ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-09-09
    Description: The identification and characterization of seismogenic structures in southwestern Sicily is an open debate both for the geological-structural complexity of this sector and the scarce seismicity as well. In addition, clear morphological evidence of tectonic structures is limited. Besides the geophysical methods, the study of the spatial distribution of soil CO2 flux is a valid methodology to investigate the position and geometry of buried active faults. Indeed, active tectonic structures are channels with high permeability through which deep fluids can migrate toward the atmosphere. Therefore, the alignment of high degassing areas can reveal the presence of preferential ways of rising fluids (i.e. faults). We applied this methodology in SW Sicily in the surrounding of the area hit by the 1968 seismic sequence and in three other areas where evidence of active deformation has been recognized. Furthermore, to investigate the origin of emitted fluids, we measured the carbon isotopic composition of the soil CO2 in some high emission sites. The results showed high spatial variability of soil CO2 fluxes with values ranging from 1 to 430 g m−2d−1. The areal patterns of soil CO2 fluxes in all the areas reveal a strong influence of the main tectonic structures and active deformations on soil CO2 emissions. The range of isotopic data and the distribution of soil CO2 fluxes suggest a supply of deep fluids through the active tectonic structures.
    Description: Published
    Description: SE104
    Description: 2T. Deformazione crostale attiva
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Soil CO2 flux ; Diffusive degassing structures (DDS) ; Active tectonic structures ; Belice Valley ; 04. Solid Earth ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-21
    Description: The Italian Present-day Stress Indicators (IPSI) database is a freely available Italian georeferenced repository of information regarding the crustal stress field. It consists of horizontal stress orientations that have been analysed, compiled in a standardised format and quality-ranked for reliability and comparability on a global scale. The database contains a collection of information regarding contemporary stress within the shallow crust from the following main stress-indicator categories: borehole breakouts; earthquake focal mechanisms; seismic sequences and active fault-slip data. The present database (IPSI 1.4) released in January 2020 is accessible through a web interface which facilitates findability, accessibility, interoperability and reusability of the dataset. Moreover, it contains 928 records updated up until December 2019 with an increase of 10% with respect to the first one, and improved metadata information. The uniform spread of stress data over a given territory is relevant for earth crustal modelling or as starting point in many applied studies. It is therefore necessary to continue collecting new data and update present-day stress maps to obtain more reliable evaluations.
    Description: Published
    Description: id 298
    Description: 2T. Deformazione crostale attiva
    Description: 4IT. Banche dati
    Description: JCR Journal
    Keywords: present-day stress ; crustal stress ; borehole breakout ; earthquake focal mechanism ; active fault ; 04.07. Tectonophysics ; 04.04. Geology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-04
    Description: Following the 2004 seismic unrest at Tenerife and the 2011–2012 submarine eruption at El Hierro, the number of Global Navigation Satellite System (GNSS) observation sites in the Canary Islands (Spain) has increased, offering scientists a useful tool with which to infer the kinematics and present-day surface deformation of the Canary sector of the Atlantic Ocean. We take advantage of the common-mode component filtering technique to improve the signal-to-noise ratio of the velocities retrieved from the daily solutions of 18 permanent GNSS stations distributed in the Canaries. The analysis of GNSS time series spanning the period 2011–2017 enabled us to characterize major regions of deformation along the archipelago through the mapping of the 2D infinitesimal strain field. By applying the triangular segmentation approach to GNSS velocities, we unveil a variable kinematic behaviour within the islands. The retrieved extension pattern shows areas of maximum deformation west of Tenerife, Gran Canaria and Fuerteventura. For the submarine main seismogenic fault between Tenerife and Gran Canaria, we simulated the horizontal deformation and strain due to one of the strongest (mbLg 5.2) earthquakes of the region. The seismic areas between islands, mainly offshore Tenerife and Gran Canaria, seem mainly influenced by the regional tectonic stress, not the local volcanic activity. In addition, the analysis of the maximum shear strain confirms that the regional stress field influences the E–W and NE–SW tectonic lineaments, which, in accordance with the extensional and compressional tectonic regimes identified, might favour episodes of volcanism in the Canary Islands.
    Description: Published
    Description: 3297
    Description: 2T. Deformazione crostale attiva
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: GNSS time series ; kinematics and ground deformation ; Canary Islands ; 04.02. Exploration geophysics ; 04.03. Geodesy ; 04.07. Tectonophysics ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-19
    Description: To unravel how and where coseismic and interseismic deformation impacts the spatial and temporal patterns of rock uplift of the Lurestan sector of the Zagros Mountains, we performed an investigation of the large‐scale features of topography and river network coupled with 2‐D finite element modeling. Geomorphological analysis and constraints from parameters such as elevation, local relief, normalized channel steepness index (ksn), river longitudinal profiles, and transformed river profiles (chi plots) were used to unravel the time‐space distribution of vertical motions. Whereas the much longer timescale over which topography grows and/or rivers respond to tectonic or climatic perturbations with respect to even multiple seismic cycles, the outputs of the finite element model yield fundamental information on the source of the late part of the spatiotemporal evolution of surface uplift recorded by the geomorphology. Model outputs shed new light into the processes controlling relief evolution in an actively growing mountain belt underlain by a major blind thrust. The outputs illustrate how coseismic slip controls localized uplift of a prominent topographic feature—the Mountain Front Flexure—located above the main upper crustal ramp of the principal basement thrust fault of the region, while continuous displacement along the deeper, aseismic portion of the same basement fault controls generalized uplift of the whole crustal block located farther to the NE, in the interior of the orogen.
    Description: Published
    Description: e2020TC006402
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Morphotectonic analysis ; Finite element modeling ; interseismic deformation ; coseismic deformation ; frontal topographic feature ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier B.V.
    Publication Date: 2021-02-01
    Description: In supervised classification, we search criteria allowing us to decide whether a sample belongs to a certain class of patterns. The identification of such decision functions is based on examples where we know a priori to which class they belong. The distinction of seismic signals, produced from earthquakes and nuclear explosions, is a classical problem of discrimination using classification with supervision. We move on from observed data—signals originating from known earthquakes and nuclear tests—and search for criteria on how to assign a class to a signal of unknown origin. We begin with Principal Component Analysis (PCA) and Fisher's Linear Discriminant Analysis (FLDA), identifying a linear element separating groups at best. PCA, FLDA, and likelihood-based approaches make use of statistical properties of the groups. Considering only the number of misclassified samples as a cost, we may prefer alternatives, such as the Multilayer Perceptrons (MLPs). The Support Vector Machines (SVMs) use a modified cost function, combining the criterion of the minimum number of misclassified samples with a request of separating the hulls of the groups with a margin as wide as possible. Both SVMs and MLPs overcome the limits of linear discrimination. A famous example for the advantages of the two techniques is the eXclusive OR (XOR) problem, where we wish to form classes of objects having the same parity—even, e.g., (0,0), (1,1) or odd, e.g., (0,1), (1,0). MLPs and SVMs offer effective methods for the identification of nonlinear decision functions, allowing us to resolve classification problems of any complexity provided the data set used during earning is sufficiently large. In Hidden Markov Models (HMMs), we consider observations where their meaning depends on their context. Observations form a causal chain generated by a hidden process. In Bayesian Networks (BNs) we represent conditional (in)dependencies between a set of random variables by a graphical model. In both HMMs and BNs, we aim at identifying models and parameters that explain observations with a highest possible degree of probability.
    Description: Published
    Description: 33-85
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; supervised learning ; Support Vector Machines ; Multilayer Perceptrons ; Hidden Markov Models ; Bayesian Networks ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-01
    Description: Patterns and objects are described by a variety of characteristics, namely features and feature vectors. Features can be numerical, ordinal, and categorical. Patterns can be made up of a number of objects, such as in speech processing. In geophysics, numerical features are the most common ones and we focus on those. The choice of appropriate features requires a priori reasoning about the physical relation between patterns and features. We present strategies for feature identification and procedures suitable for pattern recognition. In time series analysis and image processing, the direct use of raw data is not feasible. Procedures of feature extraction, based on locally encountered characteristics of the data, are applied. Here we present the problem of delineating segments of interest in time series and textures in image processing. In transformations, we “translate” our raw data to a form suitable for learning. In Principal Component Analysis, we rotate the original features to a system of uncorrelated variables, limiting redundancy. Independent Component Analysis follows a similar strategy, transforming our data into variables independent of each other. Fourier transform and wavelet transform are based on the representation of the original data as a series of basis functions—sines and cosines or finite-length wavelets. Redundancy reduction is achieved considering the contributions of the single basis functions. Even though a large number of features help to solve a classification problem, feature vectors with high dimensions pose severe problems. Besides the computational burden, we encounter problems known under the term “curse of dimensionality.” The curse of dimensionality entails the necessity of feature selection and reduction, which includes a priori considerations as well as redundancy reduction. The significance of features may be evaluated with tests, such as Student’s t or Hotelling's T2, and, in more complex problems, with cross-validation methods.
    Description: Published
    Description: 3-13
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; objects ; features ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-26
    Description: In this study we combine seismological and GOCE satellite gravity information by using a Bayesian-like technique, with the aim of inferring the density structure of the Pacific (90°N 90°S) (121°E 60°W) lithosphere and upper mantle. We recover a 1° × 1° 3-D density model, down to 300 km depth, which explains gravity observations with a variance reduction of 67.41%. The model, with an associated a posteriori standard deviation, provides a significant contribution to understanding the evolution of the Pacific lithosphere and answers to some debated geodynamic questions. Our methodology enables us to combine the recovery of density parameters with the optimum density-vSV scalings. The latter account for both seismological and gravity observations in order to identify the regions characterized by chemically-induced density heterogeneities which add to the thermally-induced anoma- lies. Chemically-modified structures are found west of the East Pacific Rise (EPR) and are of relevant amplitude both below the north-western side of the Pacific Plate, at the base of the lithosphere, and up to 100 km depth beneath the Hawaiian and Super Swell regions, thus explaining the anomalous shallow regions without invoking the thermal buoyancy as the sole justification. Coherently with the chemically modified structures, our results a) support a lighter and more buoyant lithosphere than that predicted by the cooling models and b) are in favor of the hypothesized crustal underplating beneath the Hawaiian chain and be- neath the volcanic units in the southern branch of the Super Swell region. The comparison between calculated mantle gravity residuals and residual topography a) suggests a lateral viscosity growth associated with the increasing thickness and density of the Plate and b) correlates well with sub-lithospheric mantle flow from the EPR towards west, up to the Kermadec and Tonga Trench in the south and the Kuril-Kamchatka Trench in the north.
    Description: Published
    Description: 101-115
    Description: 7T. Struttura della Terra e geodinamica
    Description: JCR Journal
    Keywords: Pacific lithosphere ; GOCE ; Satellite gravity ; Seismological observations ; Residual Topography ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-08
    Description: The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH 〉5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH 〉3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH 〉1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning.
    Description: The NEAMTHM18 was prepared in the framework of the European Project TSUMAPS-NEAM (http://www.tsumaps-neam.eu/) funded by the mechanism of the European Civil Protection and Humanitarian Aid Operations with grant no. ECHO/SUB/2015/718568/PREV26 (https://ec.europa.eu/echo/funding-evaluations/financing-civil-protection-europe/selected-projects/probabilistic-tsunami-hazard_en). The work by INGV authors also benefitted from funding by the INGV-DPC Agreement 2012-2021 (Annex B2).
    Description: Published
    Description: 616594
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Description: 3SR TERREMOTI - Attività dei Centri
    Description: 5SR TERREMOTI - Convenzioni derivanti dall'Accordo Quadro decennale INGV-DPC
    Description: 3IT. Calcolo scientifico
    Description: 4IT. Banche dati
    Description: JCR Journal
    Keywords: probabilistic tsunami hazard assessment ; earthquake-generated tsunami ; hazard uncertainty analysis ; ensemble modeling ; maximum inundation height ; NEAM ; 05.08. Risk ; 03.02. Hydrology ; 04.06. Seismology ; 04.07. Tectonophysics ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-07-13
    Description: The millimetre accuracy of Synthetic Aperture Radar (SAR) measurements and related multi-temporal data analyses provide fundamental information on surface displacements caused by strong earthquakes. The multi-temporal analysis of SAR interferometry data allows for the geometry, kinematics and temporal behaviour of earthquake-generating faults to be better constrained, and is being acknowledged as a promising technique in the field of earthquake precursors. We used SAR data obtained by multi-temporal interferometric techniques such as Permanent Scatterers (PS) interferometry for the investigation of pre- to post-seismic ground displacements in the region struck by theMw 6.3, 2009 L’Aquila earthquake.We analysed Europen Remote Sensing (ERS) and Envisat PS-datasets from ascending and descending orbits, and COSMO-SkyMed PS-datasets from descending orbit, collectively covering a 〉 20 year long time span. On a yearly scale, a reversal of motions that affected the hanging-wall and footwall blocks of the earthquake-generating fault is detected. In particular, the hanging-wall block is characterized by pre-seismic uplift – which we document as being independent of any hydrological control – and eastward horizontal motion for about six years, followed by subsidence and westward motion (starting six to eight months prior to the earthquake). We suggest that such a ground displacement pattern may represent an earthquake precursor signal.
    Description: Published
    Description: jgs2020-016
    Description: 2T. Deformazione crostale attiva
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Keywords: PsInSAR ; Earthquake Precursor ; L'Aquila earthquake ; Ground displacement ; 04.07. Tectonophysics ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-09-07
    Description: While mantle convection is a fundamental ingredient of geodynamics, the driving mechanism of plate tectonics remains elusive. Are plates driven only from the thermal cooling of the mantle or are there further astronomical forces acting on them? GPS measurements are now accurate enough that, on long baselines, both secular plate motions and periodic tidal displacements are visible. The now 〉20 year-long space geodesy record of plate motions allows a more accurate analysis of the contribution of the horizontal component of the body tide in shifting the lithosphere. We review the data and show that lithospheric plates retain a non-zero horizontal component of the solid Earth tidal waves and their speed correlates with tidal harmonics. High-frequency semidiurnal Earth's tides are likely contributing to plate motions, but their residuals are still within the error of the present accuracy of GNSS data. The low-frequency body tides rather show horizontal residuals equal to the relative motion among plates, proving the astronomical input on plate dynamics. Plates move faster with nu- tation cyclicities of 8.8 and 18.6 years that correlate to lunar apsides migration and nodal precession. The high- frequency body tides are mostly buffered by the high viscosity of the lithosphere and the underlying mantle, whereas low-frequency horizontal tidal oscillations are compatible with the relaxation time of the low-velocity zone and can westerly drag the lithosphere over the asthenospheric mantle. Variable angular velocities among plates are controlled by the viscosity anisotropies in the decoupling layer within the low-velocity zone. Tidal oscillations also correlate with the seismic release.
    Description: Published
    Description: 103179
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Body tide ; Plate tectonics ; Geeodynamics ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...