ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (35,780)
  • 2010-2014  (35,780)
  • 2014  (35,780)
  • 1
    Publication Date: 2024-01-07
    Description: A numerical ocean sea-ice model is used to demonstrate that Arctic sea ice retreat affects momentum transfer into the ocean. A thinner and thus weaker ice cover is more easily forced by the wind, which increases the momentum flux. In contrast, increasing open water reduces momentum transfer because the ice surface provides greater drag than the open water surface. We introduce the concept of optimal ice concentration: momentum transfer increases with increasing ice concentration up to a point, beyond which frictional losses by floe interaction damp the transfer. For a common ice internal stress formulation, a concentration of 80–90% yields optimal amplification of momentum flux into the ocean. We study the seasonality and long-term evolution of Arctic Ocean surface stress over the years 1979–2012. Spring and fall feature optimal ice conditions for momentum transfer, but only in fall is the wind forcing at its maximum, yielding a peak basin-mean ocean surface stress of ∼0.08 N/m2. Since 1979, the basin-wide annual mean ocean surface stress has been increasing by 0.004 N/m2/decade, and since 2000 by 0.006 N/m2/decade. In contrast, summertime ocean surface stress has been decreasing at −0.002 N/m2/decade. These trends are linked to the weakening of the ice cover in fall, winter and spring, and to an increase in open water fraction in summer, i.e., changes in momentum transfer rather than changes in wind forcing. In most areas, the number of days per year with optimal ice concentration is decreasing. Key Points Weaker Arctic sea ice causes increased annual mean ocean surface stress (+20%) Increasing open water area in summer yields momentum flux reduction (−7%) An optimal ice concentration of 80–90% amplifies momentum transfer threefold
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-23
    Description: The radiogenic isotope composition of neodymium (Nd) and strontium (Sr) are useful tools to investigate present and past oceanic circulation or input of terrigenous material. We present Nd and Sr isotope compositions extracted from different sedimentary phases, including early diagenetic Fe-Mn coatings, ‘‘unclean’’ foraminiferal shells, fossil fish teeth, and detritus of marine surface sediments (core-tops) covering the entire midlatitude South Pacific. Comparison of detrital Nd isotope compositions to deep water values from the same locations suggests that "boundary exchange" has little influence on the Nd isotope composition of western South Pacific seawater. Concentrations of Rare Earth Elements (REE) and Al/Ca ratios of "unclean" planktonic foraminifera suggest that this phase is a reliable recorder of seawater Nd isotope composition. The signatures obtained from fish teeth and "nondecarbonated" leachates of bulk sediment Fe-Mn oxyhydroxide coatings also agree with "unclean" foraminifera. Direct comparison of Nd isotope compositions extracted using these methods with seawater Nd isotope compositions is complicated by the low accumulation rates yielding radiocarbon ages of up to 24 kyr, thus mixing the signal of different ocean circulation modes. This suggests that different past seawater Nd isotope compositions have been integrated in authigenic sediments from regions with low sedimentation rates. Combined detrital Nd and Sr isotope signatures indicate a dominant role of the Westerly winds transporting lithogenic material from South New Zealand and Southeastern Australia to the open South Pacific. The proportion of this material decreases toward the east, where supply from the Andes increases and contributions from Antarctica cannot be ruled out.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-04
    Description: Aeolian dust is a key aspect of the climate system. Dust can modify the Earth's energy budget, provide long-range transport of nutrients, and influence land surface processes via erosion. Consequently, effective modeling of the climate system, particularly at regional scales, requires a reasonably accurate representation of dust emission, transport, and deposition. Here we evaluate African dust in 23 state-of-the-art global climate models used in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We find that all models fail to reproduce basic aspects of dust emission and transport over the second half of the twentieth century. The models systematically underestimate dust emission, transport, and optical depth, and year-to-year changes in these properties bear little resemblance to observations. These findings cast doubt on the ability of these models to simulate the regional climate and the response of African dust to future climate change. Key Points: - CMIP5 models underestimate African dust emission and transport - The dust size distribution is biased toward small particles in CMIP5 models - CMIP5 models do not represent coupled processes that involve African dust
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-04
    Description: Microbial permafrost communities play an important role in carbon cycling and greenhouse gas fluxes. Despite the importance of these processes, there is a lack of knowledge about how environmental and climatic changes affect the abundance and composition of microorganisms. Here, we investigated the changing distribution of permafrost microorganisms in response to climate and lake-level changes. The permafrost core was drilled at the near shore of Lake El'gygytgyn, Far East Russian Arctic, and a combined microbiological and lipid biomarker approach was applied. The lower part of the permafrost core, deposited under subaquatic conditions, contains only small amounts of microbial signals; total organic carbon (TOC) content is sparse. After exposure of the site to subaerial conditions during the Allerød, the abundance of Bacteria and Archaea started to increase and the lake-level change is especially evidenced by the relative proportion of archaeal biomarkers. This increase is supported by rising bacterial and archaeal 16S ribosomal ribonucleic acid (rRNA) gene copy numbers and significant amounts of TOC during the late Allerød. After a small decrease during the colder Younger Dryas, the TOC content and the microbial signals strongly increase during the Holocene, presumably stimulated by pedogenesis. The occurrence of intact phospholipids indicates the presence of living microorganisms in these deposits. Our data suggest that methane formation is mainly expected for the subaerial interval, especially the Holocene where methanogens were identified by fingerprinting. This study emphasises the role of the uppermost permafrost deposits as a hotspot of carbon cycling in arctic environments, especially in the light of expected future global warming.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-19
    Description: In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman–Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman–Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman–Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-05-19
    Description: The mixed layer (ML) temperature and salinity changes in the central tropical Atlantic have been studied by a dedicated experiment (Cold Tongue Experiment (CTE)) carried out from May to July 2011. The CTE was based on two successive research cruises, a glider swarm, and moored observations. The acquired in situ data sets together with satellite, reanalysis, and assimilation model data were used to evaluate box-averaged ML heat and salinity budgets for two subregions: (1) the western equatorial Atlantic cold tongue (ACT) (23°–10°W) and (2) the region north of the ACT. The strong ML heat loss in the ACT region during the CTE was found to be the result of the balance of warming due to net surface heat flux and cooling due to zonal advection and diapycnal mixing. The northern region was characterized by weak cooling and the dominant balance of net surface heat flux and zonal advection. A strong salinity increase occurred at the equator, 10°W, just before the CTE. During the CTE, ML salinity in the ACT region slightly increased. Largest contributions to the ML salinity budget were zonal advection and the net surface freshwater flux. While essential for the ML heat budget in the ACT region, diapycnal mixing played only a minor role for the ML salinity budget. In the region north of the ACT, the ML freshened at the beginning of the CTE due to precipitation, followed by a weak salinity increase. Zonal advection changed sign contributing to ML freshening at the beginning of the CTE and salinity increase afterward.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-23
    Description: In the vast Low Nutrient Low-Chlorophyll (LNLC) Ocean, the vertical nutrient supply from the subsurface to the sunlit surface waters is low, and atmospheric contribution of nutrients may be one order of magnitude greater over short timescales. The short turnover time of atmospheric Fe and N supply (〈1 month for nitrate) further supports deposition being an important source of nutrients in LNLC regions. Yet, the extent to which atmospheric inputs are impacting biological activity and modifying the carbon balance in oligotrophic environments has not been constrained. Here, we quantify and compare the biogeochemical impacts of atmospheric deposition in LNLC regions using both a compilation of experimental data and model outputs. A metadata-analysis of recently conducted field and laboratory bioassay experiments reveals complex responses, and the overall impact is not a simple “fertilization effect of increasing phytoplankton biomass” as observed in HNLC regions. Although phytoplankton growth may be enhanced, increases in bacterial activity and respiration result in weakening of biological carbon sequestration. The application of models using climatological or time-averaged non-synoptic deposition rates produced responses that were generally much lower than observed in the bioassay experiments. We demonstrate that experimental data and model outputs show better agreement on short timescale (days to weeks) when strong synoptic pulse of aerosols deposition, similar in magnitude to those observed in the field and introduced in bioassay experiments, is superimposed over the mean atmospheric deposition fields. These results suggest that atmospheric impacts in LNLC regions have been underestimated by models, at least at daily to weekly timescales, as they typically overlook large synoptic variations in atmospheric deposition and associated nutrient and particle inputs. Inclusion of the large synoptic variability of atmospheric input, and improved representation and parameterization of key processes that respond to atmospheric deposition, is required to better constrain impacts in ocean biogeochemical models. This is critical for understanding and prediction of current and future functioning of LNLC regions and their contribution to the global carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 41 (20). pp. 7227-7236.
    Publication Date: 2021-04-23
    Description: Our understanding of the processes driving the patterns of dissolved iron (DFe) in the ocean interior, either in observations or models, is complicated by the combined influences of subduction from the surface mixed layer, notable subsurface sources, regeneration, and scavenging loss. We describe a ventilation-based framework to quantify these processes in a global ocean biogeochemical model including diagnostics along potential density surfaces. There is a prevailing control of subsurface DFe by the subduction of surface DFe as preformed DFe augmented by benthic sources of DFe from hydrothermal activity and sediments. Unlike phosphate, there is often a first-order balance with a near cancelation between regeneration and scavenging with the remaining “net regeneration” controlled by the ventilation of surface excesses in Fe-binding ligands. This DFe framework provides a more stringent test of how the total DFe distribution is mechanistically controlled within a model and may be subsequently used to interpret observed DFe distributions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-04-23
    Description: Volcanic eruptions have been hypothesized as an iron supply mechanism for phytoplankton blooms; however, little direct evidence of stimulatory responses has been obtained in the field. Here we present the results of twenty-one 1-2day bottle enrichment experiments from cruises in the South Atlantic and Southern Ocean which conclusively demonstrated a photophysiological and biomass stimulation of phytoplankton communities following supply of basaltic or rhyolitic volcanic ash. Furthermore, experiments in the Southern Ocean demonstrated significant phytoplankton community responses to volcanic ash supply in the absence of responses to addition of dissolved iron alone. At these sites, dissolved manganese concentrations were among the lowest ever measured in seawater, and we therefore suggest that the enhanced response to ash may have been a result of the relief of manganese (co)limitation. Our results imply that volcanic ash deposition events could trigger extensive phytoplankton blooms, potentially capable of significant impacts on regional carbon cycling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 41 (3). pp. 942-947.
    Publication Date: 2021-04-23
    Description: Hydrothermal venting often occurs at submarine volcanic calderas on island arc chains, typically at shallower depths than mid–ocean ridges. The effect of these systems on ocean biogeochemistry has been under-investigated to date. Here we show that hydrothermal effluent from an island arc caldera was rich in Fe(III) colloids (0.02–0.2 µm; 46% of total Fe), contributing to a fraction of hydrothermal Fe that was stable in ocean water. Iron(III) colloids from island arc calderas may be transferred into surrounding waters (generally 0–1500 m depth) by ocean currents, thereby potentially stimulating surface ocean primary productivity. Hydrothermal Fe oxyhydroxide particles (〉0.2 µm) were also pervasive in the studied caldera and contained high concentrations of oxyanions of phosphorus (P), vanadium (V), arsenic (As), and manganese (Mn). Hydrothermal island arcs may be responsible for 〉 50% of global hydrothermal P scavenging and 〉 40% V scavenging, despite representing 〈10% of global hydrothermal fluid flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...