ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (676)
  • 2000-2004  (676)
  • 2000  (676)
Collection
Years
  • 2000-2004  (676)
Year
  • 1
    Publication Date: 2011-08-24
    Description: Infrared spectral images of Jupiter's volcanic moon Io, acquired during the October and November 1999 and February 2000 flybys of the Galileo spacecraft, were used to study the thermal structure and sulfur dioxide distribution of active volcanoes. Loki Patera, the solar system's most powerful known volcano, exhibits large expanses of dark, cooling lava on its caldera floor. Prometheus, the site of long-lived plume activity, has two major areas of thermal emission, which support ideas of plume migration. Sulfur dioxide deposits were mapped at local scales and show a more complex relationship to surface colors than previously thought, indicating the presence of other sulfur compounds.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 288; 5469; 1201-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Proceedings of the National Academy of Sciences of the United States of America (ISSN 0027-8424); Volume 97; 6; 2425-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: We investigate the orbital evolution of 10(13)- to 10(25) -g planetesimals near 1 AU and in the asteroid belt (near 2.6 AU) prior to the stage of evolution when the mutual perturbations between the planetesimals become important. We include nebular gas drag and the effects of Jupiter and Saturn at their present masses and in their present orbits. Gas drag introduces a size-dependent phasing of the secular perturbations, which leads to a pronounced dip in encounter velocities (Venc) between bodies of similar mass. Plantesimals of identical mass have Venc approximately 1 and approximately 10 m s-1 (near 1 and 2.6 AU, respectively) while bodies differing by approximately 10 in mass have Venc approximately 10 and approximately 100 m s-1 (near 1 and 2.6 AU, respectively). Under these conditions, growth, rather than erosion, will occur only by collisions of bodies of nearly the same mass. There will be essentially no gravitational focusing between bodies less than 10(22) to 10(25) g, allowing growth of planetary embryos in the terrestrial planet region to proceed in a slower nonrunaway fashion. The environment in the asteroid belt will be even more forbidding and it is uncertain whether even the severely depleted present asteroid belt could form under these conditions. The perturbations of Jupiter and Saturn are quite sensitive to their semi-major axes and decrease when the planets' heliocentric distances are increased to allow for protoplanet migration. It is possible, though not clearly demonstrated, that this could produce a depleted asteroid belt but permit formation of a system of terrestrial planet embryos on a approximately 10(6)-year timescale, initially by nonrunaway growth and transitioning to runaway growth after approximately 10(5) years. The calculations reported here are valid under the condition that the relative velocities of the bodies are determined only by Jupiter and Saturn perturbations and by gas drag, with no mutual perturbations between planetesimals. If, while subject to these conditions, the bodies become large enough for their mutual perturbations to influence their velocity and size evolution significantly, the problem becomes much more complex. This problem is under investigation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus (ISSN 0019-1035); Volume 143; 1; 60-73
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Large-scale nonlinear simulations of Jupiter's 5-micron hot spots produce long-lived coherent structures that cause subsidence in local regions, explaining the low cloudiness and the dryness measured by the Galileo probe inside a hot spot. Like observed hot spots, the simulated coherent structures are equatorially confined, have periodic spacing, propagate west relative to the flow, are generally confined to one hemisphere, and have an anticyclonic gyre on their equatorward side. The southern edge of the simulated hot spots develops vertical shear of up to 70 meters per second in the eastward wind, which can explain the results of the Galileo probe Doppler wind experiment.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 289; 5485; 1737-40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This abstract discusses a strategy for the scientific exploration of Mars by reviewing those that have been proposed previously by various science advisory groups. The strategy for exploration is based on first obtaining a global assessment or reconnaissance level of knowledge about Mars before more detailed study of specific locations with large rovers and sample returns. It also suggests a progression of missions and information needed for setting up outposts and ultimately eventual human exploration.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 1; 127-128; LPI-Contrib-1062
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: With the exploration strategy for Mars undergoing reexamination, the opportunity exists for the incorporation of the 60 kg Beagle 2 lander, developed in the United Kingdom for inclusion on ESA's 2003 Mars Express mission, with NASA's Mars 2003 orbiter derived from the Mars Global Orbiter. The combination of Beagle 2 with a Mars orbiter would result in a unique mission which could obtain information on Mars' life, climate and resources both from orbit as well as on the surface of the planet. Beagle 2 has been developed in the LJK for ESA as a low-cost opportunity to study the exobiology of Mars and the spacecraft is in its final stages of manufacture. Only limited modifications to the Beagle 2 package would be required for inclusion on NASA's Mars 2003 orbiter. With the ESA Mars Express mission launch in 2003 and a potential NASA Mars orbiter in 2003, both Beagle 2 landers on Mars would offer a low-cost, decreased risk and increased science return opportunity for the exploration of Mars at two distinct geologically interesting sites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 1; 124; LPI-Contrib-1062
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: The coming decade of Mars exploration will involve a diverse set of robotic science missions, including in situ and sample return investigations, and ultimately moving towards sustained robotic presence on the Martian surface. In supporting this mission set, NASA must establish a robust telecommunications architecture that meets the specific science needs of near-term missions while enabling new methods of future exploration. This paper will assess the anticipated telecommunications needs of future Mars exploration, examine specific options for deploying capabilities, and quantify the performance of these options in terms of key figures of merit.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 1; 105-106; LPI-Contrib-1062
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: Existing measurements and modeling studies indicate that the climate and general circulation of the thin, predominately CO2 Martian atmosphere are characterized by large-amplitude variations with a wide range of spatial and temporal scales. Remote sensing observations from Earth-based telescopes and the Mariner 9, Viking, Phobos, and Mars Global Surveyor (MGS) orbiters show that the prevailing climate includes large-scale seasonal variations in surface and atmospheric temperatures (140 to 300 K), dust optical depth (0.15 to 1), and water vapor (10 to 100 precipitable microns). These observations also provided the first evidence for episodic regional and global dust storms that produce even larger perturbations in the atmospheric thermal structure and general circulation. In-situ measurements by the Viking and Mars Pathfinder Landers reinforced these conclusions, documenting changes in the atmospheric pressure on diurnal (5%) and seasonal (〉20%) time scales, as well as large diurnal variations in the near-surface temperature (40 to 70 K), wind velocity (0 to 35 m/s), and dust optical depth (0.3 to 6). These in-situ measurements also reveal phenomena with temporal and spatial scales that cannot be resolved from orbit, including rapid changes in near-surface temperatures (+/- 10 K in 10 seconds), large near-surface vertical temperature gradients (+/- 15 K/meter), diurnally-varying slope winds, and dust devils . Modeling studies indicate that these changes are forced primarily by diurnal and seasonal variations in solar insolation, but they also include contributions from atmospheric thermal tides, baroclinic waves (fronts), Kelvin waves, slope winds, and monsoonal flows from the polar caps.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 1; 84; LPI-Contrib-1062
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Effective exploration and characterization of Mars will require the deployment of numerous surface probes, tethered balloon stations and free-flying balloon systems as well as larger landers and orbiting satellite systems. Since launch opportunities exist approximately every two years it is extremely critical that each and every mission maximize its potential for success. This will require significant testing of each system in an environment that simulates the actual operational environment as closely as possible. Analytical techniques and laboratory testing goes a long way in mitigating the inherent risks associated with space exploration, however they fall sort of accurately simulating the unpredictable operational environment in which these systems must function.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 1; 101-102; LPI-Contrib-1062
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: The recent loss of the Mars Polar Lander (MPL) mission represents a serious setback to Mars science and exploration. Targeted to land on the Martian south polar layered deposits at 76 degrees south latitude and 195 degrees west longitude, it would have been the first mission to study the geology, atmospheric environment, and volatiles at a high-latitude landing site. Since the conception of the MPL mission, a Mars exploration strategy has emerged which focuses on Climate, Resources and Life, with the behavior and history of water as the unifying theme. A successful MPL mission would have made significant contributions towards these goals, particularly in understanding the distribution and behavior of near-surface water, and the nature and climate history of the south polar layered deposits. Unfortunately, due to concerns regarding the design of the MPL spacecraft, the rarity of direct trajectories that enable high-latitude landings, and funding, an exact reflight of MPL is not feasible within the present planning horizon. However, there remains significant interest in recapturing the scientific goals of the MPL mission. The following is a discussion of scientific and strategic issues relevant to planning the next polar lander mission, and beyond.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 2; 245-246; LPI-Contrib-1062-Pt-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...