ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2021.
    Description: This thesis explores the volatile content of the mantle, subducted oceanic crust, and arc magmas as well as the structure of slow spreading ocean crust and the heterogeneity of Earth’s upper mantle. In Chapter 2, I directly explore the halogen (F and Cl) content of mantle minerals in situ, then use these measurements to assess the halogen content of the upper mantle. In Chapter 3, I investigate the volatile content of Raspas eclogites (SW Ecuador), a proxy for deeply subducted oceanic crust, to evaluate volatile transfer from crustal generation at divergent plate boundaries (e.g., mid-ocean ridges) to recycling of ocean crust at subduction zones. In Chapter 4, I use the H2O content of nominally anhydrous minerals in plutonic arc cumulates to elucidate the H2O content of the melts from which the rocks crystallized. In this way, I assert that primitive arc magmas may contain 4–10 wt.% H2O and through fractional crystallization up to ~20 wt.% H2O, making them far more hydrous than traditional methods (i.e., olivine-hosted melt inclusions) surmise. In Chapter 5, I show that mantle peridotite exposed along the 16ºN region of the Mid-Atlantic Ridge originated in an arc setting and has been remixed into subridge mantle, indicating that the sub-ridge mantle is more heterogeneous and depleted than inferences made from mid-ocean ridge basalts suggest. Chapter 6 surveys the life cycle of oceanic core complexes through zircon geochronology and posits an updated framework for understanding the termination of oceanic core complexes, and more broadly oceanic detachment faults. Together, this contribution highlights the chemical heterogeneity of the mantle, and quantifies the full extent of volatiles hosted by mantle and crustal reservoirs.
    Description: The Stanley Watson Fellowship (WHOI) provided financial support during my first year of graduate school. The Academic Programs Office Ocean Venture Fund (WHOI) provided seed funding which initiated Chapters 3 and 4, and ultimately led to two funded NSF proposals. These resources are vital to JP students, and I am incredibly grateful for them. Primary support was provided by the National Science Foundation grants to Veronique Le Roux (EAR P&G #1524311, #1839128, #1855302) and Henry Dick (MG&G #1637130, #1657983).
    Keywords: Geochemistry of the crust and mantle ; Volatile elements ; Tectonics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: Oceanic fronts at the mesoscale and submesoscale are associated with enhanced vertical motion, which strengthens their role in global biogeochemical cycling as hotspots of primary production and subduction of carbon from the surface to the interior. Using process study models, theory, and field observations of biogeochemical tracers, this thesis improves understanding of submesoscale vertical tracer fluxes and their influence on carbon cycling. Unlike buoyancy, vertical transport of biogeochemical tracers can occur both due to the movement of isopycnals and due to motion along sloping isopycnals. We decompose the vertical velocity below the mixed layer into two components in a Lagrangian frame: vertical velocity along sloping isopycnal surfaces and the adiabatic vertical velocity of isopycnal surfaces and demonstrate that vertical motion along isopycnal surfaces is particularly important at submesoscales (1-10 km). The vertical flux of nutrient, and consequently the new production of phytoplankton depends not just on the vertical velocity but on the relative time scales of vertical transport and nutrient uptake. Vertical nutrient flux is maximum when the biological timescale of phytoplankton growth matches the vertical velocity frequency. Export of organic matter from the surface and the interior requires water parcels to cross the mixed layer base. Using Lagrangian analysis, we study the dynamics of this process and demonstrate that geostrophic and ageostrophic frontogenesis drive subduction along density surfaces across the mixed layer base. Along-front variability is an important factor in subduction. Both the physical and biological modeling studies described above are used to interpret observations from three research cruises in the Western Mediterranean. We sample intrusions of high chlorophyll and particulate organic carbon below the euphotic zone that are advected downward by 100 meters on timescales of days to weeks. We characterize the community composition in these subsurface intrusions at a lateral resolution of 1–10 km. We observe systematic changes in community composition due to the changing light environment and differential decay of the phytoplankton communities in low-light environments, along with mixing. We conclude that advective fluxes could make a contribution to carbon export in subtropical gyres that is equal to the sinking flux.
    Description: The work in this dissertation was funded by a NDSEG fellowship, Martin Fellowship, Grassle fellowship, Montrym grant, WHOI Academic Programs Office, and Office of Naval Research CALYPSO DRI grant N00014-16-1-3130.
    Keywords: Vertical velocity ; Submesoscale dynamics ; Biophysical interactions
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: Operations in the Arctic Ocean are increasingly important due to the changing environment and the resulting global implications. These changes range from the availability of new global trade routes, accessibility of newly available resources in the area, and national security interests of the United States in the region. It’s necessary to build a greater understanding of the undersea environment and how it’s changing since these environmental changes have a direct impact on adjusting future operations in the region and looming global changes as less Arctic ice is present. The recent presence of the Beaufort Lens is changing the acoustic propagation paths throughout the Arctic region. Here a network of buoys were employed to communicate with an Autonomous Undersea Vehicle (AUV) while it operated under the ice throughout the Beaufort Lens with the goal of achieving near GPS quality navigation. The acoustic communications paths were compared using a vertical array throughout the Beaufort Lens. This beam forming was compared to the prediction from BELLHOP. As well, since acoustic communications are affected by multi-path, attenuation and interference from other sources it was interesting to note that bottom bounce was sometimes a reliable acoustic path.
    Keywords: Arctic ; Beaufort Lens ; Acoustic communications
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: Chromium (Cr) isotopes have shown great potential as a paleo-redox proxy to trace the redox conditions of ancient oceans and atmosphere. However, its cycling in modern environments is poorly constrained. In my thesis, I attempt to fill in the gap of our understanding of chromium cycling in the modern ocean, with a focus on the redox processes in global oxygen deficient zones (ODZs). Firstly, we developed a method to analyze Cr isotopes of different Cr redox species. Tests on processing conditions demonstrated its robustness in obtaining accurate Cr isotope data. It is applicable to both frozen and fresh samples. This method allows us to investigate the redox cycling of Cr that is hard to unravel by existing total Cr methods. Secondly, in the Eastern Tropical North Pacific (ETNP), Eastern Tropical South Pacific (ETSP) and Arabian Sea ODZs, their total dissolved Cr profiles show preferential reduction of isotopically light Cr(VI) to Cr(III), which is scavenged and exported to deeper oceans. Applying our new method to ETNP and ETSP ODZ seawater samples, we observed Cr(VI) reduction in both ODZs with a similar fractionation factor. This indicates similar mechanisms may be controlling Cr(VI) reduction in the two ODZs. Cr(III) maximum coincides with Fe(II) and secondary nitrite maximums in the upper core of both ODZs. Shipboard incubations with spiked Fe(II) showed fast Cr(VI) reduction occurring in the ETNP ODZ. But neither Fe(II) nor microbes were reducing Cr(VI) directly. Thirdly, we calculated the isotope effects of Cr scavenging in the ETNP and ETSP ODZs. Thetwo ODZs show a similar isotope partitioning during Cr scavenging. And spatial variability is observed in the ETNP ODZ. Our calculated scavenged Cr isotope ratio is lighter than that of the total dissolved Cr from the same depth. It is also comparable to that of reducing or anoxic sediments, which implies that Cr isotopes can be used as an archive for local redox conditions.
    Description: This research was supported by an anonymous MIT Fellowship, Praceis Presidential Fellowship, Frederick A. Middleton Fellowship, the US National Science Foundation (NSF Award No. OCE-1459287, OCE-1736996, OCE-1924050 and DEB-1542240) and the Center for Microbial Oceanography: Research and Education (C-MORE, NSF-OIA Award No. EF-0424599).
    Keywords: Chromium isotopes ; Oxygen deficient zones ; Redox cycling
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2022.
    Description: Detection, classification, localization, and tracking (DCLT) of unmanned underwater vehicles (UUVs) in the presence of shipping traffic is a critical task for passive acoustic harbor security systems. In general, vessels can be tracked by their unique acoustic signature due to machinery vibration and cavitation noise. However, cavitation noise of UUVs is considerably quieter than ships and boats, making detection significantly more challenging. In this thesis, I demonstrated that it is possible to passively track a UUV from its highfrequency motor noise using a stationary array in shallow-water experiments with passing boats. First, causes of high frequency tones were determined through direct measurements of two UUVs at a range of speeds. From this analysis, common and dominant features of noise were established: strong tones at the motor’s pulse-width modulated frequency and its harmonics. From the unique acoustic signature of the motor, I derived a high-precision, remote sensing method for estimating propeller rotation rate. In shallow-water UUV field experiments, I demonstrated that detecting a UUV from motor noise, in comparison to broadband noise from the vehicle, reduces false alarms from 45% to 8.4% for 90% true detections. Beamforming on the motor noise, in comparison to broadband noise, improved the bearing accuracy by a factor of 3.2×. Because the signal is also high-frequency, the Doppler effect on motor noise is observable and I demonstrate that range rate can be measured. Furthermore, measuring motor noise was a superior method to the “detection of envelope modulation on noise” algorithm for estimating the propeller rotation rate. Extrapolating multiple measurements from the motor signature is significant because Bearing-Doppler-RPM measurements outperform traditional bearing-Doppler target motion analysis. In the unscented Kalman filter implementation, the tracking solution accuracy for bearing, bearing rate, range, and range rate improved by a factor 2.2×, 15.8×, 3.1×, and 6.2× respectively. These findings are significant for improving UUV localization and tracking, and for informing the next-generation of quiet UUV propulsion systems.
    Keywords: Autonomy ; Passive sonar ; Tracking
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2021.
    Description: The existence of a marine phosphorus (P) redox cycle was recently confirmed when phosphonates, organophosphorus compounds with P in the (III) oxidation state, were found in high molecular weight dissolved organic matter. Although some features of the P redox cycle have come to light since the discovery of phosphonates, many aspects of phosphonate production, cycling and fate remain unknown. To address these gaps in our understanding, we studied phosphonate cycling in the Eastern Mediterranean Sea, a chronically P-limited basin, using 33P and enzymatic assays. We showed that phosphonate production was low but consumption was high, suggesting that phosphonate production and consumption may be spatially or temporally decoupled. We also explored phosphonate production in the model marine cyanobacterium Prochlorococcus SB. Using 31P NMR, we found Prochlorococcus SB allocates ~50% of its cellular P to phosphonates. Allocation of P to phosphonates was conserved under P-limitation, and further investigation revealed phosphonates were associated with proteins. The discovery of phosphonoproteins in Prochlorococcus SB opens new perspectives on the biochemical function of phosphonates and their role in P-cycling. Finally, we developed a new P-targeted method to characterize marine organophosphorus compounds using liquid chromatography coupled to electrospray ionization and inductively coupled plasma mass spectrometry.
    Description: This work was supported by the Simons Foundation under grant numbers POP49476 and 721227 [D. Repeta], the Gordon and Betty Moore Foundation under the grant number 6000 [D. Repeta] and the National Science Foundation OCE under the grant number 1634080 [D. Repeta].
    Keywords: Phosphorus ; Phosphonate ; Biogeochemical cycling
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geophysics at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: This thesis focuses on interpreting geophysical and geochemical observables in terms of the thermomechanical state of the lithosphere. In Chapter 1, I correlate lower crustal rheology with seismic wave speed. Compositional variation is required to explain half of the total variability in predicted lower crustal stress, implying that constraining regional lithology is important for lower crustal geodynamics. In Chapter 2, I utilize thermobarometry, diffusion models, and thermodynamic modelling to constrain the ultra-high formation conditions and cooling rates of the Gore Mountain Garnet Amphibolite in order to understand the rheology of the lower crust during orogenic collapse. In Chapter 3, I interpret geophysical data along a 74 Myr transect in the Atlantic to the temporal variability and relationship of crustal thickness and normal faults. In Chapter 4, I constrain the error present in the forward-calculation of seismic wave speed from ultramafic bulk composition. I also present a database and toolbox to interpret seismic wave speeds in terms of temperature and composition. Finally, in Chapter 5 I apply the methodology from Chapter 4 to interpret a new seismic tomographic model in terms of temperature, density, and composition in order to show that the shallow lithospheric roots are density unstable.
    Description: Funding for this research was provided by an MIT Presidential Fellowship, MIT Student Research Funds, the National Science Foundation Division of Earth Sciences (EAR) and Ocean Sciences (OCE) grants EAR-16-24109, EAR-17-22932, EAR-17-22935, OCE-14-58201, and SCEC Awards 16106 and 17202., SCEC, Geological Society of America Graduate Student Research Fellowship, WHOI Ocean Venture Fund, and the WHOI Academic Programs Office.
    Keywords: Lithosphere ; Seismic wave speed ; Rheology
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2021.
    Description: Observations of hydrographic and dynamical properties on the Middle Atlantic Bight shelf document strong variability at time scales spanning events that last a few days to century long trends. This thesis studies individual processes which impact shelf temperature and velocity structure, and quantifies the mean velocity conditions at the shelf break. Chapter 2 uses model output to study the dynamics that lead to the breakdown of summertime thermal stratification, and how the processes which reduce stratification vary from year to year. In summer, the atmosphere heats the surface of the ocean, leading to strong thermal stratification with warm water overlying cool water. During fall, strong storm events with downwelling-favorable winds are found to be the primary process by which stratification is reduced. The timing of these events and the associated destratification varies from year to year. In Chapter 3, the velocity structure of the New Jersey shelf break is examine, with a focus on the Shelfbreak Jet. Using 25 years of velocity measurements, mean velocity sections of the Shelfbreak Jet are created in both Eulerian and stream coordinate frameworks. The jet exhibits strong seasonal variability, with maximum velocities observed in spring and minimum velocities in summer. Evidence is found that Warm Core Rings, originating from the Gulf Stream and passing through the Slope Sea adjacent to the New Jersey shelf, tend to shift the Shelfbreak Jet onshore of its mean position or entirely shutdown the Shelfbreak Jet’s flow. At interannual timescales, variability in the Shelfbreak Jet velocity is correlated with the temperature on the New Jersey Shelf, with temperature lagging by about 2 months. Chapter 4 focuses on the impact of Warm Core Rings on the velocity and temperature structure on the New Jersey shelf. Warm Core Rings that have higher azimuthal velocities and whose cores approach closer to the shelf are found to exert greater influence on the shelf’s along-shelf velocities, with the fastest and closest rings reversing the direction of flow at the shelf break. Warm Core Rings are also observed to exert long-lasting impacts on the shelf temperature, with faster rings cooling the shelf and slower rings warming the shelf. Seasonal changes in thermal stratification strongly affect how rings alter the shelf temperature. Rings in summer tend to cool the shelf, and rings throughout the rest of the year generally warm the shelf.
    Description: This research was funded under WHOI Academic Programs Endowed Funds, NSF #OCE-1634094, and NSF #OCE-1924041.
    Keywords: Temperature variability ; Velocity variability ; Middle Atlantic Bight
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: Small pelagic fishes, also termed forage fishes, represent a critical link between secondary production and myriad top predators in marine ecosystems, including the Northeast US shelf. In this dissertation, I analyze the drivers of forage fish distribution throughout the Northeast US shelf and the drivers of the abundance of the ecologically important northern sand lance. Chapter 2 examines the basic ecology of northern sand lance and uses these insights to identify mechanistic drivers of their abundance. I then explore different scenarios of these drivers to project sand lance abundance through the end of the 21st century, which appears precarious for adult sand lance unless current trajectories change. Chapter 3 analyzes the environmental drivers of the distribution of the six dominant, offshore forage fish species (northern sand lance, Atlantic herring, alewife, blueback herring, Atlantic mackerel, and Atlantic butterfish) on the Northeast US shelf to elucidate the role of environmental covariates in shelf occupancy by these taxa. The results of this chapter indicate shelf occupancy of butterfish and Atlantic mackerel are increasing through time while occupancy of sand lance is decreasing with time. The occurrence of most of these species is also moving deeper and northward with time. Chapter 4 assesses the source-sink dynamics of three sand lance hotspots through Lagrangian particle tracking models simulating larval sand lance transport. Connectivity varies among these hotspots with Georges Bank and Stellwagen Bank having notable retention while the Great South Channel relies on larvae from other hotspots. Retention on Stellwagen Bank and Georges Bank are linked to strong wind events during the larval period of sand lance. Collectively, this dissertation improves our understanding of the dynamics driving variability in the Northeast US shelf forage fish complex, particularly for northern sand lance.
    Description: The research within this dissertation was funded by a National Science Foundation Graduate Research Fellowship (awarded to JJS), Woods Hole Sea Grant (NA18OAR4170104, Project No. R/O-57), the Bureau of Ocean Energy Management (IA agreement M17PG0019), and the National Marine Sanctuary Foundation.
    Keywords: Forage fish ; Northwest Atlantic ; Fisheries oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: An emerging paradigm posits that the abyssal overturning circulation is driven by bottom-enhanced mixing, which results in vigorous upwelling in the bottom boundary layer (BBL) along the sloping seafloor and downwelling in the stratified mixing layer (SML) above; their residual is the overturning circulation. This boundary-controlled circulation fundamentally alters abyssal tracer distributions, with implications for global climate. Chapter 1 describes how a basin-scale overturning circulation arises from the coupling between the ocean interior and mixing-driven boundary layers over rough topography, such as the sloping flanks of mid-ocean ridges. BBL upwelling is well predicted by boundary layer theory, whereas the compensation by SML downwelling is weakened by the upward increase of the basin-wide stratification, which supports a finite net overturning. These simulated watermass transformations are comparable to best-estimate diagnostics but are sustained by a crude parameterization of boundary layer restratification processes. In Chapter 2, I run a realistic simulation of a fracture zone canyon in the Brazil Basin to decipher the non-linear dynamics of abyssal mixing layers and their interactions with rough topography. Using a hierarchy of progressively idealized simulations, I identify three physical processes that set the stratification of abyssal mixing layers (in addition to the weak buoyancy-driven cross-slope circulation): submesoscale baroclinic eddies on the ridge flanks, enhanced up-canyon flow due to inhibition of the cross-canyon thermal wind, and homogenization of canyon troughs below the level of blocking sills. Combined, these processes maintain a sufficiently large near-boundary stratification for mixing to drive globally significant BBL upwelling. In Chapter 3, simulated Tracer Release Experiments illustrate how passive tracers are mixed, stirred, and advected in abyssal mixing layers. Exact diagnostics reveal that while a tracer’s diapycnal motion is directly proportional to the mean divergence of mixing rates, its diapycnal spreading depends on both the mean mixing rate and an additional non-linear stretching term. These simulations suggest that the theorized boundary-layer control on the abyssal circulation is falsifiable: downwelling in the SML has already been confirmed by the Brazil Basin Tracer Release Experiment, while an upcoming experiment in the Rockall Trough will confirm or deny the existence of upwelling in the BBL.
    Description: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 174530. I also acknowledge funding support from National Science Foundation Awards OCE-1536515 and OCE-1736109. This work was partially supported by MIT’s Rosenblith Presidential Fellowship.
    Keywords: Abyss ; Circulation ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...