ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (742,512)
  • 1970-1974  (8)
  • 2015  (742,512)
Collection
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Long, Philip E; Williams, Kenneth H; Davis, James A; Fox, Patricia M; Wilkins, Michael J; Yabusaki, Steven B; Fang, Yilin; Waichler, Scott R; Berman, Elena S F; Gupta, Manish; Chandler, Darrell P; Murray, Chris; Peacock, Aaron D; Giloteaux, Ludovic; Handley, Kim M; Lovley, Derek R; Banfield, Jillian F (2015): Bicarbonate impact on U(VI) bioreduction in a shallow alluvial aquifer. Geochimica et Cosmochimica Acta, 150, 106-124, https://doi.org/10.1016/j.gca.2014.11.013
    Publication Date: 2024-05-25
    Description: Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al., 2003; Williams et al., 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al., 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer sediments desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ~3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction in the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in aquifers.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-25
    Keywords: Calculated; Colorado, U.S.A., North America; Date; DATE/TIME; Depth, relative; ELEVATION; Elevation 2; LATITUDE; LONGITUDE; Rilfe; Sample code/label; Sampling Well; Signal/noise ratio; WELL
    Type: Dataset
    Format: text/tab-separated-values, 2386 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-25
    Keywords: Acetate; Aluminium; Aluminium, standard deviation; Arsenic; Arsenic, standard deviation; Barium, standard deviation; Barium 2+; Boron; Boron, standard deviation; Bromide; Bromine; Bromine, standard deviation; Calcium; Calcium, standard deviation; Carbon, inorganic, total; Chloride; Chromium; Chromium, standard deviation; Cobalt; Cobalt, standard deviation; Colorado, U.S.A., North America; Conductivity, electrolytic; Damage rate, standard deviation; DATE/TIME; Depth, logging; Depth, relative; ELEVATION; Elevation 2; Iron; Iron, standard deviation; Iron 2+; LATITUDE; Lithium; Lithium, standard deviation; LONGITUDE; Magnesium; Magnesium, standard deviation; Manganese; Manganese, standard deviation; Molybdenum; Molybdenum, standard deviation; pH; Potassium; Rilfe; Rubidium; Rubidium, standard deviation; Sample code/label; Sampling Well; Selenium; Selenium, standard deviation; Silicate; Silicate, standard deviation; Sodium; Sodium, standard deviation; Strontium, standard deviation; Strontium 2+; Sulfate; Sulfide; Thiosulfate; Titanium; Titanium, standard deviation; Uranium; Uranium, standard deviation; Vanadium; Vanadium, standard deviation; Water level; WELL; Zinc; Zinc, standard deviation; δ18O; δ18O, standard deviation; δ34S; δ34S, standard deviation; δ Deuterium; δ Deuterium, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 58204 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-25
    Keywords: 20-mer oligonucleotide; Calculated; Colorado, U.S.A., North America; DATE/TIME; Depth, relative; ELEVATION; Elevation 2; Fluorescent dye, Cyanine 3; Hybridization marker; LATITUDE; LONGITUDE; Rilfe; Sample code/label; Sampling Well; Signal/noise ratio; WELL
    Type: Dataset
    Format: text/tab-separated-values, 8480 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-24
    Description: Palaeoclimate proxy records (such as time series derived from ice cores or stalagmites) from the same or nearby location would be expected to represent similar climate variation. This is called replication of proxy records but is often difficult to achieve, because either the proxies are not reflecting the paleoclimate variation, external factors overprint the climate signal in the proxy record, or chronological uncertainties cause a serious mismatch between the individual records. In order to minimize the later issue and take the chronological uncertainties into account, we combine a Monte Carlo based approach (COPRA) with an ensemble based windowed cross-correlation analysis. This allows the investigation of potential replication of proxy records from a statistical perspective. We demonstrate this approach by comparing two stalagmite δ18O records from Heshang cave and Sanbao cave, both strongly influenced by the East Asian Summer Monsoon and covering the period between 9000 yr BP and 500 yrBP. We find that both proxy records reproduce well, although not perfectly. Main issues are differences between the records caused by unresolved geochemical processes influencing the U-series system and possibly kinetic fractionation in the oxygen isotope system. Overall, the proposed approach can provide a means to extract a correction function which reduces the uncertainties in the dating procedure. This method is a precursory step towards composite reconstructions that are based on multiple, replicating, time series.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-24
    Type: info:eu-repo/semantics/lecture
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Celis-Plá, Paula S M; Hall-Spencer, Jason M; Horta, Paulo Antunes; Milazzo, Marco; Korbee, Nathalie; Cornwall, Christopher Edward; Figueroa, Félix L (2015): Macroalgal responses to ocean acidification depend on nutrient and light levels. Frontiers in Marine Science, 2, https://doi.org/10.3389/fmars.2015.00026
    Publication Date: 2024-05-24
    Description: Ocean acidification may benefit algae that are able to capitalize on increased carbon availability for photosynthesis, but it is expected to have adverse effects on calcified algae through dissolution. Shifts in dominance between primary producers will have knock-on effects on marine ecosystems and will likely vary regionally, depending on factors such as irradiance (light vs. shade) and nutrient levels (oligotrophic vs. eutrophic). Thus experiments are needed to evaluate interactive effects of combined stressors in the field. In this study, we investigated the physiological responses of macroalgae near a CO2 seep in oligotrophic waters off Vulcano (Italy). The algae were incubated in situ at 0.2 m depth using a combination of three mean CO2 levels (500, 700-800 and 1200 µatm CO2), two light levels (100 and 70% of surface irradiance) and two nutrient levels of N, P, and K (enriched vs. non-enriched treatments) in the non-calcified macroalga Cystoseira compressa (Phaeophyceae, Fucales) and calcified Padina pavonica (Phaeophyceae, Dictyotales). A suite of biochemical assays and in vivo chlorophyll a fluorescence parameters showed that elevated CO2 levels benefitted both of these algae, although their responses varied depending on light and nutrient availability. In C. compressa, elevated CO2 treatments resulted in higher carbon content and antioxidant activity in shaded conditions both with and without nutrient enrichment--they had more Chla, phenols and fucoxanthin with nutrient enrichment and higher quantum yield (Fv/Fm) and photosynthetic efficiency (alpha ETR) without nutrient enrichment. In P. pavonica, elevated CO2 treatments had higher carbon content, Fv/Fm, alpha ETR, and Chla regardless of nutrient levels--they had higher concentrations of phenolic compounds in nutrient enriched, fully-lit conditions and more antioxidants in shaded, nutrient enriched conditions. Nitrogen content increased significantly in fertilized treatments, confirming that these algae were nutrient limited in this oligotrophic part of the Mediterranean. Our findings strengthen evidence that brown algae can be expected to proliferate as the oceans acidify where physicochemical conditions, such as nutrient levels and light, permit.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Antioxidant activity; Antioxidant activity, standard error; Aragonite saturation state; Aragonite saturation state, standard error; Benthos; Bicarbonate ion; Bicarbonate ion, standard error; Biomass/Abundance/Elemental composition; Calcite saturation state; Calcite saturation state, standard error; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, per dry mass; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon content, per dry mass, standard error; Carbon dioxide; Carbon dioxide, standard error; Chlorophyll a; Chlorophyll a, standard error; Chlorophyll c; Chlorophyll c, standard error; Chromista; CO2 vent; Coast and continental shelf; Cystoseira compressa; Electron transport rate; Electron transport rate, standard error; Field experiment; Fucoxanthin; Fucoxanthin, standard error; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Light saturation point; Light saturation point, standard error; Macroalgae; Macro-nutrients; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard error; Mediterranean Sea; Nitrogen, per dry mass; Nitrogen content, per dry mass, standard error; Non photochemical quenching; Non photochemical quenching, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Padina pavonica; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Phenolics, all; Phenolics, all, standard error; Photosynthetic efficiency; Photosynthetic efficiency, standard error; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Salinity; Salinity, standard error; Single species; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard error; Treatment; Violaxanthin; Violaxanthin, standard error
    Type: Dataset
    Format: text/tab-separated-values, 1470 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Meteorology Climatology Remote Sensing, Dep. Umweltwissenschaften, Universität Basel
    Publication Date: 2024-05-24
    Description: In Gobabeb, Namibia SWD, LWD and DIR are each measured redundant with two instruments of the same make (not in this data base). The differences between the pairs are used in the quality control. This is done manually by inspecting plots of half-day diurnal courses of the pairs and their differences. Values are removed mostly in the morning due to daily cleaning. Other reasons for larger differences are birds, insects, or people at the station. There are regular fog events varying in frequency over the year. Usually, the fog appears in the second half of the night and disappears a few hours after sunrise. The case temperatures of pyrgeometers practically never drop below dewpoint but there can be water deposition of the dome.
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, standard deviation; GOB; Gobabeb; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Monitoring station; MONS; Namib Desert, Namibia; Pyranometer, Kipp & Zonen, CMP22, SN 110315, WRMC No. 20100; Pyranometer, Kipp & Zonen, CMP22, SN 110316, WRMC No. 20101; Pyranometer, Kipp & Zonen, CMP22, SN 120330, WRMC No. 20102; Pyrgeometer, Kipp & Zonen, CGR4, SN 110408, WRMC No. 20200; Pyrgeometer, Kipp & Zonen, CGR4, SN 120457, WRMC No. 20201; Pyrheliometer, Kipp & Zonen, CHP 1, SN 110764, WRMC No. 20000; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 580056 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Meteorology Climatology Remote Sensing, Dep. Umweltwissenschaften, Universität Basel
    Publication Date: 2024-05-24
    Description: In Gobabeb, Namibia SWD, LWD and DIR are each measured redundant with two instruments of the same make (not in this data base). The differences between the pairs are used in the quality control. This is done manually by inspecting plots of half-day diurnal courses of the pairs and their differences. Values are removed mostly in the morning due to daily cleaning. Other reasons for larger differences are birds, insects, or people at the station. There are regular fog events varying in frequency over the year. Usually, the fog appears in the second half of the night and disappears a few hours after sunrise. The case temperatures of pyrgeometers practically never drop below dewpoint but there can be water deposition of the dome.
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, standard deviation; GOB; Gobabeb; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Monitoring station; MONS; Namib Desert, Namibia; Pyranometer, Kipp & Zonen, CMP22, SN 110315, WRMC No. 20100; Pyranometer, Kipp & Zonen, CMP22, SN 110316, WRMC No. 20101; Pyranometer, Kipp & Zonen, CMP22, SN 120330, WRMC No. 20102; Pyrgeometer, Kipp & Zonen, CGR4, SN 110408, WRMC No. 20200; Pyrgeometer, Kipp & Zonen, CGR4, SN 120457, WRMC No. 20201; Pyrheliometer, Kipp & Zonen, CHP 1, SN 110764, WRMC No. 20000; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 523990 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Meteorology Climatology Remote Sensing, Dep. Umweltwissenschaften, Universität Basel
    Publication Date: 2024-05-24
    Description: In Gobabeb, Namibia SWD, LWD and DIR are each measured redundant with two instruments of the same make (not in this data base). The differences between the pairs are used in the quality control. This is done manually by inspecting plots of half-day diurnal courses of the pairs and their differences. Values are removed mostly in the morning due to daily cleaning. Other reasons for larger differences are birds, insects, or people at the station. There are regular fog events varying in frequency over the year. Usually, the fog appears in the second half of the night and disappears a few hours after sunrise. The case temperatures of pyrgeometers practically never drop below dewpoint but there can be water deposition of the dome.
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, standard deviation; GOB; Gobabeb; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Monitoring station; MONS; Namib Desert, Namibia; Pyranometer, Kipp & Zonen, CMP22, SN 110315, WRMC No. 20100; Pyranometer, Kipp & Zonen, CMP22, SN 110316, WRMC No. 20101; Pyranometer, Kipp & Zonen, CMP22, SN 120330, WRMC No. 20102; Pyrgeometer, Kipp & Zonen, CGR4, SN 110408, WRMC No. 20200; Pyrgeometer, Kipp & Zonen, CGR4, SN 120457, WRMC No. 20201; Pyrheliometer, Kipp & Zonen, CHP 1, SN 110764, WRMC No. 20000; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 579964 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...