ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (787,922)
  • 1970-1974  (8)
  • 2016  (787,922)
Collection
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mendoza, Irene; Peres, Carlos Augusto; Morellato, Leonor Patricia C (2016): Continental-scale patterns and climatic drivers of fruiting phenology: A quantitative Neotropical review. Global and Planetary Change, https://doi.org/10.1016/j.gloplacha.2016.12.001
    Publication Date: 2024-06-05
    Description: Changes in the life cycle of organisms (i.e. phenology) are one of the most widely used early-warning indicators of climate change, yet this remains poorly understood throughout the tropics. We exhaustively reviewed any published and unpublished study on fruiting phenology carried out at the community level in the American tropics and subtropics (latitudinal range: 26°N?26°S) to (1) provide a comprehensive overview of the current status of fruiting phenology research throughout the Neotropics; (2) unravel the climatic factors that have been widely reported as drivers of fruiting phenology; and (3) provide a preliminary assessment of the potential phenological responses of plants under future climatic scenarios. Despite the large number of phenological datasets uncovered (218), our review shows that their geographic distribution is very uneven and insufficient for the large surface of the Neotropics (~ 1 dataset per ~ 78,000 km2). Phenological research is concentrated in few areas with many studies (state of São Paulo, Brazil, and Costa Rica), whereas vast regions elsewhere are entirely unstudied. Sampling effort in fruiting phenology studies was generally low: the majority of datasets targeted fewer than 100 plant species (71%), lasted 2 years or less (72%), and only 10.4% monitored 〉 15 individuals per species. We uncovered only 10 sites with ten or more years of phenological monitoring. The ratio of numbers of species sampled to overall estimates of plant species richness was wholly insufficient for highly diverse vegetation types such as tropical rainforests, seasonal forest and cerrado, and only slightly more robust for less diverse vegetation types, such as deserts, arid shrublands and open grassy savannas. Most plausible drivers of phenology extracted from these datasets were environmental (78.5%), whereas biotic drivers were rare (6%). Among climatic factors, rainfall was explicitly included in 73.4% of cases, followed by air temperature (19.3%). Other environmental cues such as water level (6%), solar radiation or photoperiod (3.2%), and ENSO events (1.4%) were rarely addressed. In addition, drivers were analyzed statistically in only 38% of datasets and techniques were basically correlative, with only 4.8% of studies including any consideration of the inherently autocorrelated character of phenological time series. Fruiting peaks were significantly more often reported during the rainy season both in rainforests and cerrado woodlands, which is at odds with the relatively aseasonal character of the former vegetation type. Given that climatic models predict harsh future conditions for the tropics, we urgently need to determine the magnitude of changes in plant reproductive phenology and distinguish those from cyclical oscillations. Long-term monitoring and herbarium data are therefore key for detecting these trends. Our review shows that the unevenness in geographic distribution of studies, and diversity of sampling methods, vegetation types, and research motivation hinder the emergence of clear general phenological patterns and drivers for the Neotropics. We therefore call for prioritizing research in unexplored areas, and improving the quantitative component and statistical design of reproductive phenology studies to enhance our predictions of climate change impacts on tropical plants and animals.
    Keywords: Area/locality; Biome; Code; Country; Duration; Feces; Frequency; Herbarium; Herbs; Identification; Individuals; Latin_America; LATITUDE; Liana; LONGITUDE; Number of species; Number of trap; Observation; Peak of fruiting; Plant, others; Reference/source; Shrubs; Surface of trap; Trees; Uniform resource locator/link to reference; Vegetation type
    Type: Dataset
    Format: text/tab-separated-values, 4889 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Böger, Horst; Kowalczyk, Gotthard (1993): Stratigraphische, sedimentologische und paläoökologische Untersuchungen im Mesozoikum der Depressão Periférica in Rio Grande do Sul, Brasilien. Berichte-Reports, Geologisch-Paläontologisches Institut der Universität Kiel, 63, 72 pp, https://doi.org/10.2312/reports-gpi.1993.63
    Publication Date: 2024-06-04
    Description: Stratigraphy, sedimentology and paleoecology of Mesozoic continental sequences in the Depressao periferica, Rio Grande do Sui, Brazil, are subject of a DFG (German Research Foundation) research project. Results of the first two years period of activities in which the Geologicai-Paleontological Institutes of the Universities of Kiel and Frankfurt/M. in collaboration with the Departamento de Geociencias, University of Santa Maria in Camobi, RS, were involved are reported here. A second phase of field activities is planned for the time period from fall 1993 to the spring of 1995. The stratigraphic boundaries of the investigation are the underlying sediments of the Permian Passa Dais-Series and the overlying basalts of the Serra Geral Formation, covering the time span of 235 Ma to 133 Ma. A subordinate, chronostratigraphic system encompassing the sediments of this time period has yet to be established and extensive hiatuses are to be expected. Correlations with the lschigualasto Formation in NW-Argentina support the assumption that the upper Santa Maria Formation (Aiemoa member) falls in the mid Carnian. This is the only reasonable certain chronostratigraphic date from the Mesozoic of the Depressao periferica established at the present time. The classical tetrapod sites of the Triassic Santa Maria Formation all fall within the Alemoa-Member, the sediments of which were deposited under in part evaporitic conditions on playa mud flats. Evidence points to isochronic sedimentation and discounts the possibility of a diachronic genesis. The Santa Maria Formation and the underlying Sanga do Cabral Formation are placed together in the Rio do Rasta Subgroup as a genetic unit in accordance with the original definition, which conflicts with present day usage of the names. The Rio do Rasto Subgroup pinches out west of Sao Francisco do Assis and east of the Taquarl river. The entire Rio do Rasto Formation is enclosed in eolic sediments, indicating an extensive sedimentation complex arising from a persistently subsiding playa areal within the Botucatu desert. Beyond the range of the Rio do Rasto Subgroup, it is difficult or impossible to distinguish between the eolic sediments of the older, underlying Rosario do Sui Formation and the overlying, younger Botucatu Sandstone Member. As such, the entire paleogeographically and genetically uniform sedimentation complex is compiled together under the term Botucatu Group. The Sanga do Cabral Formation is characterized by an abundance of detritic micas (muscovite and biotite). K/ Ar dating have indicated a preliminary age for muscovite of 418 ± 8 Ma and 423.5 ± 9.7 Ma. Presumably, they originated from volcanites, subvolcanites and pyroclastics of the Camaqua Group (Brasiliano molasse). As such, the Precambrian/ lower Paleozoic Escudo Sui in Rio Grande do Sui was exposed and eroded to the level found today at the time of deposition of the Sanga do Cabral Formation.
    Keywords: Area/locality; GIK/IfG; Institute for Geosciences, Christian Albrechts University, Kiel; LATITUDE; LONGITUDE; Outcrop ID; Stratigraphy
    Type: Dataset
    Format: text/tab-separated-values, 841 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC3Journal of large-scale research facilities, 2(A87), pp. 1-7, ISSN: 2364-091X
    Publication Date: 2024-06-03
    Description: Due to the remoteness and di culty to access the snow covered polar regions, ski-equipped aircraft are an indispensable tool for polar research. The Alfred Wegener Institute has a long tradition in airborne polar science – starting with the aircraft Polar1 and Polar2 in 1983. In 2007 the rst Basler BT-67 (Polar5) and in 2011 the second Basler BT-67 (Polar6) were brought into service and replaced Polar2 and Polar4. They carry a variety of scienti c equipment for investigation of the lithosphere, atmosphere and cryosphere and all their interactions. Beside being deployed for science missions, the aircraft are also part of the Dronning Maud Land Air Network (DROMLAN), a logistical partnership to transport equipment and personnel to various stations in Dronning Maud Land, Antarctica.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Aerological Observatory, Japan Meteorological Agency
    Publication Date: 2024-06-03
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Japan; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; Long-wave upward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090229, WRMC No. 16035; Pyranometer, Kipp & Zonen, CMP21, SN 100363, WRMC No. 16036; Pyranometer, Kipp & Zonen, CMP22, SN 090099, WRMC No. 16037; Pyrgeometer, Kipp & Zonen, CG4, SN 030641, WRMC No. 16032; Pyrgeometer, Kipp & Zonen, CGR4, SN 090133, WRMC No. 16038; Pyrheliometer, Kipp & Zonen, CHP 1, SN 090140, WRMC No. 16034; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; Short-wave upward (REFLEX) radiation, standard deviation; Station pressure; TAT; Tateno; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 1073592 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Aerological Observatory, Japan Meteorological Agency
    Publication Date: 2024-06-03
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Japan; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; Long-wave upward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090229, WRMC No. 16035; Pyranometer, Kipp & Zonen, CMP21, SN 100363, WRMC No. 16036; Pyranometer, Kipp & Zonen, CMP22, SN 090099, WRMC No. 16037; Pyrgeometer, Kipp & Zonen, CG4, SN 030641, WRMC No. 16032; Pyrgeometer, Kipp & Zonen, CGR4, SN 090133, WRMC No. 16038; Pyrheliometer, Kipp & Zonen, CHP 1, SN 090140, WRMC No. 16034; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; Short-wave upward (REFLEX) radiation, standard deviation; Station pressure; TAT; Tateno; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 1038960 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Aerological Observatory, Japan Meteorological Agency
    Publication Date: 2024-06-03
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Japan; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; Long-wave upward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090229, WRMC No. 16035; Pyranometer, Kipp & Zonen, CMP21, SN 100363, WRMC No. 16036; Pyranometer, Kipp & Zonen, CMP22, SN 090099, WRMC No. 16037; Pyrgeometer, Kipp & Zonen, CG4, SN 030641, WRMC No. 16032; Pyrgeometer, Kipp & Zonen, CGR4, SN 090133, WRMC No. 16038; Pyrheliometer, Kipp & Zonen, CHP 1, SN 090140, WRMC No. 16034; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; Short-wave upward (REFLEX) radiation, standard deviation; Station pressure; TAT; Tateno; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 1073592 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Aerological Observatory, Japan Meteorological Agency
    Publication Date: 2024-06-03
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Japan; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; Long-wave upward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090229, WRMC No. 16035; Pyranometer, Kipp & Zonen, CMP21, SN 100363, WRMC No. 16036; Pyranometer, Kipp & Zonen, CMP22, SN 090099, WRMC No. 16037; Pyrgeometer, Kipp & Zonen, CG4, SN 030641, WRMC No. 16032; Pyrgeometer, Kipp & Zonen, CGR4, SN 090133, WRMC No. 16038; Pyrheliometer, Kipp & Zonen, CHP 1, SN 090140, WRMC No. 16034; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; Short-wave upward (REFLEX) radiation, standard deviation; Station pressure; TAT; Tateno; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 1073592 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Aerological Observatory, Japan Meteorological Agency
    Publication Date: 2024-06-03
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Japan; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; Long-wave upward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090231, WRMC No. 4006/86006; Pyranometer, Kipp & Zonen, CMP21, SN 100363, WRMC No. 16036; Pyranometer, Kipp & Zonen, CMP22, SN 090101, WRMC No. 4007; Pyrgeometer, Kipp & Zonen, CG4, SN 030641, WRMC No. 16032; Pyrgeometer, Kipp & Zonen, CGR4, SN 090133, WRMC No. 16038; Pyrheliometer, Kipp & Zonen, CHP 1, SN 140044, WRMC No. 4009; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; Short-wave upward (REFLEX) radiation, standard deviation; Station pressure; TAT; Tateno; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 1038960 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Aerological Observatory, Japan Meteorological Agency
    Publication Date: 2024-06-03
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Japan; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; Long-wave upward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090229, WRMC No. 16035; Pyranometer, Kipp & Zonen, CMP21, SN 100363, WRMC No. 16036; Pyranometer, Kipp & Zonen, CMP22, SN 090099, WRMC No. 16037; Pyrgeometer, Kipp & Zonen, CG4, SN 030641, WRMC No. 16032; Pyrgeometer, Kipp & Zonen, CGR4, SN 090133, WRMC No. 16038; Pyrheliometer, Kipp & Zonen, CHP 1, SN 090140, WRMC No. 16034; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; Short-wave upward (REFLEX) radiation, standard deviation; Station pressure; TAT; Tateno; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 1004328 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Aerological Observatory, Japan Meteorological Agency
    Publication Date: 2024-06-03
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Japan; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; Long-wave upward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090229, WRMC No. 16035; Pyranometer, Kipp & Zonen, CMP21, SN 100363, WRMC No. 16036; Pyranometer, Kipp & Zonen, CMP22, SN 090099, WRMC No. 16037; Pyrgeometer, Kipp & Zonen, CG4, SN 030641, WRMC No. 16032; Pyrgeometer, Kipp & Zonen, CGR4, SN 090133, WRMC No. 16038; Pyrheliometer, Kipp & Zonen, CHP 1, SN 140044, WRMC No. 4009; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; Short-wave upward (REFLEX) radiation, standard deviation; Station pressure; TAT; Tateno; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 1038944 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...