ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (3,647)
  • 2021  (3,647)
Collection
Language
Years
Year
  • 1
    Publication Date: 2022-03-09
    Description: Deep hydrothermal Mo, W and base metal mineralization found in the Detroit City portal of the Sweet Home mine in the Alma district (Colorado Mineral Belt) was deposited in response to magmatic activity and the formation of Climax-type Mo deposits during the Oligocene. This study presents extensive geochemical analyses of fluid inclusions inminerals from early greisen-like vein mineralization to better understand the fluid system responsible for ore formation. Quartz and fluorite, which are associated with molybdenite, huebnerite and/or pyrite mineralization, precipitated from low- to medium-salinity (1.5-11.5 wt.% equiv. NaCl), CO2-bearing fluids at temperatures between 360 and 415°C and probably under a fluctuating pressure regime at depths of at least 3.5 km. The formation of greisen-like and base metal mineralization at the Detroit City portal of the Sweet Home mine is related to fluids of different origin. Early magmatic fluids were the principal source for mantle-derived volatiles (CO2, H2S/SO2, noble gases) and mixed with significant amounts of heated meteoric water. Fluid mixing of magmatic fluids with meteoric water is constrained by δ 2H-δ 18O relationships of fluid inclusion water in different minerals (Fig. 1). Whether molybdenum was derived from magmatic fluids remains unclear. Fluid inclusions in huebnerite suggest that W originated from source rocks that are enriched in organic matter rather than from magmatic fluids. The deep hydrothermal mineralization at the Detroit City portal of the Sweet Home mine shows features similar to deep hydrothermal vein mineralization found in Climax-type Mo deposits and their periphery, suggesting that fluid migration and the deposition of ore and gangue minerals in the Sweet Home mine was triggered by a deep-seated magmatic intrusion. The findings of this study are in good agreement with the results of previous fluid inclusion studies of the mineralization of the Sweet Home mine (Lüders et al., 2009) and from Climaxtype Mo porphyry deposits in the Colorado Mineral Belt (Hall et al., 1974).
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-09
    Description: By means of 4 years of Challenging Minisatellite Payload (CHAMP) zonal wind observations and a Thermosphere-Ionosphere Electrodynamics General Circulation Model simulation, longitudinal and seasonal variations of thermospheric superrotation at magnetic equator are investigated first. The superrotation shows four- and three-peaked longitudinal patterns in March and September equinoxes, and a two-peaked variation during solstices. The superrotation is stronger in December than in June solstice, and stronger in March than in September equinox. The mean correlation between the zonal variation of superrotation and nighttime eastward wind is about 0.8, while it is 0.6 with daytime westward zonal wind. The interaction between the neutral wind and geomagnetic field plays a more important role in the superrotation, rather than the F-region electron density. The lower atmospheric tides tend to suppress the superrotation, but contribute to the longitudinal patterns of the superrotation. The viscous force is also important for the longitudinal modulation of the superrotation.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-09
    Description: We report the concurrent observations of F-region plasma changes and field-aligned currents (FACs) above isolated proton auroras (IPAs) associated with electromagnetic ion cyclotron Pc1 waves. Key events on March 19, 2020 and September 12, 2018 show that ground magnetometers and all-sky imagers detected concurrent Pc1 wave and IPA, during which NOAA POES observed precipitating energetic protons. In the ionospheric F-layer above the IPA zone, the Swarm satellites observed transverse Pc1 waves, which span wider latitudes than IPA. Around IPA, Swarm also detected the bipolar FAC and localized plasma density enhancement, which is occasionally surrounded by wide/shallow depletion. This indicates that wave-induced proton precipitation contributes to the energy transfer from the magnetosphere to the ionosphere.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-09
    Description: Tropical forests store 40–50 per cent of terrestrial vegetation carbon1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests2. Owing to climatic and soil changes with increasing elevation3, AGC stocks are lower in tropical montane forests compared with lowland forests2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1–164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-09
    Description: The Huanghe once had a sediment flux of 〉1,000 Mt/yr, but this has decreased by ∼90% as its river sediment routing systems have undergone dramatic changes influenced by human activities such as dam construction. However, the way in which the sediment geochemistry of the river has responded to the altered sediment routing processes is not well known. This study investigates the sediment source-to-sink routing regime of the Huanghe River using Nd isotope fingerprinting. Four major source terranes, namely the Songpan-Ganzi (SG) Block, Ordos Desert (OD), Chinese Loess Plateau (CLP) and North China Craton (NCC) are recognized according to their distinct Nd isotopes. The gradual downstream decrease in εNd values in sediments of the upper Huanghe indicates a decreasing contribution of material from the SG Block and a corresponding increase contribution of local underlying basement rocks, which is inferred to be related to sediment capture by a cascade of hydroelectric dams. A gradual increase in εNd from Yinchuan to Tongguan suggests an increasing contribution from the CLP under intense erosion. Relatively low εNd in the downstream sediments suggest a contribution from proximal NCC basement, consistent with the shift from deposition to erosion in the lower channel in recent years. The marked heterogeneity in Nd isotopes in the Huanghe sediments corresponds well to sediment source-to-sink processes in response to increasing human impacts. In a setting of global rivers facing strong anthropogenic impacts, the ways in which altered sediment routing systems affect river sediment geochemistry deserve more research attention.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-09
    Description: In this study, the effect of disturbance dynamo electric field (DDEF) induced by subauroral polarization streams (SAPS) on the variations of the equatorial electrojet (EEJ) and its counter electrojet (CEJ) during the geomagnetic storm on June 1, 2013 is analyzed in detail for the first time. Observations from ground-based magnetometers showed that the SAPS-induced EEJ flows westward and eastward in the daytime and dawn/dusk sectors, respectively. The effects of SAPS on EEJ are mainly associated with the changes of zonal ionospheric electric field, while the changes in the ionospheric conductivity play a secondary role. By using Thermosphere Ionosphere Electrodynamic General Circulation Model simulations, the zonal electric field induced by SAPS associated with the DDEF is examined. The results of the simulations show that the DDEF has a significant impact on the EEJ variability. The daytime westward EEJ at the dip equator is mainly driven by disturbance zonal wind, with secondary contributions from disturbance meridional wind. A similar mechanism can be observed in the dawn/dusk sector when the eastward EEJ is produced; however, it has a much weaker intensity than that during the daytime.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-09
    Description: CO2 release from particulate organic carbon (POC) oxidation during fluvial transit can influence climate over a range of timescales. Identifying the mechanistic controls on such carbon fluxes requires determining where POC oxidation occurs in river systems. While field data show POC oxidation and replacement moving downstream in lowland rivers, flume studies show that oxidation during active fluvial transport is limited. This suggests that most fluvial POC oxidation occurs during transient floodplain storage, but this idea has yet to be tested. Here, we isolate the influence of floodplain storage time on POC oxidation by exploiting a chronosequence of floodplain deposits above the modern groundwater table in the Rio Bermejo, Argentina. Measurements from 15 floodplain cores with depositional ages from 1 y to 20 ky show a progressive POC concentration decrease and 13C-enrichment with increasing time spent in floodplain storage. These results from the Rio Bermejo indicate that over 80% of fluvially-deposited POC can be oxidized over millennial timescales in aerated floodplains. Furthermore, POC in the oldest floodplain cores is more 14C-enriched than expected based on the independently-dated floodplain ages, indicating that a portion of this oxidized POC is replaced by autochthonous POC produced primarily by floodplain vegetation. We suggest floodplain storage timescales control the extent of oxidation of fluvially-deposited POC, and may play a prominent role in determining if rivers are significant atmospheric CO2 sources.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Proceedings of the National Academy of Sciences of the United States of America (PNAS)
    Publication Date: 2022-04-08
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-04-08
    Type: info:eu-repo/semantics/lecture
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-04-08
    Description: Geochemical processes such as mineral dissolution and precipitation alter the microstructure of rocks, and thereby affect their hydraulic and mechanical behaviour. Quantifying these property changes and considering them in reservoir simulations is essential for a sustainable utilisation of the geological subsurface. Due to the lack of alternatives, analytical methods and empirical relations are currently applied to estimate evolving hydraulic and mechanical rock properties associated with chemical reactions. However, the predictive capabilities of analytical approaches remain limited, since they assume idealised microstructures, and thus are not able to reflect property evolution for dynamic processes. Hence, aim of the present thesis is to improve the prediction of permeability and stiffness changes resulting from pore space alterations of reservoir sandstones. A detailed representation of rock microstructure, including the morphology and connectivity of pores, is essential to accurately determine physical rock properties. For that purpose, three-dimensional pore-scale models of typical reservoir sandstones, obtained from highly resolved micro-computed tomography (micro-CT), are used to numerically calculate permeability and stiffness. In order to adequately depict characteristic distributions of secondary minerals, the virtual samples are systematically altered and resulting trends among the geometric, hydraulic, and mechanical rock properties are quantified. It is demonstrated that the geochemical reaction regime controls the location of mineral precipitation within the pore space, and thereby crucially affects the permeability evolution. This emphasises the requirement of determining distinctive porosity-permeability relationships by means of digital pore-scale models. By contrast, a substantial impact of spatial alterations patterns on the stiffness evolution of reservoir sandstones are only observed in case of certain microstructures, such as highly porous granular rocks or sandstones comprising framework-supporting cementations. In order to construct synthetic granular samples a process-based approach is proposed including grain deposition and diagenetic cementation. It is demonstrated that the generated samples reliably represent the microstructural complexity of natural sandstones. Thereby, general limitations of imaging techniques can be overcome and various realisations of granular rocks can be flexibly produced. These can be further altered by virtual experiments, offering a fast and cost-effective way to examine the impact of precipitation, dissolution or fracturing on various petrophysical correlations. The presented research work provides methodological principles to quantify trends in permeability and stiffness resulting from geochemical processes. The calculated physical property relations are directly linked to pore-scale alterations, and thus have a higher accuracy than commonly applied analytical approaches. This will considerably improve the predictive capabilities of reservoir models, and is further relevant to assess and reduce potential risks, such as productivity or injectivity losses as well as reservoir compaction or fault reactivation. Hence, the proposed method is of paramount importance for a wide range of natural and engineered subsurface applications, including geothermal energy systems, hydrocarbon reservoirs, CO2 and energy storage as well as hydrothermal deposit exploration
    Description: Geochemische Lösungs- und Fällungsprozesse verändern die Struktur des Porenraums und können dadurch die hydraulischen und mechanischen Gesteinseigenschaften erheblich beeinflussen. Die Quantifizierung dieser Parameteränderung und ihre Berücksichtigung in Reservoirmodellen ist entscheidend für eine nachhaltige Nutzung des geologischen Untergrunds. Aufgrund fehlender Alternativen werden dafür bisher analytische Methoden genutzt. Da diese Ansätze eine idealisierte Mikrostruktur annehmen, können insbesondere Änderungen der Gesteinseigenschaften infolge von dynamischen Prozessen nicht zuverlässig abgebildet werden. Ziel der vorliegenden Doktorarbeit ist es deshalb, die Entwicklung von Gesteinspermeabilitäten und -steifigkeiten aufgrund von Porenraumveränderungen genauer vorherzusagen. Für die möglichst exakte Bestimmung physikalischer Gesteinsparameter ist eine detaillierte Darstellung der Mikrostruktur notwendig. Basierend auf mikro-computertomographischen Scans werden daher hochaufgelöste, dreidimensionale Modelle typischer Reservoirsandsteine erstellt und Gesteinspermeabilität und -steifigkeit numerisch berechnet. Um charakteristische Verteilungen von Sekundärmineralen abzubilden, wird der Porenraum dieser virtuellen Sandsteinproben systematisch verändert und die resultierenden Auswirkungen auf die granulometrischen, hydraulischen und elastischen Gesteinseigenschaften bestimmt. Die Ergebnisse zeigen deutlich, dass charakteristische Fällungsmuster unterschiedlicher geochemischer Reaktionsregime die Permeabilität erheblich beeinflussen. Folglich ist die Nutzung von porenskaligen Modellen zur Bestimmung der Porosität-Permeabilitätsbeziehungen unbedingt notwendig. Im Gegensatz dazu ist die Verteilung von Sekundärmineralen für die Gesteinssteifigkeit nur bei bestimmten Mikrostrukturen von Bedeutung, hierzu zählen hochporöse Sandsteine oder solche mit Korngerüst-stützenden Zementierungen. In der Arbeit wird außerdem ein Ansatz zur Konstruktion granularer Gesteine vorgestellt, welcher sowohl die Kornsedimentation als auch die diagenetische Verfestigung umfasst. Es wird gezeigt, dass die synthetischen Proben die mikrostrukturelle Komplexität natürlicher Reservoirsandsteine gut abbilden. Dadurch können generelle Limitationen von bildgebenden Verfahren überwunden und unterschiedlichste virtuelle Repräsentationen von granularen Gesteinen generiert werden. Die synthetischen Proben können zukünftig in virtuellen Experimenten verwendet werden, um die Auswirkungen von Lösungs- und Fällungsreaktionen auf verschiedene petrophysikalische Korrelationen zu untersuchen. Die vorgestellte Arbeit liefert methodische Grundlagen zur Quantifizierung von Permeabilitäts- und Steifigkeitsänderungen infolge geochemischer Prozesse. Die berechneten petrophysikalischen Beziehungen basieren direkt auf mikrostrukturellen Veränderungen des Porenraums. Daher bieten sie eine genauere Vorhersage der Gesteinseigenschaften als herkömmliche analytische Methoden, wodurch sich die Aussagekraft von Reservoirmodellen erheblich verbessert. Somit können Risiken, wie Produktivitäts- oder Injektivitätsverluste sowie Reservoirkompaktion oder Störungsreaktivierung, verringert werden. Die präsentierten Ergebnisse sind daher relevant für verschiedenste Bereiche der geologischen Untergrundnutzung wie CO2- oder Energiespeicherung, Geothermie, Kohlenwasserstoffgewinnung sowie die Erkundung hydrothermaler Lagerstätten.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...