ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (29,386)
  • American Meteorological Society
  • Springer Science + Business Media
  • 2010-2014  (33,753)
  • 2013  (21,321)
  • 2010  (12,432)
Collection
Publisher
Years
  • 2010-2014  (33,753)
Year
  • 1
    facet.materialart.
    Unknown
    Oxford University Press
    In:  EPIC3Journal of Experimental Botany, Oxford University Press, ISSN: 0022-0957
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-03
    Description: The development of the INGV (Istituto Nazionale di Geofisica e Vulcanologia)-CMCC (Centro Euro-Mediterraneo per i Cambiamenti Climatici) Seasonal Prediction System (SPS) is documented. In this SPS the ocean initial conditions estimation includes a Reduced Order Optimal Interpolation procedure for the assimilation of temperature and salinity profiles at the global scale. Nine member ensemble forecasts have been produced for the period 1991-2003 for two starting dates per year in order to assess the impact of the subsurface assimilation in the ocean for initialization. Comparing the results with control simulations (i.e.: without assimilation of subsurface profiles during ocean initialization), we showed that the improved ocean initialization increases the skill in the prediction of tropical Pacific SSTs in our system for boreal winter forecasts. Considering the forecast of the El Ni˜no 1997-1998, the data assimilation in the ocean initial conditions leads to a considerable improvement in the representation of its onset and development. Our results indicate a better prediction of global scale surface climate anomalies for the forecasts started in November, probably due to the improvement in the tropical Pacific. For boreal winter, in both tropics and extra tropics, we show significant increases in the capability of the system to discriminate above normal and below normal temperature anomalies.
    Description: Published
    Description: 2930-2952
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: ocean modelling ; global climate models ; seasonal forecast ; coupled models ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Global-scale variations in the climate system over the last half of the twentieth century. including long-term increases in global-mean near-surface temperatures. are consistent with concurrent human-induced emissions of radiatively active gases and aerosols. However, such consistency does not preclude the possible influence of other forcing agents, including internal modes of climate variability or unaccounted for aerosol effects. To test whether other unknown forcing agents may have contributed to multidecadal increases in global-mean near-surface temperatures from 1950 to 2000. data pertaining to observed changes in global-scale sea surface temperatures and observed changes in radiatively active atmospheric constituents are incorporated into numerical global climate models. Results indicate that the radiative forcing needed to produce the observed long-term trends in sea surface temperatures-and global-mean near-surface temperatures-is provided predominantly by known changes in greenhouse gases and aerosols. Further, results indicate that less than 10% of the long-term historical increase in global-mean near-surface temperatures over the last half of the twentieth century could have been the result of internal climate variability. In addition. they indicate that less than 25% of the total radiative forcing needed to produce the observed long-term trend in global-mean near-surface temperatures could have been provided by changes in net radiative forcing from unknown sources (either positive or negative). These results, which are derived from simple energy balance requirements. emphasize the important role humans have played in modifying the global climate over the last half of the twentieth century.
    Description: Published
    Description: 7163-7172
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: climate forcing ; temperature increase ; AGCM ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In this work the authors investigate possible changes in the distribution of heavy precipitation events under a warmer climate, using the results of a set of 20 climate models taking part in the Coupled Model Intercomparison Project phase 5 effort (CMIP5). Future changes are evaluated as the difference between the last four decades of the 21st and the 20th Century assuming the Representative Concentration Pathway RCP8.5 scenario. As a measure of the width of the right tail of the precipitation distribution, we use the difference between the 99th and the 90th percentiles. Despite a slight tendency to underestimate the observed heavy precipitation, the considered CMIP5 models well represent the observed patterns in terms of the ensemble average, during both summer and winter seasons for the 1997-2005 period. Future changes in average precipitation are consistentwith previous findings based on CMIP3 models. CMIP5 models show a projected increase for the end of the twenty-first century of the width of the right tail of the precipitation distribution, particularly pronounced over India, South East Asia, Indonesia and Central Africa during borealsummer, as well as over South America and southern Africa during boreal winter.
    Description: Published
    Description: 7902–7911
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: precipitation ; extreme events ; climate change ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 789-801, doi:10.1175/2009JPO4039.1.
    Description: The issue of internal wave–mesoscale eddy interactions is revisited. Previous observational work identified the mesoscale eddy field as a possible source of internal wave energy. Characterization of the coupling as a viscous process provides a smaller horizontal transfer coefficient than previously obtained, with vh 50 m2 s−1 in contrast to νh 200–400 m2 s−1, and a vertical transfer coefficient bounded away from zero, with νυ + (f2/N2)Kh 2.5 ± 0.3 × 10−3 m2 s−1 in contrast to νυ + (f2/N2)Kh = 0 ± 2 × 10−2 m2 s−1. Current meter data from the Local Dynamics Experiment of the PolyMode field program indicate mesoscale eddy–internal wave coupling through horizontal interactions (i) is a significant sink of eddy energy and (ii) plays an O(1) role in the energy budget of the internal wave field.
    Keywords: Eddies ; Internal waves ; Mesoscale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 934-948, doi:10.1175/2009JPO4214.1.
    Description: The mean heat and salt balances over the Middle Atlantic Bight continental shelf are investigated by testing the hypothesis that surface fluxes of heat or freshwater are balanced by along-isobath fluxes resulting from the mean, depth-averaged, along-isobath flow acting on the mean, depth-averaged, along-isobath temperature or salinity gradient. This hypothesized balance is equivalent in a Lagrangian frame to a column of water, for example, warming because of surface heating as it is advected southward along isobath by the mean flow. Mean depth-averaged temperatures increase from north to south along isobath at a rate of 2°C (1000 km)−1 at midshelf, which is consistent with the hypothesized balance and mean surface heat flux estimates from the 50-yr NCEP Reanalysis. However, mean surface heat flux estimates from the higher-resolution 20-yr Objectively Analyzed Air–Sea Fluxes (OAFlux) reanalysis are too small to balance the along-isobath heat flux divergence implying a cross-shelf heat flux convergence. It is unclear which surface heat flux estimate, NCEP or OAFlux, is more accurate. The cross-shelf heat flux convergence resulting from the mean cross-shelf circulation is too small to balance the along-isobath heat flux divergence. Mean depth-averaged salinities increase from north to south along isobath at a rate of 1 (psu) (1000 km)−1 at midshelf. Mean precipitation and evaporation rates nearly balance so that the net freshwater flux is too small by more than an order of magnitude to account for the observed along-isobath increase in salinity. The cross-shelf salt flux divergence resulting from the mean cross-shelf circulation has the wrong sign to balance the divergence in the along-isobath salt flux. These results imply there must be an onshore “eddy” salt flux resulting from the time-dependent current and salinity variability. The along-isobath temperature and salinity gradients compensate for each other so that the mean, depth-averaged, along-isobath density gradient is approximately zero. This suggests that there may be a feedback between the along-isobath density gradient and the onshore salt and heat fluxes that maintains the density gradient near zero.
    Description: This work was funded by the National Science Foundation under Grants OCE-0220773, OCE-0241292, andOCE-0548961.
    Keywords: Continental shelf/slope ; Atlantic Ocean ; Fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 1075-1086, doi:10.1175/2009JPO4375.1.
    Description: A quasigeostrophic, two-layer model is used to study the baroclinic circulation around a thin, meridionally elongated island. The flow is driven by either buoyancy forcing or wind stress, each of whose structure would produce an antisymmetric double-gyre flow. The ocean bottom is flat. When the island partially straddles the intergyre boundary, fluid from one gyre is forced to flow into the other. The amount of the intergyre flow depends on the island constant, that is, the value of the geostrophic streamfunction on the island in each layer. That constant is calculated in a manner similar to earlier studies and is determined by the average, along the meridional length of the island, of the interior Sverdrup solution just to the east of the island. Explicit solutions are given for both buoyancy and wind-driven flows. The presence of an island of nonzero width requires the determination of the baroclinic streamfunction on the basin’s eastern boundary. The value of the boundary term is proportional to the island’s area. This adds a generally small additional baroclinic intergyre flow. In all cases, the intergyre flow produced by the island is not related to topographic steering of the flow but rather the pressure anomaly on the island as manifested by the barotropic and baroclinic island constants. The vertical structure of the flow around the island is a function of the parameterization of the vertical mixing in the problem and, in particular, the degree to which long baroclinic Rossby waves can traverse the basin before becoming thermally damped.
    Description: This research was supported in part by NSF Grant OCE 0451086.
    Keywords: Gyres ; Baroclinic flows ; Topographic effects ; Streamfunction ; Orographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 2910-2925, doi:10.1175/2009JPO4139.1.
    Description: The propagation of Rossby waves on a midlatitude β plane is investigated in the presence of density diffusion with the aid of linear hydrostatic theory. The search for wave solutions in a vertically bounded medium subject to horizontal (vertical) diffusion leads to an eigenvalue problem of second (fourth) order. Exact solutions of the problem are obtained for uniform background stratification (N), and approximate solutions are constructed for variable N using the Wentzel–Kramers–Brillouin method. Roots of the eigenvalue relations for free waves are found and discussed. The barotropic wave of adiabatic theory is also a solution of the eigenvalue problem as this is augmented with density diffusion in the horizontal or vertical direction. The barotropic wave is undamped as fluid parcels in the wave move only horizontally and are therefore insensitive to the vortex stretching induced by mixing. On the other hand, density diffusion modifies the properties of baroclinic waves of adiabatic theory. In the presence of horizontal diffusion the baroclinic modes are damped but their vertical structure remains unaltered. The ability of horizontal diffusion to damp baroclinic waves stems from its tendency to counteract the deformation of isopycnal surfaces caused by the passage of these waves. The damping rate increases (i) linearly with horizontal diffusivity and (ii) nonlinearly with horizontal wavenumber and mode number. In the presence of vertical diffusion the baroclinic waves suffer both damping and a change in vertical structure. In the long-wave limit the damping is critical (wave decay rate numerically equal to wave frequency) and increases as the square roots of vertical diffusivity and zonal wavenumber. Density diffusion in the horizontal or vertical direction reduces the amplitude of the phase speed of westward-propagating waves. Observational estimates of eddy diffusivities suggest that horizontal and vertical mixing strongly attenuates baroclinic waves in the ocean but that vertical mixing is too weak to notably modify the vertical structure of the gravest modes.
    Description: This work was supported by the U.S. National Science Foundation.
    Keywords: Rossby waves ; Extratropics ; Buoyancy ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1541-1550, doi:10.1175/2008JPO3999.1.
    Description: The response of a zonal channel to a uniform, switched-on but subsequently steady poleward outflow is presented. An eastward coastal current with a Kelvin wave’s cross-shore structure is found to be generated instantly upon initiation of the outflow. The current is essentially in geostrophic balance everywhere except for the vicinity of the outflow channel mouth, where the streamlines must cross planetary vorticity contours to feed the current. The adjustment of this region generates a plume that propagates westward at Rossby wave speeds. The cross-shore structure of the plume varies with longitude, and at any given longitude it evolves with time. The authors show that the plume evolution can be understood both conceptually and quantitatively as the westward propagation of the Kelvin current’s meridional spectrum, with each spectral element propagating at its own Rossby wave group velocity.
    Description: This work was completed at Woods Hole Oceanographic Institution while T.S. Durland was supported by the Ocean and Climate Change Institute. M.A. Spall was supported by NSF Grant OCE-0423975, and J. Pedlosky by NSF Grant OCE-0451086. T.S. Durland acknowledges additional report preparation support from NASA Grant NNG05GN98G.
    Keywords: Coastal flows ; Estuaries ; Currents ; Vorticity ; Plumes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 25 (2008): 2091-2105, doi:10.1175/2008JTECHO587.1.
    Description: An automated, easily deployed Ice-Tethered Profiler (ITP) instrument system, developed for deployment on perennial sea ice in the polar oceans to measure changes in upper ocean water properties in all seasons, is described, and representative data from prototype instruments are presented. The ITP instrument consists of three components: a surface subsystem that sits atop an ice floe; a weighted, plastic-jacketed wire-rope tether of arbitrary length (up to 800 m) suspended from the surface element; and an instrumented underwater unit that employs a traction drive to profile up and down the wire tether. ITPs profile the water column at a programmed sampling interval; after each profile, the underwater unit transfers two files holding oceanographic and engineering data to the surface unit using an inductive modem and from the surface instrument to a shore-based data server using an Iridium transmitter. The surface instrument also accumulates battery voltage readings, buoy temperature data, and locations from a GPS receiver at a specified interval (usually every hour) and transmits those data daily. Oceanographic and engineering data are processed, displayed, and made available in near–real time (available online at http://www.whoi.edu/itp). Six ITPs were deployed in the Arctic Ocean between 2004 and 2006 in the Beaufort gyre with various programmed sampling schedules of two to six one-way traverses per day between 10- and 750–760-m depth, providing more than 5300 profiles in all seasons (as of July 2007). The acquired CTD profile data document interesting spatial variations in the major water masses of the Canada Basin, show the double-diffusive thermohaline staircase that lies above the warm, salty Atlantic layer, measure seasonal surface mixed layer deepening, and document several mesoscale eddies. Augmenting the systems already deployed and to replace expiring systems, an international array of more than one dozen ITPs will be deployed as part of the Arctic Observing Network during the International Polar Year (IPY) period (2007–08) holding promise for more valuable real-time upper ocean observations for operational needs, to support studies of ocean processes, and to facilitate numerical model initialization and validation.
    Description: Initial development of the ITP concept was supported by the Cecil H. and Ida M. Green Technology Innovation Program. Funding for construction and deployment of the prototype ITPs was provided by the National Science Foundation Oceanographic Technology and Interdisciplinary Coordination (OTIC) Program and Office of Polar Programs (OPP) under Grant OCE-0324233. Continued support has been provided by the OPP Arctic Sciences Section under Awards ARC-0519899 and ARC-0631951, and internal WHOI funding.
    Keywords: Profilers ; Sea ice ; Instrumentation/sensors ; Arctic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...