ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Springer
    In:  Springer
    Publication Date: 1996
    Keywords: Textbook of mathematics ; Data analysis / ~ processing ; Textbook of geophysics ; Chaotic behaviour
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  Berlin, Springer, vol. 20, no. Publ. No. 12, pp. 23-40, (ISBN 1-4020-3326-5, VIII + 343 pp.)
    Publication Date: 1996
    Keywords: Volcanology ; Review article ; Earthquake hazard ; PAG
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  In: The South Atlantic: Present and Past Circulation. , ed. by Wefer, G., Berger, W. H., Siedler, G. and Webb, D. J. Springer, Berlin, Heidelberg, pp. 125-162.
    Publication Date: 2020-01-10
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-22
    Description: Sediment samples from the Mid-Atlantic Reykjanes Ridge (59°N) were taken to get information about sediment genesis and to identify different sources during the late Quaternary. Samples were investigated by X-ray diffraction and grain-size analyses. The clay mineral assemblages in sediments of the Reykjanes Ridge reflect paleoceanographic changes during the late Quaternary. Holocene sediments are characterized by high contents of smectite, mainly of less developed crystallinity. In the spatial distribution of clay minerals high smectite concentrations on the eastern flank and slightly decreasing concentrations on the western flank of the Reykjanes Ridge indicate the action of bottom-water transport. The smectite originates mainly from the volcanogenous Icelandic shelf and reflects the influence of Iceland-Scotland Overflow Water (ISOW). Stratigraphic variability in the clay mineral composition reflects predominantly the influence of different sources, resulting from oceanographic and glacial transport processes. During glacial time sediment transport is due mainly to input by icebergs. Increasing amounts of illite, chlorite, and kaolinite characterize ice-rafted sediments of the “Heinrich layers”. In these sediments smectite crystallinity is well developed. In contrast, several other ice-rafted layers contain smectite with low crystallographic order, similar to smectites of Holocene age. The icelandic source was proved by distinct amounts of basaltic glass in the coarse-grained sediment. At approximately 55 ka increasing amounts of chlorite and kaolinite suggest an enhanced influx of warm North Atlantic surface waters. This hypothesis is supported by a high carbonate shell production at this time. Relative low concentrations and the well-developed crystallinity of smectite minerals characterize the Last Glacial Maximum (LGM; 18–16 ka), indicating a reduced supply of fine icelandic material. Shortly after the LGM, at the beginning of termination IA, a distinct increase in fine-grained quartz (〈2µm) and smectite are visible, which are proposed to reflect a supply of fine-grained ice-rafted material. At 13 ka linear increasing smectite concentrations of lower crystallographic order indicate increasing supply of fine-grained material from Iceland, linked to reinitiation of bottom currents of the ISOW. Full reinitiation is indicated at around 10 ka, where a strong increase in smectite of low crystallographic order is detected.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-22
    Description: Seismic profiles from a venting area on the western margin of Paramushir Island (Sea of Okhotsk) reveal a local complex structure and an interesting, unusual pattern of the bottom simulating reflector (BSR). The BSR is gradual rising towards the venting area. The geothermal gradient and the bottom temperature confirmed the methane hydrate. The temperature appears to be the most important factor controlling the hydrate stability. A locally higher heat flow caused the upward migration of the hydrate stability field and the subsequent degradation of the hydrated sediments, causing gas vent formation and the flux of methane gas into the water column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-09-21
    Description: Picritic units of the Miocene shield volcanics on Gran Canaria, Canary Islands, contain olivine and clinopyroxene phenocrysts with abundant primary melt, crystal and fluid inclusions. Composition and crystallization conditions of primary magmas in equilibrium with olivine Fo90-92 were inferred from high-temperature microthermometric quench experiments, low-temperature microthermometry of fluid inclusions and simulation of the reverse path of olivine fractional crystallization based on major element composition of melt inclusions. Primary magmas parental for the Miocene shield basalts range from transitional to alkaline picrites (14.7–19.3 wt% MgO, 43.2–45.7 wt% SiO2). Crystallization of these primary magmas is believed to have occurred over the temperature range 1490–1150° C at pressures ≈5 kbar producing olivine of Fo80.6-90.2, high-Ti chrome spinel [Mg/ (Mg+Fe2+)=0.32–0.56, Cr/(Cr+Al)=0.50–0.78, 2.52–8.58 wt% TiO2], and clinopyroxene [Mg/(Mg+Fe)=0.79–0.88, Wo44.1-45.3, En43.9-48.0, Fs6.8-11.0] which appeared on the liquidus together with olivine≈Fo86. Redox conditions evolved from intermediate between the QFM and WM buffers to late-stage conditions of NNO+1 to NNO+2. The primary magmas crystallized in the presence of an essentially pure CO2 fluid. The primary magmas originated at pressures 〉30 kbar and temperatures of 1500–1600° C, assuming equilibrium with mantle peridotite. This implies melting of the mantle source at a depth of ≈100 km within the garnet stability field followed by migration of melts into magma reservoirs located at the boundary between the upper mantle and lower crust. The temperatures and pressures of primary magma generation suggest that the Canarian plume originated in the lower mantle at depth ≈900 km that supports the plume concept of origin of the Canary Islands.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Springer
    In:  Geologische Rundschau, 85 (3). pp. 409-437.
    Publication Date: 2019-01-22
    Description: Tectonics and climate are both directly and indirectly related. The direct connection is between uplift, atmospheric circulation, and the hydrologic cycle. The indirect links are via subduction, volcanism, the introduction of gasses into the atmosphere, and through erosion and consumption of atmospheric gases by chemical weathering. Rifting of continental blocks involves broad upwarping followed by subsidence of a central valley and uplift of marginal shoulders. The result is an evolving regional climate which has been repeated many times in the Phanerozoic: first a vapor-trapping arch, followed by a rift valley with fresh-water lakes, culminating in an arid rift bordered by mountains intercepting incoming precipitation. Convergence tectonics affects climate on a larger scale. A mountain range is a barrier to atmospheric circulation, especially if perpendicular to the circulation. It also traps water vapor converting latent to sensible heat. Broad uplift results in a shorter path for both incoming and outgoing radiation resulting in seasonal climate extremes with reversals of atmospheric pressure and enhanced monsoonal circulation. Volcanism affects climate by introducing ash and aerosols into the atmosphere, but unless these are injected into the stratosphere, they have little effect. Stratospheric injection is most likely to occur at high latitudes, where the thickness of the troposphere is minimal. Volcanoes introduce CO2, a greenhouse gas, into the atmosphere. Geochemical effects of tectonic uplift and unroofing relate to the weathering of silicate rocks, the means by which CO2 is removed from the atmosphere-ocean system on long-term time scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Springer
    In:  In: The South Atlantic: Present and Past Circulation. , ed. by Wefer, G., Berger, W. H., Siedler, G. and Webb, D. J. Springer, Berlin, Heidelberg, pp. 261-271. ISBN 3-540-62079-6
    Publication Date: 2020-04-02
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-30
    Description: High-resolution records of the natural radionuclide230Th were measured in sediments from the eastern Atlantic sector of the Antarctic circumpolar current to obtain a detailed reconstruction of the sedimentation history of this key area for global climate change during the late Quaternary. High-resolution dating rests on the assumption that the230Thex flux to the sediments is constant. Short periods of drastically increased sediment accumulation rates (up to a factor of 8) were determined in the sediments of the Antarctic zone during the climate optima at the beginning of the Holocene and the isotope stage 5e. By comparing expected and measured accumulation rate of230Thex, lateral sediment redistribution was quantified and vertical particle rain rates originating from the surface water above were calculated. We show that lateral contributions locally were up to 6.5 times higher than the vertical particle rain rates. At other locations only 15% of the expected vertical particle rain rate were deposited.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer
    In:  In: The South Atlantic: Present and Past Circulation. , ed. by Wefer, G., Berger, W. H., Siedler, G. and Webb, D. J. Springer, Berlin, Heidelberg, pp. 105-120. ISBN 3-540-62079-6
    Publication Date: 2020-04-03
    Description: Hydrographic data along 11°S occupied in 1983 by the R.V. OCEANUS are used together with various wind climatologies to estimate the annual average transport of heat at this latitude. Some motivation for expecting fairly well-defined estimates at this latitude compared to others comes from the absence of a strong western boundary current. Results include flow in four layers representing the thermocline, Antarctic Intermediate Water, North Atlantic Deep Water, and Antarctic Bottom Water, using zero velocity reference level choices based on property distributions. The annual average heat transport is estimated to be 0.6 ± 0.17 x 1015 W. Previous estimates of the transport at 8–16°S range from 0.2 PW to greater than 1 PW. Interannual variability from the wind field alone leads to interannual heat transport variability of about 0.05 PW. Comparisons with other recent studies at 45–30°S and 11°N are made.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...