor (1986); Methane; Namibia; Nitrous oxide; oxygen deficient zones; Station label; The Benguela Upwelling System under climate change – Effects of VARiability in physical forcing on carbon and oxygen budgets; trace gases
    Type: Dataset
    Format: text/tab-separated-values, 1370 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-05
    Description: The high surface productivity triggered by nutrient-rich Benguela upwelled waters results in significant enrichment of organic carbon in the sub-surface waters due to enhanced mineralization in the water column and benthic fluxes. Hence, microbial O2-consuming processes are promoted, driving oxygen depletion that favors trace gases i.e. methane (CH4) and nitrous oxide (N2O) production at relatively shallow depths. During upwelling, gas-rich subsurface waters are also transported towards the surface waters, enhancing trace gas sea-air fluxes. We investigate the variability of these fluxes on seasonal and shorter timescales to understand the intensity of the Benguela upwelling system in gas emissions. The data might serve as a base for projections under a changing climate. The fieldwork took place during the cruise M157 (August 4th – September 16th, 2019) onboard the R/V METEOR, which encompassed close-coastal and open ocean regions between Mindelo (Cape Verde) and Walvis Bay. The main transect lines around 18, 23 and 25°S represents the Angola-Benguela frontal zone, Walvis Bay and Lüderitz upwelling cells respectively, which are suggested to represent some regional hotspots of trace gas emissions to the atmosphere, in particular in the vicinity of the upwelling cells. The partial pressures of CH4, N2O, and CO2 as well as oxygen saturation in surface water were determined using IOW's self-built Mobile Equilibrator Sensor System (MESS). The system was described in details elsewhere (Sabbaghzadeh et al., 2021) but in brief, it consists of a custom-built equilibrator (combined shower-head/bubble type) with a water flow rate of about 5 l min-1 and an airflow rate of ~ 4 l min-1, which is linked to two off-axis integrated cavity output laser spectrometers (oa-ICOS, Los Gatos Instruments) for the detection of CH4 / CO2 and N2O / CO. Seawater was supplied by a pump installed at a water depth of about 6 m in the moon pool on board of RV METEOR. oa-ICOS sensors combine a highly specific infrared band laser with a set of reflective mirrors and achieve an effective absorption path length of several kilometers. This enables the detection of the trace gases with high accuracy. Three standard gases, provided by the central calibration lab of the European Integrated Carbon Observation System Research Infrastructure (ICOS RI) were used to calibrate the sensors almost daily throughout the entire expedition. To estimate sea-air gas fluxes, the atmospheric concentration of trace gases was also measured at several positions during the cruise using a tube with the inlet positioned to minimize ship contamination. All other ancillary parameters out of the MESS system were synchronized with D-ship data with a simultaneous data reduction to one-minute intervals.
    Keywords: Benguela Upwelling System; BUSUC 1; Carbon dioxide; Carbon dioxide, dry air; Carbon dioxide, equilibrium; Carbon dioxide, partial pressure; Carbon dioxide saturation; Carbon monoxide; Carbon monoxide, dissolved, equilibrium; Carbon monoxide, dry air; Course over ground; CT; Date; DATE/TIME; EVAR; Flow rate; Humidity, relative; LATITUDE; LONGITUDE; Long-wave downward radiation; M157; M157-track; Meteor (1986); Methane; Methane, dissolved, equilibrium; Methane, dry air; Methane saturation; Namibia; Nitrous oxide; Nitrous oxide, dissolved, equilibrium; Nitrous oxide, dry air; Nitrous oxide saturation; oxygen deficient zones; Pressure, atmospheric; Salinity; Ship speed; Short-wave downward (GLOBAL) radiation; Speed; Temperature, air; Temperature, water; The Benguela Upwelling System under climate change – Effects of VARiability in physical forcing on carbon and oxygen budgets; trace gases; Ultraviolet radiation; Underway cruise track measurements; Visibility; Wind direction, relative; Wind direction, true; Wind speed, relative; Wind speed, true
    Type: Dataset
    Format: text/tab-separated-values, 1080901 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-04
    Description: Data presented here were collected between January 2021 to December 2021 within the research unit DynaCom (Spatial community ecology in highly dynamic landscapes: From island biogeography to metaecosystems, https://uol.de/dynacom/ ) of the Universities of Oldenburg, Göttingen, and Münster, the iDiv Leipzig and the Nationalpark Niedersächsisches Wattenmeer. Experimental islands and saltmarsh enclosed plots were created in the back barrier tidal flat and in the saltmarsh zone of the island of Spiekeroog. Meteorological data were collected near the experimental setup, with a locally installed weather station located approximately 500m north of the southern shoreline. The weather station system used here was a ClimaSensor US 4.920x.00.00x that was pre-calibrated by the manufacturer (Adolf Thies GmbH & Co. KG, D-Göttingen). Data were recorded and saved within the Meteo-Online (V4.5.0.20253) software in a sampling interval of 1 min, with an averaging time of 10 s. Date and time were given in UTC and the position was derived from the internal GPS system. Data handling was performed according to Zielinski et al. (2018): Post-processing of collected data was done using MATLAB (R2018a). Quality control was performed by (a) erasing data covering maintenance activities, (b) removing outliers, defined as data exhibiting changes of more than two standard deviations within one time step, and (c) visually checks.
    Keywords: BEFmate; biodiversity - ecosystem functioning; DynaCom; experimental islands; FOR 2716: Spatial community ecology in highly dynamic landscapes: from island biogeography to metaecosystems; Metacommunity; meteorology; salt marsh; Spiekeroog
    Type: Dataset
    Format: application/zip, 12 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-04
    Description: The distance between a remotely operated vehicle (ROV) and the sea-ice underside was measured by a single-beam upward-looking acoustic sonar altimeter (Tritech PA500) attached to the ROV during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Sea-ice draft was derived by subtracting the distance to the sea-ice underside from the ROV depth, uncorrected for ROV attitude (pitch, roll). An offset between the depth reference (ROV bumper bars) and the altimeter of 0.105 m is accounted for in the presented data.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_10-113; PS122/1_5-62; PS122/1_6-118; PS122/1_6-16; PS122/1_6-31; PS122/1_7-18; PS122/1_7-55; PS122/1_8-125; PS122/1_9-22; PS122/2; PS122/2_18-10; PS122/2_18-19; PS122/2_18-89; PS122/2_19-115; PS122/2_19-27; PS122/2_20-101; PS122/2_20-23; PS122/2_21-125; PS122/2_21-36; PS122/2_22-107; PS122/2_22-45; PS122/2_23-116; PS122/2_23-29; PS122/2_24-70; PS122/2_24-97; PS122/2_25-104; PS122/2_25-44; PS122/3; PS122/3_29-14; PS122/3_29-65; PS122/3_30-69; PS122/3_31-17; PS122/3_31-75; PS122/3_32-11; PS122/3_32-34; PS122/3_32-78; PS122/3_33-27; PS122/3_33-83; PS122/3_34-20; PS122/3_35-32; PS122/3_35-95; PS122/3_36-112; PS122/3_36-125; PS122/3_36-24; PS122/3_37-108; PS122/3_37-19; PS122/3_37-20; PS122/3_38-50; PS122/3_38-85; PS122/3_38-91; PS122/3_39-152; PS122/3_39-20; PS122/3_39-77; PS122/4; PS122/4_44-162; PS122/4_44-191; PS122/4_44-206; PS122/4_45-129; PS122/4_45-149; PS122/4_45-61; PS122/4_46-172; PS122/4_46-174; PS122/4_46-175; PS122/4_46-176; PS122/4_46-177; PS122/4_46-37; PS122/4_47-135; PS122/4_47-31; PS122/4_48-213; PS122/4_48-4; PS122/4_49-105; PS122/5; PS122/5_59-269; PS122/5_59-369; PS122/5_60-165; PS122/5_60-166; PS122/5_60-167; PS122/5_60-28; PS122/5_60-5; PS122/5_61-156; PS122/5_61-200; PS122/5_61-35; PS122/5_62-103; PS122/5_62-165; PS122/5_62-65; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea-ice draft; Sea Ice Physics @ AWI
    Type: Dataset
    Format: application/zip, 90 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-04
    Description: Fluorometric data on chlorophyll a concentration, Fluorescent Dissolved Organic Matter (FDOM) concentration, and optical backscatter were measured by a triplet fluorometer (ECO-Puck BBFL2SSC, Wetlabs) attached to a remotely operated vehicle (ROV) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Data use manufacturer calibration.
    Keywords: Arctic Ocean; AWI_SeaIce; BEAST; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_10-113; PS122/1_5-62; PS122/1_6-118; PS122/1_6-16; PS122/1_6-31; PS122/1_7-18; PS122/1_7-55; PS122/1_8-125; PS122/1_9-22; PS122/2; PS122/2_18-10; PS122/2_18-19; PS122/2_18-89; PS122/2_19-115; PS122/2_19-27; PS122/2_20-101; PS122/2_20-23; PS122/2_21-125; PS122/2_21-36; PS122/2_22-107; PS122/2_22-45; PS122/2_23-116; PS122/2_23-29; PS122/2_24-70; PS122/2_24-97; PS122/2_25-104; PS122/2_25-44; PS122/3; PS122/3_29-14; PS122/3_29-65; PS122/3_30-69; PS122/3_31-17; PS122/3_31-75; PS122/3_32-11; PS122/3_32-33; PS122/3_32-34; PS122/3_32-78; PS122/3_33-27; PS122/3_33-83; PS122/3_34-20; PS122/3_35-32; PS122/3_35-95; PS122/3_36-112; PS122/3_36-125; PS122/3_36-24; PS122/3_37-108; PS122/3_37-19; PS122/3_37-20; PS122/3_38-50; PS122/3_38-85; PS122/3_38-91; PS122/3_39-111; PS122/3_39-152; PS122/3_39-20; PS122/3_39-77; PS122/4; PS122/4_44-162; PS122/4_44-191; PS122/4_44-206; PS122/4_45-129; PS122/4_45-149; PS122/4_45-61; PS122/4_46-172; PS122/4_46-174; PS122/4_46-175; PS122/4_46-176; PS122/4_46-177; PS122/4_46-37; PS122/4_47-135; PS122/4_47-31; PS122/4_48-213; PS122/4_48-4; PS122/4_49-105; PS122/5; PS122/5_59-269; PS122/5_59-369; PS122/5_60-165; PS122/5_60-166; PS122/5_60-167; PS122/5_60-28; PS122/5_60-5; PS122/5_61-156; PS122/5_61-200; PS122/5_61-35; PS122/5_62-103; PS122/5_62-165; PS122/5_62-65; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea Ice Physics @ AWI
    Type: Dataset
    Format: application/zip, 93 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-04
    Description: Absorbance and spectral absorption coefficient (SAC) parameters as measured by a VIPER G2 spectral transmissometer (TriOS) mounted in the sensor skid of a remotely operated vehicle (ROV) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition between November 2019 and September 2020. Data use manufacturer calibration. The path length was 250 mm and the wavelength range 360-750 nm. More technical details can be found here: https://www.trios.de/en/viper.html.
    Keywords: Arctic Ocean; attenuation coefficient; AWI_SeaIce; BEAST; FRAM; FRontiers in Arctic marine Monitoring; MOSAiC; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_10-113; PS122/1_5-62; PS122/1_6-118; PS122/1_6-16; PS122/1_6-31; PS122/1_7-18; PS122/1_7-55; PS122/1_8-125; PS122/1_9-22; PS122/2; PS122/2_18-10; PS122/2_18-19; PS122/2_18-89; PS122/2_19-115; PS122/2_19-27; PS122/2_20-101; PS122/2_20-23; PS122/2_21-125; PS122/2_21-36; PS122/2_22-107; PS122/2_22-45; PS122/2_23-116; PS122/2_23-29; PS122/2_24-70; PS122/2_24-97; PS122/2_25-104; PS122/2_25-44; PS122/3; PS122/3_29-14; PS122/3_29-65; PS122/3_30-69; PS122/3_31-17; PS122/3_31-75; PS122/3_32-11; PS122/3_32-33; PS122/3_32-34; PS122/3_32-78; PS122/3_33-27; PS122/3_33-83; PS122/3_34-20; PS122/3_35-32; PS122/3_35-95; PS122/3_36-112; PS122/3_36-125; PS122/3_36-24; PS122/3_37-108; PS122/3_37-19; PS122/3_37-20; PS122/3_38-50; PS122/3_38-85; PS122/3_38-91; PS122/3_39-111; PS122/3_39-152; PS122/3_39-20; PS122/3_39-77; PS122/4; PS122/4_44-162; PS122/4_44-191; PS122/4_44-206; PS122/4_45-129; PS122/4_45-149; PS122/4_45-61; PS122/4_46-172; PS122/4_46-174; PS122/4_46-175; PS122/4_46-176; PS122/4_46-177; PS122/4_46-37; PS122/4_47-135; PS122/4_47-31; PS122/4_48-213; PS122/4_48-4; PS122/4_49-105; PS122/5; PS122/5_59-269; PS122/5_59-369; PS122/5_60-165; PS122/5_60-166; PS122/5_60-167; PS122/5_60-28; PS122/5_60-5; PS122/5_61-156; PS122/5_61-200; PS122/5_61-35; PS122/5_62-103; PS122/5_62-165; PS122/5_62-65; Remotely operated sensor platform BEAST; Remotely operated vehicle (ROV); Sea ice; Sea Ice Physics @ AWI
    Type: Dataset
    Format: application/zip, 92 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-06-04
    Description: The data set contains daily files of atmospheric radiation measured during zenith (mwr00) and boundary layer (mwrBL00) mode by the HATPRO microwave radiometer (see Rose et al., 2005) onboard the Polarstern during cruise PS122 (MOSAiC expedition). The data covers the range October 2019 to October 2020. The atmospheric radiation measurements are given as brightness temperatures in seven K band (22.24 - 31.4 GHz) and seven V band (51.26 - 58 GHz) channels. The elevation scans have been perfomed approximately every 30 minutes while zenith measurements (elevation angle at 90 degrees) fill the remaining time. The brightness temperatures are provided for all available times so that it is up to the user to decide whether or not to use the values if quality flags are set. Additionally included are temperature, pressure and humidity measurements at the instrument location as well as quality flags characterizing the instrument and retrieval performance.
    Keywords: AC3; Arctic; Arctic Amplification; Arctic Ocean; ATMOBS; Atmospheric Observatory; Binary Object; Binary Object (File Size); brightness temperatures; Comment; DATE/TIME; Event label; Hatpro; LATITUDE; LONGITUDE; microwave radiometer; Mosaic; MOSAiC; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; North Greenland Sea; Other event; Polarstern; PS122; PS122/1; PS122/1_1-38; PS122/2; PS122/2_14-18; PS122/3; PS122/3_28-6; PS122/4; PS122/4_43-11; PS122/4_43-145; PS122/5; PS122/5_58-3; remote sensing
    Type: Dataset
    Format: text/tab-separated-values, 1392 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-04
    Description: The data set contains daily files of atmospheric radiation measured by the MiRAC-P (or LHUMPRO-243-340) microwave radiometer (see Mech et al., 2019) onboard the Polarstern during cruise PS122 (MOSAiC expedition). The data covers the range October 2019 to October 2020. The atmospheric radiation measurements are given as brightness temperatures in six double side band averaged G band (183.31 +/- 0.6 to 183.31 +/- 7.5 GHz) and two higher frequency (243 and 340 GHz) channels. The brightness temperatures are provided for all available times so that it is up to the user to decide whether or not to use the values if quality flags are set. Additionally included are temperature, pressure and humidity measurements at the instrument location as well as quality flags characterizing the instrument and retrieval performance.
    Keywords: AC3; Arctic; Arctic Amplification; Arctic Ocean; ATMOBS; Atmospheric Observatory; Binary Object; Binary Object (File Size); brightness temperature; DATE/TIME; Event label; LATITUDE; LONGITUDE; microwave radiometer; Mosaic; MOSAiC; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; North Greenland Sea; Other event; Polarstern; PS122; PS122/1; PS122/1_1-38; PS122/2; PS122/2_14-18; PS122/3; PS122/3_28-6; PS122/4; PS122/4_43-11; PS122/4_43-145; PS122/5; PS122/5_58-3; remote sensing
    Type: Dataset
    Format: text/tab-separated-values, 346 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-06-04
    Description: The dataset comprises stable water isotopes and conductitities of a lead case study during leg 5 of the MOSAiC campaign. Samples have been taken from different water and ice types for this lead case study. Discrete water samples were taken using a peristaltic pump (Masterflex E/S Portable Sampler, Masterflex, USA) through a 2 m long PTFE tube (L/S Pump Tubing, Masterflex, USA). Water samples for measurement of stable water isotopes (δ18O, δD,) were collected in 50-mL glass screw-cap narrow-neck vials (VWR international LLC, Germany). Snow on the sea ice was sampled with a polyethylene shovel (GL Science Inc., Tokyo, Japan) and placed into a polyethylene zip-loc bag. Ice in the lead was collected and a 0.25 m ' 0.25 m ice block was cut with a hand saw and placed into a zip-lock bag. Ice temperature at the surface was measured with a needle-type temperature sensor (Testo 110 NTC, Brandt Instruments, Inc., USA). Two ice cores from the bottom of a melt pond were collected, using an ice corer with an inner diameter of 0.09 m (Mark II coring system, KOVACS Enterprises, Inc., USA). The cores were cut with a stainless steel saw into 0.1 m thick sections and stored in plastic bags for subsequent salinity and δ18O measurements. Snow and ice samples were immediately placed in a cooler box along with refrigerants to keep their temperature low and to minimize brine drainage. Onboard Polarstern, ice samples were transferred into ice melting bags (Smart bags PA, AAK 5L, GL Sciences Inc., Japan) and melted in the dark at +4°C. After the ice melted, the meltwater was placed in a 30-mL glass screw-cap vial for later stable water isotope measurement and into a 100-mL polypropylene bottle (I-Boy, AS ONE Corporation, Japan) for later salinity measurement. These samples were stored at +4°C in the dark until analysis. Under-ice water samples (from about 10 m depth) were collected via R/V Polarstern's underway water sampling system during leg 5. Samples were placed into 250-mL glass vials (Duran Co. Ltd, Germany) for later δ18O and salinity measurements. Salinity of collected samples was determined with a same conductivity sensor used on sea ice (Cond 315i, WTW GmbH, Germany). Oxygen and hydrogen isotope analyses were carried out at the ISOLAB Facility at AWI Potsdam (hdl:10013/sensor.ddc92f54-4c63-492d-81c7-696260694001) with mass spectrometers (DELTA-S Finnigan MAT, USA): hdl:10013/sensor.af148dea-fe65-4c87-9744-50dc4c81f7c9 and hdl:10013/sensor.62e86761-9fae-4f12-9c10-9b245028ea4c employing the equilibration method (details in Meyer et al., 2000). δ18O and δD values were given in per mil (‰) vs. Vienna standard mean ocean water (V-SMOW) as the standard. The second order parameter d excess was computed according to: d excess = δD-8 δ18O (Dansgaard, 1964).
    Keywords: Arctic Ocean; AWI_Envi; AWI_Perma; Calculated after Dansgaard (1964); Chamber for gas sampling; CHAMGAS; Comment; Conductivity sensor Cond 315i, WTW GmbH, Germany; DATE/TIME; DEPTH, ice/snow; DEPTH, water; Deuterium excess; Event label; freshwater; IC; Ice corer; Latitude of event; leads; Leg 5; Longitude of event; Mass spectrometer Finnigan MAT Delta-S (ISOLAB); Mosaic; MOSAiC; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Permafrost Research; Polarstern; Polar Terrestrial Environmental Systems @ AWI; PS122/5; PS122/5_59-343; PS122/5_59-389; PS122/5_59-392; PS122/5_59-446; PS122/5_59-447; PS122/5_60-130; PS122/5_60-133; PS122/5_60-146; PS122/5_60-16; PS122/5_60-260; PS122/5_60-61; PS122/5_61-126; PS122/5_61-205; PS122/5_61-206; PS122/5_62-117; PS122/5_62-120; PS122/5_62-35; PS122/5_62-40; PS122/5_62-42; PS122/5_62-5; Salinity; Sample code/label; Sample ID; Sample type; Sea ice; snow; SNOW; Snow/ice sample; Station label; Water sample; WS; δ18O, water; δ Deuterium, water
    Type: Dataset
    Format: text/tab-separated-values, 838 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...