ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (24,415)
  • Oxford University Press  (24,415)
  • Human Molecular Genetics  (2,354)
  • Molecular Biology and Evolution  (1,655)
  • 6974
  • 512
  • 1
    Publication Date: 2015-08-07
    Description: Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by brain atrophy particularly in striatum leading to personality changes, chorea and dementia. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase in the crossroad of many signaling pathways that is highly pleiotropic as it phosphorylates more than hundred substrates including structural, metabolic, and signaling proteins. Increased GSK-3 activity is believed to contribute to the pathogenesis of neurodegenerative diseases like Alzheimer's disease and GSK-3 inhibitors have been postulated as therapeutic agents for neurodegeneration. Regarding HD, GSK-3 inhibitors have shown beneficial effects in cell and invertebrate animal models but no evident efficacy in mouse models. Intriguingly, those studies were performed without interrogating GSK-3 level and activity in HD brain. Here we aim to explore the level and also the enzymatic activity of GSK-3 in the striatum and other less affected brain regions of HD patients and of the R6/1 mouse model to then elucidate the possible contribution of its alteration to HD pathogenesis by genetic manipulation in mice. We report a dramatic decrease in GSK-3 levels and activity in striatum and cortex of HD patients with similar results in the mouse model. Correction of the GSK-3 deficit in HD mice, by combining with transgenic mice with conditional GSK-3 expression, resulted in amelioration of their brain atrophy and behavioral motor and learning deficits. Thus, our results demonstrate that decreased brain GSK-3 contributes to HD neurological phenotype and open new therapeutic opportunities based on increasing GSK-3 activity or attenuating the harmful consequences of its decrease.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-07
    Description: Spinocerebellar ataxia type 6 (SCA6) is dominantly inherited neurodegenerative disease, caused by an expansion of CAG repeat encoding a polyglutamine (PolyQ) tract in the Ca v 2.1 voltage-gated calcium channel. Its key pathological features include selective degeneration of the cerebellar Purkinje cells (PCs), a common target for PolyQ-induced toxicity in various SCAs. Mutant Ca v 2.1 confers toxicity primarily through a toxic gain-of-function mechanism; however, its molecular basis remains elusive. Here, we studied the cerebellar gene expression patterns of young Sca6 -MPI 118Q/118Q knockin (KI) mice, which expressed mutant Ca v 2.1 from an endogenous locus and recapitulated many phenotypic features of human SCA6. Transcriptional signatures in the MPI 118Q/118Q mice were distinct from those in the Sca1 154Q/2Q mice, a faithful SCA1 KI mouse model. Temporal expression profiles of the candidate genes revealed that the up-regulation of genes associated with microglial activation was initiated before PC degeneration and was augmented as the disease progressed. Histological analysis of the MPI 118Q/118Q cerebellum showed the predominance of M1-like pro-inflammatory microglia and it was concomitant with elevated expression levels of tumor necrosis factor, interleukin-6, Toll-like receptor (TLR) 2 and 7. Genetic ablation of MyD88, a major adaptor protein conveying TLR signaling, altered expression patterns of M1/M2 microglial phenotypic markers in the MPI 118Q/118Q cerebellum. More importantly, it ameliorated PC loss and partially rescued motor impairments in the early disease phase. These results suggest that early neuroinflammatory response may play an important role in the pathogenesis of SCA6 and its modulation could pave the way for slowing the disease progression during the early stage of the disease.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-20
    Description: Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, new families of spliceosomal introns that are repeated hundreds of times in individual genomes have recently been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence–absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting that their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture ( Micromonas Clade E2) isolated from a polar region where abundance of this alga is increasing due to climate induced changes. The same two families were detected in metagenomic data from Antarctica—a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our research illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation, and global distribution of this sentinel marine alga.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-20
    Description: Cellular Ca 2+ homeostasis is tightly regulated and is pivotal to life. Inositol 1,4,5-trisphosphate receptors (IP 3 Rs) and ryanodine receptors (RyRs) are the major ion channels that regulate Ca 2+ release from intracellular stores. Although these channels have been extensively investigated in multicellular organisms, an appreciation of their evolution and the biology of orthologs in unicellular organisms is largely lacking. Extensive phylogenetic analyses reveal that the IP 3 R gene superfamily is ancient and diverged into two subfamilies, IP 3 R-A and IP 3 R-B/RyR, at the dawn of Opisthokonta. IP 3 R-B/RyR further diversified into IP 3 R-B and RyR at the stem of Filozoa. Subsequent evolution and speciation of Holozoa is associated with duplication of IP 3 R-A and RyR genes, and loss of IP 3 R-B in the vertebrate lineages. To gain insight into the properties of IP 3 R important for the challenges of multicellularity, the IP 3 R-A and IP 3 R-B family orthologs were cloned from Capsaspora owczarzaki, a close unicellular relative to Metazoa (designated as CO.IP 3 R-A and CO.IP 3 R-B). Both proteins were targeted to the endoplasmic reticulum. However, CO.IP 3 R-A, but strikingly not CO.IP 3 R-B, bound IP 3 , exhibited robust Ca 2+ release activity and associated with mammalian IP 3 Rs. These data indicate strongly that CO.IP 3 R-A as an exemplar of ancestral IP 3 R-A orthologs forms bona fide IP 3 -gated channels. Notably, however, CO.IP 3 R-A appears not to be regulated by Ca 2+ , ATP or Protein kinase A-phosphorylation. Collectively, our findings explore the origin, conservation, and diversification of IP 3 R gene families and provide insight into the functionality of ancestral IP 3 Rs and the added specialization of these proteins in Metazoa.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-20
    Description: Marriage rules, the community prescriptions that dictate who an individual can or cannot marry, are extremely diverse and universally present in traditional societies. A major focus of research in the early decades of modern anthropology, marriage rules impose social and economic forces that help structure societies and forge connections between them. However, in those early anthropological studies, the biological benefits or disadvantages of marriage rules could not be determined. We revisit this question by applying a novel simulation framework and genome-wide data to explore the effects of Asymmetric Prescriptive Alliance, an elaborate set of marriage rules that has been a focus of research for many anthropologists. Simulations show that strict adherence to these marriage rules reduces genetic diversity on the autosomes, X chromosome and mitochondrial DNA, but relaxed compliance produces genetic diversity similar to random mating. Genome-wide data from the Indonesian community of Rindi, one of the early study populations for Asymmetric Prescriptive Alliance, are more consistent with relaxed compliance than strict adherence. We therefore suggest that, in practice, marriage rules are treated with sufficient flexibility to allow social connectivity without significant degradation of biological diversity.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-20
    Description: The environment has profound effects on the expression of many traits and reaction norms describe the expression dynamics of a trait across a broad range of environmental conditions. Here, we analyze gene expression in Drosophila melanogaster across four different developmental temperatures (13–29 °C). Gene expression is highly plastic with 83.3% of the genes being differentially expressed. We distinguished three components of plasticity: 1) Dynamics of gene expression intensity (sum of change), 2) direction of change, and 3) curvature of the reaction norm (linear vs. quadratic). Studying their regulatory architecture we found that all three plasticity components were most strongly affected by the number of different transcription factors (TFs) binding to the target gene. More TFs were found in genes with less expression changes across temperatures. Although the effect of microRNAs was weaker, we consistently noted a trend in the opposite direction. The most plastic genes were regulated by fewer TFs and more microRNAs than less plastic genes. Different patterns of plasticity were also reflected by their functional characterization based on gene ontology. Our results suggest that reaction norms provide an important key to understand the functional requirements of natural populations exposed to variable environmental conditions.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-20
    Description: Recent advances in paleogenomic technologies have enabled an increasingly detailed understanding of the evolutionary relationships of now-extinct mammalian taxa. However, a number of enigmatic Quaternary species have never been characterized with molecular data, often because available fossils are rare or are found in environments that are not optimal for DNA preservation. Here, we analyze paleogenomic data extracted from bones attributed to the late Pleistocene western camel, Camelops cf. hesternus, a species that was distributed across central and western North America until its extinction approximately 13,000 years ago. Despite a modal sequence length of only around 35 base pairs, we reconstructed high-coverage complete mitochondrial genomes and low-coverage partial nuclear genomes for each specimen. We find that Camelops is sister to African and Asian bactrian and dromedary camels, to the exclusion of South American camelids (llamas, guanacos, alpacas, and vicuñas). These results contradict previous morphology-based phylogenetic models for Camelops , which suggest instead a closer relationship between Camelops and the South American camelids. The molecular data imply a Late Miocene divergence of the Camelops clade from lineages that separately gave rise to the extant camels of Eurasia. Our results demonstrate the increasing capacity of modern paleogenomic methods to resolve evolutionary relationships among distantly related lineages.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-20
    Description: Recent developments in the analysis of amino acid covariation are leading to breakthroughs in protein structure prediction, protein design, and prediction of the interactome. It is assumed that observed patterns of covariation are caused by molecular coevolution, where substitutions at one site affect the evolutionary forces acting at neighboring sites. Our theoretical and empirical results cast doubt on this assumption. We demonstrate that the strongest coevolutionary signal is a decrease in evolutionary rate and that unfeasibly long times are required to produce coordinated substitutions. We find that covarying substitutions are mostly found on different branches of the phylogenetic tree, indicating that they are independent events that may or may not be attributable to coevolution. These observations undermine the hypothesis that molecular coevolution is the primary cause of the covariation signal. In contrast, we find that the pairs of residues with the strongest covariation signal tend to have low evolutionary rates, and that it is this low rate that gives rise to the covariation signal. Slowly evolving residue pairs are disproportionately located in the protein’s core, which explains covariation methods’ ability to detect pairs of residues that are close in three dimensions. These observations lead us to propose the "coevolution paradox": The strength of coevolution required to cause coordinated changes means the evolutionary rate is so low that such changes are highly unlikely to occur. As modern covariation methods may lead to breakthroughs in structural genomics, it is critical to recognize their biases and limitations.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-20
    Description: We present a modified GPU (graphics processing unit) version of MrBayes, called ta(MC) 3 (GPU MrBayes V3.1), for Bayesian phylogenetic inference on protein data sets. Our main contributions are 1) utilizing 64-bit variables, thereby enabling ta(MC) 3 to process larger data sets than MrBayes; and 2) to use Kahan summation to improve accuracy, convergence rates, and consequently runtime. Versus the current fastest software, we achieve a speedup of up to around 2.5 (and up to around 90 vs. serial MrBayes), and more on multi-GPU hardware. GPU MrBayes V3.1 is available from http://sourceforge.net/projects/mrbayes-gpu/ .
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-20
    Description: Understanding the genetic and molecular bases of the ability to distinguish self from nonself (allorecognition) and mechanisms underlying evolution of allorecognition systems is an important endeavor for understanding cases where it becomes dysfunctional, such as in autoimmune disorders. In filamentous fungi, allorecognition can result in vegetative or heterokaryon incompatibility, which is a type of programmed cell death that occurs following fusion of genetically different cells. Allorecognition is genetically controlled by het loci, with coexpression of any combination of incompatible alleles triggering vegetative incompatibility. Herein, we identified, characterized, and inferred the evolutionary history of candidate het loci in the filamentous fungus Neurospora crassa . As characterized het loci encode proteins carrying an HET domain, we annotated HET domain genes in 25 isolates from a natural population along with the N. crassa reference genome using resequencing data. Because allorecognition systems can be affected by frequency-dependent selection favoring rare alleles (i.e., balancing selection), we mined resequencing data for HET domain loci whose alleles displayed elevated levels of variability, excess of intermediate frequency alleles, and deep gene genealogies. From these analyses, 34 HET domain loci were identified as likely to be under balancing selection. Using transformation, incompatibility assays and genetic analyses, we determined that one of these candidates functioned as a het locus ( het-e ). The het-e locus has three divergent allelic groups that showed signatures of positive selection, intra- and intergroup recombination, and trans-species polymorphism. Our findings represent a compelling case of balancing selection functioning on multiple alleles across multiple loci potentially involved in allorecognition.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-08-20
    Description: Scoring the impact of noncoding variation on the function of cis -regulatory regions, on their chromatin state, and on the qualitative and quantitative expression levels of target genes is a fundamental problem in evolutionary genomics. A particular challenge is how to model the divergence of quantitative traits and to identify relationships between the changes across the different levels of the genome, the chromatin activity landscape, and the transcriptome. Here, we examine the use of the Ornstein–Uhlenbeck (OU) model to infer selection at the level of predicted cis -regulatory modules (CRMs), and link these with changes in transcription factor binding and chromatin activity. Using publicly available cross-species ChIP-Seq and STARR-Seq data we show how OU can be applied genome-wide to identify candidate transcription factors for which binding site and CRM turnover is correlated with changes in regulatory activity. Next, we profile open chromatin in the developing eye across three Drosophila species. We identify the recognition motifs of the chromatin remodelers, Trithorax-like and Grainyhead as mostly correlating with species-specific changes in open chromatin. In conclusion, we show in this study that CRM scores can be used as quantitative traits and that motif discovery approaches can be extended towards more complex models of divergence.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-08-20
    Description: How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causal genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1 , a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-08-20
    Description: Species tree reconstruction has been a subject of substantial research due to its central role across biology and medicine. A species tree is often reconstructed using a set of gene trees or by directly using sequence data. In either of these cases, one of the main confounding phenomena is the discordance between a species tree and a gene tree due to evolutionary events such as duplications and losses. Probabilistic methods can resolve the discordance by coestimating gene trees and the species tree but this approach poses a scalability problem for larger data sets. We present MixTreEM-DLRS: A two-phase approach for reconstructing a species tree in the presence of gene duplications and losses. In the first phase, MixTreEM, a novel structural expectation maximization algorithm based on a mixture model is used to reconstruct a set of candidate species trees, given sequence data for monocopy gene families from the genomes under study. In the second phase, PrIME-DLRS, a method based on the DLRS model (Åkerborg O, Sennblad B, Arvestad L, Lagergren J. 2009. Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc Natl Acad Sci U S A. 106(14):5714–5719), is used for selecting the best species tree. PrIME-DLRS can handle multicopy gene families since DLRS, apart from modeling sequence evolution, models gene duplication and loss using a gene evolution model (Arvestad L, Lagergren J, Sennblad B. 2009. The gene evolution model and computing its associated probabilities. J ACM. 56(2):1–44). We evaluate MixTreEM-DLRS using synthetic and biological data, and compare its performance with a recent genome-scale species tree reconstruction method PHYLDOG ( Boussau B, Szöllősi GJ, Duret L, Gouy M, Tannier E, Daubin V. 2013 . Genome-scale coestimation of species and gene trees. Genome Res. 23(2):323–330) as well as with a fast parsimony-based algorithm Duptree (Wehe A, Bansal MS, Burleigh JG, Eulenstein O. 2008. Duptree: a program for large-scale phylogenetic analyses using gene tree parsimony. Bioinformatics 24(13):1540–1541). Our method is competitive with PHYLDOG in terms of accuracy and runs significantly faster and our method outperforms Duptree in accuracy. The analysis constituted by MixTreEM without DLRS may also be used for selecting the target species tree, yielding a fast and yet accurate algorithm for larger data sets. MixTreEM is freely available at http://prime.scilifelab.se/mixtreem/ .
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-08-20
    Description: Contrasting with birds and mammals, poikilothermic vertebrates often have homomorphic sex chromosomes, possibly resulting from high rates of sex-chromosome turnovers and/or occasional X–Y recombination. Strong support for the latter mechanism was provided by four species of European tree frogs, which inherited from a common ancestor (~5 Ma) the same pair of homomorphic sex chromosomes (linkage group 1, LG1), harboring the candidate sex-determining gene Dmrt1. Here, we test sex linkage of LG1 across six additional species of the Eurasian Hyla radiation with divergence times ranging from 6 to 40 Ma. LG1 turns out to be sex linked in six of nine resolved cases. Mapping the patterns of sex linkage to the Hyla phylogeny reveals several transitions in sex-determination systems within the last 10 My, including one switch in heterogamety. Phylogenetic trees of DNA sequences along LG1 are consistent with occasional X–Y recombination in all species where LG1 is sex linked. These patterns argue against one of the main potential causes for turnovers, namely the accumulation of deleterious mutations on nonrecombining chromosomes. Sibship analyses show that LG1 recombination is strongly reduced in males from most species investigated, including some in which it is autosomal. Intrinsically low male recombination might facilitate the evolution of male heterogamety, and the presence of important genes from the sex-determination cascade might predispose LG1 to become a sex chromosome.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-20
    Description: Environmental control of flowering allows plant reproduction to occur under optimal conditions and facilitates adaptation to different locations. At high latitude, flowering of many plants is controlled by seasonal changes in day length. The photoperiodic flowering pathway confers this response in the Brassicaceae, which colonized temperate latitudes after divergence from the Cleomaceae, their subtropical sister family. The CONSTANS (CO) transcription factor of Arabidopsis thaliana , a member of the Brassicaceae, is central to the photoperiodic flowering response and shows characteristic patterns of transcription required for day-length sensing. CO is believed to be widely conserved among flowering plants; however, we show that it arose after gene duplication at the root of the Brassicaceae followed by divergence of transcriptional regulation and protein function. CO has two close homologs, CONSTANS-LIKE1 ( COL1 ) and COL2 , which are related to CO by tandem duplication and whole-genome duplication, respectively. The single CO homolog present in the Cleomaceae shows transcriptional and functional features similar to those of COL1 and COL2 , suggesting that these were ancestral. We detect cis -regulatory and codon changes characteristic of CO and use transgenic assays to demonstrate their significance in the day-length-dependent activation of the CO target gene FLOWERING LOCUS T. Thus, the function of CO as a potent photoperiodic flowering switch evolved in the Brassicaceae after gene duplication. The origin of CO may have contributed to the range expansion of the Brassicaceae and suggests that in other families CO genes involved in photoperiodic flowering arose by convergent evolution.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-20
    Description: The high regulatory complexity of vertebrates has been related to two rounds of whole genome duplication (2R-WGD) that occurred before the divergence of the major vertebrate groups. Following these events, many developmental transcription factors (TFs) were retained in multiple copies and subsequently specialized in diverse functions, whereas others reverted to their singleton state. TFs are known to be generally rich in amino acid repeats or low-complexity regions (LCRs), such as polyalanine or polyglutamine runs, which can evolve rapidly and potentially influence the transcriptional activity of the protein. Here we test the hypothesis that LCRs have played a major role in the diversification of TF gene duplicates. We find that nearly half of the TF gene families originated during the 2R-WGD contains LCRs. The number of gene duplicates with LCRs is 155 out of 550 analyzed (28%), about twice as many as the number of single copy genes with LCRs (15 out of 115, 13%). In addition, duplicated TFs preferentially accumulate certain LCR types, the most prominent of which are alanine repeats. We experimentally test the role of alanine-rich LCRs in two different TF gene families, PHOX2A/PHOX2B and LHX2/LHX9. In both cases, the presence of the alanine-rich LCR in one of the copies (PHOX2B and LHX2) significantly increases the capacity of the TF to activate transcription. Taken together, the results provide strong evidence that LCRs are important driving forces of evolutionary change in duplicated genes.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-20
    Description: Studies of species with continental distributions continue to identify intraspecific lineages despite continuous habitat. Lineages may form due to isolation by distance, adaptation, divergence across barriers, or genetic drift following range expansion. We investigated lineage diversification and admixture within American black bears ( Ursus americanus ) across their range using 22 k single nucleotide polymorphisms and mitochondrial DNA sequences. We identified three subcontinental nuclear clusters which we further divided into nine geographic regions: Alaskan (Alaska-East), eastern (Central Interior Highlands, Great Lakes, Northeast, Southeast), and western (Alaska-West, West, Pacific Coast, Southwest). We estimated that the western cluster diverged 67 ka, before eastern and Alaskan divergence 31 ka; these divergence dates contrasted with those from the mitochondrial genome where clades A and B diverged 1.07 Ma, and clades A-east and A-west diverged 169 ka. We combined estimates of divergence timing with hindcast species distribution models to infer glacial refugia for the species in Beringia, Pacific Northwest, Southwest, and Southeast. Our results show a complex arrangement of admixture due to expansion out of multiple refugia. The delineation of the genomic population clusters was inconsistent with the ranges for 16 previously described subspecies. Ranges for U. a. pugnax and U. a. cinnamomum were concordant with admixed clusters, calling into question how to order taxa below the species level. Additionally, our finding that U. a. floridanus has not diverged from U. a. americanus also suggests that morphology and genetics should be reanalyzed to assess taxonomic designations relevant to the conservation management of the species.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-20
    Description: Deinococcus bacteria are extremely resistant to radiation, oxidation, and desiccation. Resilience to these factors has been suggested to be due to enhanced damage prevention and repair mechanisms, as well as highly efficient antioxidant protection systems. Here, using mutation-accumulation experiments, we find that the GC-rich Deinococcus radiodurans has an overall background genomic mutation rate similar to that of E. coli , but differs in mutation spectrum, with the A/T to G/C mutation rate (based on a total count of 88 A:T-〉G:C transitions and 82 A:T-〉C:G transversions) per site per generation higher than that in the other direction (based on a total count of 157 G:C-〉A:T transitions and 33 G:C-〉T:A transversions). We propose that this unique spectrum is shaped mainly by the abundant uracil DNA glycosylases reducing G:C-〉A:T transitions, adenine methylation elevating A:T-〉C:G transversions, and absence of cytosine methylation decreasing G:C-〉A:T transitions. As opposed to the greater than 100 x elevation of the mutation rate in MMR – (DNA Mismatch Repair deficient) strains of most other organisms, MMR – D. radiodurans only exhibits a 4-fold elevation, raising the possibility that other DNA repair mechanisms compensate for a relatively low-efficiency DNA MMR pathway. As D. radiodurans has plentiful insertion sequence (IS) elements in the genome and the activities of IS elements are rarely directly explored, we also estimated the insertion (transposition) rate of the IS elements to be 2.50 x 10 –3 per genome per generation in the wild-type strain; knocking out MMR did not elevate the IS element insertion rate in this organism.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-08-20
    Description: Because mating systems affect population genetics and ecology, they are expected to impact the molecular evolution of species. Self-fertilizing species experience reduced effective population size, recombination rates, and heterozygosity, which in turn should decrease the efficacy of natural selection, both adaptive and purifying, and the strength of meiotic drive processes such as GC-biased gene conversion. The empirical evidence is only partly congruent with these predictions, depending on the analyzed species, some, but not all, of the expected effects have been observed. One possible reason is that self-fertilization is an evolutionary dead-end, so that most current selfers recently evolved self-fertilization, and their genome has not yet been strongly impacted by selfing. Here, we investigate the molecular evolution of two groups of freshwater snails in which mating systems have likely been stable for several millions of years. Analyzing coding sequence polymorphism, divergence, and expression levels, we report a strongly reduced genetic diversity, decreased efficacy of purifying selection, slower rate of adaptive evolution, and weakened codon usage bias/GC-biased gene conversion in the selfer Galba compared with the outcrosser Physa , in full agreement with theoretical expectations. Our results demonstrate that self-fertilization, when effective in the long run, is a major driver of population genomic and molecular evolutionary processes. Despite the genomic effects of selfing, Galba truncatula seems to escape the demographic consequences of the genetic load. We suggest that the particular ecology of the species may buffer the negative consequences of selfing, shedding new light on the dead-end hypothesis.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-08-20
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-08-07
    Description: Adaptor proteins (AP 1–5) are heterotetrameric complexes that facilitate specialized cargo sorting in vesicular-mediated trafficking. Mutations in AP5Z1 , encoding a subunit of the AP-5 complex, have been reported to cause hereditary spastic paraplegia (HSP), although their impact at the cellular level has not been assessed. Here we characterize three independent fibroblast lines derived from skin biopsies of patients harbouring nonsense mutations in AP5Z1 and presenting with spastic paraplegia accompanied by neuropathy, parkinsonism and/or cognitive impairment. In all three patient-derived lines, we show that there is complete loss of AP-5 protein and a reduction in the associated AP-5 µ5 protein. Using ultrastructural analysis, we show that these patient-derived lines consistently exhibit abundant multilamellar structures that are positive for markers of endolysosomes and are filled with aberrant storage material organized as exaggerated multilamellar whorls, striated belts and ‘fingerprint bodies’. This phenotype can be replicated in a HeLa cell culture model by siRNA knockdown of AP-5 . The cellular phenotype bears striking resemblance to features described in a number of lysosomal storage diseases (LSDs). Collectively, these findings reveal an emerging picture of the role of AP-5 in endosomal and lysosomal homeostasis, illuminates a potential pathomechanism that is relevant to the role of AP-5 in neurons and expands the understanding of recessive HSPs. Moreover, the resulting accumulation of storage material in endolysosomes leads us to propose that AP-5 deficiency represents a new type of LSDs.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-08-07
    Description: Cleft palate is a common birth defect in humans. Therefore, understanding the molecular genetics of palate development is important from both scientific and medical perspectives. Lhx6 and Lhx8 encode LIM homeodomain transcription factors, and inactivation of both genes in mice resulted in profound craniofacial defects including cleft secondary palate. The initial outgrowth of the palate was severely impaired in the mutant embryos, due to decreased cell proliferation. Through genome-wide transcriptional profiling, we discovered that p57 Kip2 ( Cdkn1c ), encoding a cell cycle inhibitor, was up-regulated in the prospective palate of Lhx6 –/– ;Lhx8 –/– mutants. p57 Kip2 has been linked to Beckwith–Wiedemann syndrome and IMAGe syndrome in humans, which are developmental disorders with increased incidents of palate defects among the patients. To determine the molecular mechanism underlying the regulation of p57 Kip2 by the Lhx genes, we combined chromatin immunoprecipitation, in silico search for transcription factor-binding motifs, and in vitro reporter assays with putative cis-regulatory elements. The results of these experiments indicated that LHX6 and LHX8 regulated p57 Kip2 via both direct and indirect mechanisms, with the latter mediated by Forkhead box (FOX) family transcription factors. Together, our findings uncovered a novel connection between the initiation of palate development and a cell cycle inhibitor via LHX. We propose a model in which Lhx6 and Lhx8 negatively regulate p57 Kip2 expression in the prospective palate area to allow adequate levels of cell proliferation and thereby promote normal palate development. This is the first report elucidating a molecular genetic pathway downstream of Lhx in palate development.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-08-07
    Description: Keratoconus is a degenerative eye condition which results from thinning of the cornea and causes vision distortion. Treatments such as ultraviolet (UV) cross-linking have proved effective for management of keratoconus when performed in early stages of the disease. The central corneal thickness (CCT) is a highly heritable endophenotype of keratoconus, and it is estimated that up to 95% of its phenotypic variance is due to genetics. Genome-wide association efforts of CCT have identified common variants (i.e. minor allele frequency (MAF) 〉5%). However, these studies typically ignore the large set of exonic variants whose MAF is usually low. In this study, we performed a CCT exome-wide association analysis in a sample of 1029 individuals from a population-based study in Western Australia. We identified a genome-wide significant exonic variant rs121908120 ( P = 6.63 x 10 –10 ) in WNT10A . This gene is 437 kb from a gene previously associated with CCT ( USP37 ). We showed in a conditional analysis that the WNT10A variant completely accounts for the signal previously seen at USP37 . We replicated our finding in independent samples from the Brisbane Adolescent Twin Study, Twin Eye Study in Tasmania and the Rotterdam Study. Further, we genotyped rs121908120 in 621 keratoconus cases and compared the frequency to a sample of 1680 unscreened controls from the Queensland Twin Registry. We found that rs121908120 increases the risk of keratoconus two times (odds ratio 2.03, P = 5.41 x 10 –5 ).
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-08-07
    Description: Somatic cell cytokinesis was shown to involve the insertion of sphingolipids (SLs) to midbodies prior to abscission. Spermatogenic midbodies transform into stable intercellular bridges (ICBs) connecting clonal daughter cells in a syncytium. This process requires specialized SL structures. (1) Using high resolution-mass spectrometric imaging, we show in situ a biphasic pattern of SL synthesis with testis-specific anchors. This pattern correlates with and depends on ceramide synthase 3 (CerS3) localization in both, pachytene spermatocytes until completion of meiosis and elongating spermatids. (2) Blocking the pathways to germ cell-specific ceramides (CerS3-KO) and further to glycosphingolipids (glucosylceramide synthase-KO) in mice highlights the need for special SLs for spermatid ICB stability. In contrast to somatic mitosis these SLs require ultra-long polyunsaturated anchors with unique physico-chemical properties, which can only be provided by CerS3. Loss of these anchors causes enhanced apoptosis during meiosis, formation of multinuclear giant cells and spermatogenic arrest. Hence, testis-specific SLs, which we also link to CerS3 in human testis, are quintessential for male fertility.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-07
    Description: Therapy-responsive biomarkers are an important and unmet need in the muscular dystrophy field where new treatments are currently in clinical trials. By using a comprehensive high-resolution mass spectrometry approach and western blot validation, we found that two fragments of the myofibrillar structural protein myomesin-3 (MYOM3) are abnormally present in sera of Duchenne muscular dystrophy (DMD) patients, limb-girdle muscular dystrophy type 2D (LGMD2D) and their respective animal models. Levels of MYOM3 fragments were assayed in therapeutic model systems: (1) restoration of dystrophin expression by antisense oligonucleotide-mediated exon-skipping in mdx mice and (2) stable restoration of α-sarcoglycan expression in KO-SGCA mice by systemic injection of a viral vector. Following administration of the therapeutic agents MYOM3 was restored toward wild-type levels. In the LGMD model, where different doses of vector were used, MYOM3 restoration was dose-dependent. MYOM3 fragments showed lower inter-individual variability compared with the commonly used creatine kinase assay, and correlated better with the restoration of the dystrophin-associated protein complex and muscle force. These data suggest that the MYOM3 fragments hold promise for minimally invasive assessment of experimental therapies for DMD and other neuromuscular disorders.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-08-07
    Description: RNA interference (RNAi) offers a promising therapeutic approach for dominant genetic disorders that involve gain-of-function mechanisms. One candidate disease for RNAi therapy application is myotonic dystrophy type 1 (DM1), which results from toxicity of a mutant mRNA. DM1 is caused by expansion of a CTG repeat in the 3' UTR of the DMPK gene. The expression of DMPK mRNA containing an expanded CUG repeat (CUG exp ) leads to defects in RNA biogenesis and turnover. We designed miRNA-based RNAi hairpins to target the CUG exp mRNA in the human α-skeletal muscle actin long-repeat ( HSA LR ) mouse model of DM1. RNAi expression cassettes were delivered to HSA LR mice using recombinant adeno-associated viral (rAAV) vectors injected intravenously as a route to systemic gene therapy. Vector delivery significantly reduced disease pathology in muscles of the HSA LR mice, including a reduction in the CUG exp mRNA, a reduction in myotonic discharges, a shift toward adult pre-mRNA splicing patterns, reduced myofiber hypertrophy and a decrease in myonuclear foci containing the CUG exp mRNA. Significant reversal of hallmarks of DM1 in the rAAV RNAi-treated HSA LR mice indicate that defects characteristic of DM1 can be mitigated with a systemic RNAi approach targeting the nuclei of terminally differentiated myofibers. Efficient rAAV-mediated delivery of RNAi has the potential to provide a long-term therapy for DM1 and other dominant muscular dystrophies.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-06-09
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-06-09
    Description: The heart is a muscle with high energy demands. Hence, most patients with mitochondrial disease produced by defects in the oxidative phosphorylation (OXPHOS) system are susceptible to cardiac involvement. The presentation of mitochondrial cardiomyopathy includes hypertrophic, dilated and left ventricular noncompaction, but the molecular mechanisms involved in cardiac impairment are unknown. One of the most frequent OXPHOS defects in humans frequently associated with cardiomyopathy is cytochrome c oxidase (COX) deficiency caused by mutations in COX assembly factors such as Sco1 and Sco2. To investigate the molecular mechanisms that underlie the cardiomyopathy associated with Sco deficiency, we have heart specifically interfered scox expression, the single Drosophila Sco orthologue. Cardiac-specific knockdown of scox reduces fly lifespan, and it severely compromises heart function and structure, producing dilated cardiomyopathy. Cardiomyocytes with low levels of scox have a significant reduction in COX activity and they undergo a metabolic switch from OXPHOS to glycolysis, mimicking the clinical features found in patients harbouring Sco mutations. The major cardiac defects observed are produced by a significant increase in apoptosis, which is dp53-dependent. Genetic and molecular evidence strongly suggest that dp53 is directly involved in the development of the cardiomyopathy induced by scox deficiency. Remarkably, apoptosis is enhanced in the muscle and liver of Sco2 knock-out mice, clearly suggesting that cell death is a key feature of the COX deficiencies produced by mutations in Sco genes in humans.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Coetzee, S. G., Shen, H. C., Hazelett, D. J., Lawrenson, K., Kuchenbaecker, K., Tyrer, J., Rhie, S. K., Levanon, K., Karst, A., Drapkin, R., Ramus, S. J., The Ovarian Cancer Association Consortium, The Consortium of Investigators of Modifiers of BRCA1/2, Couch, F. J., Offit, K., Chenevix-Trench, G., Monteiro, A. N. A., Antoniou, A., Freedman, M., Coetzee, G. A., Pharoah, P. D. P., Noushmehr, H., Gayther, S. A., The Ovarian Cancer Association Consortium, The Consortium of Investigators of Modifiers of BRCA1/2, Tyrer, Anton-Culver, Antonenkova, Baker, Bandera, Bean, Beckmann, Berchuck, Bisogna, Bjorge, Bogdanova, Brinton, Brooks-Wilson, Bruinsma, Butzow, Campbell, Carty, Chang-Claude, Chen, Chen, Cook, Cramer, Cunningham, Cybulski, Dansonka-Mieszkowska, Dennis, Dicks, Doherty, Dork, Bois, Durst, Eccles, Easton, Edwards, Eilber, Ekici, Fasching, Fridley, Gao, Gentry-Maharaj, Giles, Glasspool, Goode, Goodman, Grownwald, Harrington, Harter, Hasmad, Hein, Heitz, Hildebrandt, Hillemanns, Hogdall, Hogdall, Hosono, Iversen, Jakubowska, James, Jensen, Ji, Karlan, Kjaer, Kelemen, Kellar, Kelley, Kiemeney, Krakstad, Kupryjanczyk, Lambrechts, Lambrechts, Le, Lele, Leminen, Lester, Levine, Liang, Lissowska, Lu, Lubinski, Lundvall, Massuger, Matsuo, McGuire, McLaughlin, McNeish, Menon, Modugno, Moysich, Narod, Nedergaard, Ness, Azmi, Odunsi, Olson, Orlow, Orsulic, Weber, Pearce, Pejovic, Pelttari, Permuth-Wey, Phelan, Pike, Poole, Risch, Rosen, Rossing, Rothstein, Rudolph, Runnebaum, Rzepecka, Salvesen, Schildkraut, Schwaab, Sellers, Shu, Shvetsov, Siddiqui, Sieh, Song, Southey, Sucheston, Tangen, Teo, Terry, Thompson, Timorek, Tsai, Tworoger, Tyrer, van Altena, Van Nieuwenhuysen, Vergote, Vierkant, Wang-Gohrke, Walsh, Wentzensen, Whittemore, Wicklund, Wilkens, Woo, Wu, Wu, Yang, Zheng, Ziogas
    Oxford University Press
    Publication Date: 2015-06-09
    Description: Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs ( P = 3.8 x 10 –30 ), OSECs ( P = 2.4 x 10 –23 ) and HMECs ( P = 6.7 x 10 –15 ) but not for EECs ( P = 0.45) or LNCaP cells ( P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-06-09
    Description: The gene mapt codes for the microtubule-associated protein Tau. The R406W amino acid substitution in Tau is associated with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) characterized by Tau-positive filamentous inclusions. These filamentous Tau inclusions are present in a group of neurodegenerative diseases known as tauopathies, including Alzheimer's disease (AD). To gain more insights into the pathomechanism of tauopathies, we performed an RNAi-based large-scale screen in Drosophila melanogaster to identify genetic modifiers of Tau[R406W]-induced toxicity. A collection of RNAi lines, putatively silencing more than 7000 genes, was screened for the ability to modify Tau[R406W]-induced toxicity in vivo . This collection covered more than 50% of all protein coding fly genes and more than 90% of all fly genes known to have a human ortholog. Hereby, we identified 62 genes that, when silenced by RNAi, modified Tau-induced toxicity specifically. Among these 62 modifiers were three subunits of the Dynein/Dynactin complex. Analysis on segmental nerves of fly larvae showed that pan neural Tau[R406W] expression and concomitant silencing of Dynein/Dynactin complex members synergistically caused strong pathological changes within the axonal compartment, but only minor changes at synapses. At the larval stage, these alterations did not cause locomotion deficits, but became evident in adult flies. Our data suggest that Tau-induced detrimental effects most likely originate from axonal rather than synaptic dysfunction and that impaired retrograde transport intensifies detrimental effects of Tau in axons. In conclusion, our findings contribute to the elucidation of disease mechanisms in tauopathies like FTDP-17 or AD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-06-09
    Description: Retinitis pigmentosa (RP), the most common form of inherited retinal degeneration, is clinically and genetically heterogeneous and can appear as syndromic or non-syndromic. Mucopolysaccharidosis type IIIC (MPS IIIC) is a lethal disorder, caused by mutations in the heparan-alpha-glucosaminide N-acetyltransferase ( HGSNAT ) gene and characterized by progressive neurological deterioration, with retinal degeneration as a prominent feature. We identified HGSNAT mutations in six patients with non-syndromic RP. Whole exome sequencing (WES) in an Ashkenazi Jewish Israeli RP patient revealed a novel homozygous HGSNAT variant, c.370A〉T, which leads to partial skipping of exon 3. Screening of 66 Ashkenazi RP index cases revealed an additional family with two siblings homozygous for c.370A〉T. WES in three Dutch siblings with RP revealed a complex HGSNAT variant, c.[398G〉C; 1843G〉A] on one allele, and c.1843G〉A on the other allele. HGSNAT activity levels in blood leukocytes of patients were reduced compared with healthy controls, but usually higher than those in MPS IIIC patients. All patients were diagnosed with non-syndromic RP and did not exhibit neurological deterioration, or any phenotypic features consistent with MPS IIIC. Furthermore, four of the patients were over 60 years old, exceeding by far the life expectancy of MPS IIIC patients. HGSNAT is highly expressed in the mouse retina, and we hypothesize that the retina requires higher HGSNAT activity to maintain proper function, compared with other tissues associated with MPS IIIC, such as the brain. This report broadens the spectrum of phenotypes associated with HGSNAT mutations and highlights the critical function of HGSNAT in the human retina.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-06-09
    Description: Increased age, BMI and HbA1c levels are risk factors for several non-communicable diseases. However, the impact of these factors on the genome-wide DNA methylation pattern in human adipose tissue remains unknown. We analyzed the DNA methylation of ~480 000 sites in human adipose tissue from 96 males and 94 females and related methylation to age, BMI and HbA1c. We also compared epigenetic signatures in adipose tissue and blood. Age was significantly associated with both altered DNA methylation and expression of 1050 genes (e.g. FHL2 , NOX4 and PLG ). Interestingly, many reported epigenetic biomarkers of aging in blood, including ELOVL2 , FHL2 , KLF14 and GLRA1 , also showed significant correlations between adipose tissue DNA methylation and age in our study. The most significant association between age and adipose tissue DNA methylation was found upstream of ELOVL2 . We identified 2825 genes (e.g. FTO , ITIH5 , CCL18 , MTCH2 , IRS1 and SPP1 ) where both DNA methylation and expression correlated with BMI. Methylation at previously reported HIF3A sites correlated significantly with BMI in females only. HbA1c (range 28–46 mmol/mol) correlated significantly with the methylation of 711 sites, annotated to, for example, RAB37 , TICAM1 and HLA-DPB1 . Pathway analyses demonstrated that methylation levels associated with age and BMI are overrepresented among genes involved in cancer, type 2 diabetes and cardiovascular disease. Our results highlight the impact of age, BMI and HbA1c on epigenetic variation of candidate genes for obesity, type 2 diabetes and cancer in human adipose tissue. Importantly, we demonstrate that epigenetic biomarkers in blood can mirror age-related epigenetic signatures in target tissues for metabolic diseases such as adipose tissue.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-06-09
    Description: Interstitial lung disease, nephrotic syndrome and junctional epidermolysis bullosa is an autosomal recessive multiorgan disorder caused by mutations in the gene for the integrin α3 subunit ( ITGA3 ). The full spectrum of manifestations and genotype–phenotype correlations is still poorly characterized. Here, we uncovered the disease-causing role and the molecular mechanisms underlying a homozygous ITGA3 mutation leading to the single amino acid substitution, p.R463W. The patient suffered from respiratory distress and episodes of cyanosis with onset in the first week of life and had a nephrotic syndrome. Although there was no clinical evidence for cutaneous fragility, the analysis of a skin sample and of skin epithelial cells enabled the direct assessment of the authentic mutant protein. We show that the mutation altered the conformation of the extracellular β-propeller domain of the integrin α3 subunit preventing correct processing of N-linked oligosaccharides, heterodimerization with β1 integrin and maturation through cleavage into heavy and light chains in the Golgi. Confocal microscopy demonstrated that the mutant protein accumulated intracellularly, but it was not present in focal adhesions or on the cell membrane as shown by flow cytometry. These findings highlight that single amino acid changes in the integrin α3 subunit may crucially alter the structure and complex processing of this integrin, completely preventing its functionality. The present report also underscores that ITGA3 mutations may account for atypical cases solely with early onset respiratory and renal involvement.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-06-09
    Description: Gestational age (GA) and birth weight have been implicated in the determination of long-term health. It has been hypothesized that changes in DNA methylation may mediate these long-term effects. We obtained DNA methylation profiles from cord blood and peripheral blood at ages 7 and 17 in the same children from the Avon Longitudinal Study of Parents and Children. Repeated-measures data were used to investigate changes in birth-related methylation during childhood and adolescence. Ten developmental phenotypes (e.g. height) were analysed to identify possible mediation of health effects by DNA methylation. In cord blood, methylation at 224 CpG sites was found to be associated with GA and 23 CpG sites with birth weight. Methylation changed in the majority of these sites over time, but neither birth characteristic was strongly associated with methylation at age 7 or 17 (using a conservative correction for multiple testing of P 〈 1.03 x 10 –7 ), suggesting resolution of differential methylation by early childhood. Associations were observed between birth weight-associated CpG sites and phenotypic characteristics in childhood. One strong association involved birth weight, methylation of a CpG site proximal to the NFIX locus and bone mineral density at age 17. Analysis of serial methylation from birth to adolescence provided evidence for a lack of persistence of methylation differences beyond early childhood. Sites associated with birth weight were linked to developmental genes and have methylation levels which are associated with developmental phenotypes. Replication and interrogation of causal relationships are needed to substantiate whether methylation differences at birth influence the association between birth weight and development.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-08-07
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-08-07
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-08-07
    Description: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder affecting carriers of the fragile X-premutation, who have an expanded CGG repeat in the 5'-UTR of the FMR1 gene. FXTAS is characterized by progressive development of intention tremor, ataxia, parkinsonism and neuropsychological problems. The disease is thought to be caused by a toxic RNA gain-of-function mechanism, and the major hallmark of the disease is ubiquitin-positive intranuclear inclusions in neurons and astrocytes. We have developed a new transgenic mouse model in which we can induce expression of an expanded repeat in the brain upon doxycycline (dox) exposure (i.e. Tet-On mice). This Tet-On model makes use of the PrP-rtTA driver and allows us to study disease progression and possibilities of reversibility. In these mice, 8 weeks of dox exposure was sufficient to induce the formation of ubiquitin-positive intranuclear inclusions, which also stain positive for the RAN translation product FMRpolyG. Formation of these inclusions is reversible after stopping expression of the expanded CGG RNA at an early developmental stage. Furthermore, we observed a deficit in the compensatory eye movements of mice with inclusions, a functional phenotype that could be reduced by stopping expression of the expanded CGG RNA early in the disease development. Taken together, this study shows, for the first time, the potential of disease reversibility and suggests that early intervention might be beneficial for FXTAS patients.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-08-07
    Description: Mutations affecting specific splicing regulatory elements offer suitable models to better understand their interplay and to devise therapeutic strategies. Here we characterize a meaningful splicing model in which numerous Hemophilia B-causing mutations, either missense or at the donor splice site (5'ss) of coagulation F9 exon 2, promote aberrant splicing by inducing the usage of a strong exonic cryptic 5'ss. Splicing assays with natural and artificial F9 variants indicated that the cryptic 5'ss is regulated, among a network of regulatory elements, by an exonic splicing silencer (ESS). This finding and the comparative analysis of the F9 sequence across species showing that the cryptic 5'ss is always paralleled by the conserved ESS support a compensatory mechanism aimed at minimizing unproductive splicing. To recover splicing we tested antisense oligoribonucleotides masking the cryptic 5'ss, which were effective on exonic changes but promoted exon 2 skipping in the presence of mutations at the authentic 5'ss. On the other hand, we observed a very poor correction effect by small nuclear RNA U1 (U1snRNA) variants with increased or perfect complementarity to the defective 5'ss, a strategy previously exploited to rescue splicing. Noticeably, the combination of the mutant-specific U1snRNAs with antisense oligonucleotides produced appreciable amounts of correctly spliced transcripts (from 0 to 20–40%) from several mutants of the exon 2 5'ss. Based on the evidence of an altered interplay among ESS, cryptic and the authentic 5'ss as a disease-causing mechanism, we provide novel experimental insights into the combinatorial correction activity of antisense molecules and compensatory U1snRNAs.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-08-07
    Description: Facioscapulohumeral muscular dystrophy (FSHD) is caused by the aberrant expression of the DUX4 transcription factor in skeletal muscle. The DUX4 retrogene is encoded in the D4Z4 macrosatellite repeat array, and smaller array size or a mutation in the SMCHD1 gene results in inefficient epigenetic repression of DUX4 in skeletal muscle, causing FSHD1 and FSHD2, respectively. Previously we showed that the entire D4Z4 repeat is bi-directionally transcribed with the generation of small si- or miRNA-like fragments and suggested that these might suppress DUX4 expression through the endogenous RNAi pathway. Here we show that exogenous siRNA targeting the region upstream of the DUX4 transcription start site suppressed DUX4 mRNA expression and increased both H3K9 methylation and AGO2 recruitment. In contrast, similarly targeted MOE-gapmer antisense oligonucleotides that degrade RNA but do not engage the RNAi pathway did not repress DUX4 expression. In addition, knockdown of DICER or AGO2 using either siRNA or MOE-gapmer chemistries resulted in the induction of DUX4 expression in control muscle cells that normally do not express DUX4 , indicating that the endogenous RNAi pathway is necessary to maintain repression of DUX4 in control muscle cells. Together these data demonstrate a role of the endogenous RNAi pathway in repeat-mediated epigenetic repression of the D4Z4 macrosatellite repeat, and show that enhancing the activity of this pathway by supplying exogenous siRNA oligonucleotides represents a potential therapeutic approach to silencing DUX4 in FSHD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-08-07
    Description: Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B’, beta (PPP2R5B) ; protein phosphatase 2, regulatory Subunit B’, gamma (PPP2R5C) ; and protein phosphatase 2, regulatory Subunit B’, delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates ( P = 1.43 x 10 –10 ). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences ( P = 1.6 x 10 –5 ). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-08-07
    Description: Miles–Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2 , was identified in a XLID re-sequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specific markers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injected with human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity of many brain and spinal circuits.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-08-07
    Description: Alterations in oxidative metabolism are considered to be one of the major contributors to Huntington's disease (HD) pathogenesis. However, existing data about oxidative metabolism in HD are contradictory. Here, we investigated the effect of mutant huntingtin (mHtt) on oxidative metabolism in YAC128 mice. Both mHtt and wild-type huntingtin (Htt) were associated with mitochondria and the amount of bound Htt was four-times higher than the amount of bound mHtt. Percoll gradient-purified brain synaptic and non-synaptic mitochondria as well as unpurified brain, liver and heart mitochondria, isolated from 2- and 10-month-old YAC128 mice and age-matched WT littermates had similar respiratory rates. There was no difference in mitochondrial membrane potential or ADP and ATP levels. Expression of selected nuclear-encoded mitochondrial proteins in 2- and 10-month-old YAC128 and WT mice was similar. Cultured striatal and cortical neurons from YAC128 and WT mice had similar respiratory and glycolytic activities as measured with Seahorse XF24 analyzer in medium containing 10 m m glucose and 15 m m pyruvate. In the medium with 2.5 m m glucose, YAC128 striatal neurons had similar respiration, but slightly lower glycolytic activity. Striatal neurons had lower maximal respiration compared with cortical neurons. In vivo experiments with YAC128 and WT mice showed similar O 2 consumption, CO 2 release, physical activity, food consumption and fasted blood glucose. However, YAC128 mice were heavier and had more body fat compared with WT mice. Overall, our data argue against respiratory deficiency in YAC128 mice and, consequently, suggest that mitochondrial respiratory dysfunction is not essential for HD pathogenesis.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-08-07
    Description: Leucine-rich repeat kinase 2 (LRRK2) is the causative molecule of the autosomal dominant hereditary form of Parkinson's disease (PD), PARK8, which was originally defined in a study of a Japanese family (the Sagamihara family) harboring the I2020T mutation in the kinase domain. Although a number of reported studies have focused on cell death mediated by mutant LRRK2, details of the pathogenetic effect of LRRK2 still remain to be elucidated. In the present study, to elucidate the mechanism of neurodegeneration in PD caused by LRRK2, we generated induced pluripotent stem cells (iPSC) derived from fibroblasts of PD patients with I2020T LRRK2 in the Sagamihara family. We found that I2020T mutant LRRK2 iPSC-derived neurons released less dopamine than control-iPSC-derived neurons. Furthermore, we demonstrated that patient iPSC-derived neurons had a lower phospho-AKT level than control-iPSC-derived neurons, and that the former showed an increased incidence of apoptosis relative to the controls. Interestingly, patient iPSC-derived neurons exhibited activation of glycogen synthase kinase-3β (GSK-3β) and high Tau phosphorylation. In addition, the postmortem brain of the patient from whom the iPSC had been established exhibited deposition of neurofibrillary tangles as well as increased Tau phosphorylation in neurons. These results suggest that I2020T LRRK2-iPSC could be a promising new tool for reproducing the pathology of PD in the brain caused by the I2020T mutation, and applicable as a model in studies of targeted therapeutics.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-08-07
    Description: SOX10 is a transcription factor with well-known functions in neural crest and oligodendrocyte development. Mutations in SOX10 were first associated with Waardenburg–Hirschsprung disease (WS4; deafness, pigmentation defects and intestinal aganglionosis). However, variable phenotypes that extend beyond the WS4 definition are now reported. The neurological phenotypes associated with some truncating mutations are suggested to be the result of escape from the nonsense-mediated mRNA decay pathway; but, to date, no mechanism has been suggested for missense mutations, of which approximately 20 have now been reported, with about half of the latter shown to be redistributed to nuclear bodies of undetermined nature and function in vitro . Here, we report that p54NRB, which plays a crucial role in the regulation of gene expression during many cellular processes including differentiation, interacts synergistically with SOX10 to regulate several target genes. Interestingly, this paraspeckle protein, as well as two other members of the Drosophila behavior human splicing (DBHS) protein family, co-localize with SOX10 mutants in nuclear bodies, suggesting the possible paraspeckle nature of these foci or re-localization of the DBHS members to other subnuclear compartments. Remarkably, the co-transfection of wild-type and mutant SOX10 constructs led to the sequestration of wild-type protein in mutant-induced foci. In contrast to mutants presenting with additional cytoplasmic re-localization, those exclusively found in the nucleus alter synergistic activity between SOX10 and p54NRB. We propose that such a dominant negative effect may contribute to or be at the origin of the unique progressive and severe neurological phenotype observed in affected patients.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-08-07
    Description: Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by motor and cognitive impairments, involving striatum, cortex and hippocampus. Synaptic and memory dysfunction in HD mouse models have been related to low levels of brain-derived neurotrophic factor (BDNF) and imbalance between TrkB and p75 NTR receptors. In addition, astrocyte over-activation has also been suggested to contribute to HD cognitive deficits. Fingolimod (FTY720), a modulator of sphingosine-1 phosphate (S1P) receptors, has been shown to increase BDNF levels and to reduce astrogliosis, proving its potential to regulate trophic support and inflammatory response. In this view, we have investigated whether FTY720 improves synaptic plasticity and memory in the R6/1 mouse model of HD, through regulation of BDNF signaling and astroglial reactivity. Chronic administration of FTY720 from pre-symptomatic stages ameliorated long-term memory deficits and dendritic spine loss in CA1 hippocampal neurons from R6/1 mice. Furthermore, FTY720 delivery prevented astrogliosis and over-activation of nuclear factor kappa beta (NF-B) signaling in the R6/1 hippocampus, reducing tumor necrosis factor alpha (TNFα) and induced nitric oxide synthase (iNOS) levels. TNFα decrease correlated with the normalization of p75 NTR expression in the hippocampus of FTY720-treated R6/1 mice, thus preventing p75 NTR /TrkB imbalance. In addition, FTY720 increased cAMP levels and promoted phosphorylation of CREB and RhoA in the hippocampus of R6/1 mice, further supporting its role in the enhancement of synaptic plasticity. Our findings provide new insights into the mechanism of action of FTY720 and reveal a novel therapeutic strategy to treat memory deficits in HD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-08-07
    Description: DDX11 was recently identified as a cause of Warsaw breakage syndrome (WABS). However, the functional mechanism of DDX11 and the contribution of clinically described mutations to the pathogenesis of WABS are elusive. Here, we show that DDX11 is a novel nucleolar protein that preferentially binds to hypomethylated active ribosomal DNA (rDNA) gene loci, where it interacts with upstream binding factor (UBF) and the RNA polymerase I (Pol I). DDX11 knockdown changed the epigenetic state of rDNA loci from euchromatic structures to more heterochromatic structures, reduced the activity of UBF, decreased the recruitment of UBF and RPA194 (a subunit of Pol I) to rDNA promoter, suppressed rRNA transcription and thereby inhibited growth and proliferation of HeLa cells. Importantly, two indentified WABS-derived mutants, R263Q and K897del, and a Fe–S deletion construct demonstrated significantly reduced binding abilities to rDNA promoters and lowered DNA-dependent ATPase activities compared with wild-type DDX11. Knockdown of the zebrafish ortholog of human DDX11 by morpholinos resulted in growth retardation and vertebral and craniofacial malformations in zebrafish, concomitant with the changes in histone epigenetic modifications at rDNA loci, the reduction of Pol I recruitment to the rDNA promoter and a significant decrease in nascent pre-RNA levels. These growth disruptions in zebrafish in response to DDX11 reduction showed similarities to the clinically described developmental abnormalities found in WABS patients for the first time in any vertebrate. Thus, our results indicate that DDX11 functions as a positive regulator of rRNA transcription and provides a novel insight into the pathogenesis of WABS.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-09-12
    Description: Genome-wide association studies (GWAS) have identified several common loci contributing to non-obstructive azoospermia (NOA). However, a substantial fraction of NOA heritability remains undefined, especially those low-frequency [defined here as having a minor allele frequency (MAF) between 0.5 and 5%] and rare (MAF below 0.5%) variants. Here, we performed a 3-stage exome-wide association study in Han Chinese men to evaluate the role of low-frequency or rare germline variants in NOA development. The discovery stage included 962 NOA cases and 1348 healthy male controls genotyped by exome chips and was followed by a 2-stage replication with an additional 2168 cases and 5248 controls. We identified three low-frequency variants located at 6p22.2 (rs2298090 in HIST1H1E encoding p.Lys152Arg: OR = 0.30, P = 2.40 x 10 –16 ) and 6p21.33 (rs200847762 in FKBPL encoding p.Pro137Leu: OR = 0.11, P = 3.77 x 10 –16 ; rs11754464 in MSH5 : OR = 1.78, P = 3.71 x 10 –7 ) associated with NOA risk after Bonferroni correction. In summary, we report an instance of newly identified signals for NOA risk in genes previously undetected through GWAS on 6p22.2–6p21.33 in a Chinese population and highlight the role of low-frequency variants with a large effect in the process of spermatogenesis.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-09-17
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-09-17
    Description: Loss-of-function mutations in the X-linked gene Methyl-CpG-binding protein 2 ( MECP2 ) cause a devastating pediatric neurological disorder called Rett syndrome. In males, these mutations typically result in severe neonatal encephalopathy and early lethality. On the other hand, owing to expression of the normal allele in ~50% of cells, females do not suffer encephalopathy but instead develop Rett syndrome. Typically females with Rett syndrome exhibit a delayed onset of neurologic dysfunction that manifests around the child's first birthday and progresses over the next few years. Features of this disorder include loss of acquired language and motor skills, intellectual impairment and hand stereotypies. The developmental regression observed in patients with Rett syndrome arises from altered neuronal function and is not the result of neurodegeneration. Maintenance of an appropriate level of MeCP2 appears integral to the function of healthy neurons as patients with increased levels of MeCP2, owing to duplication of the Xq28 region encompassing the MECP2 locus, also present with intellectual disability and progressive neurologic symptoms. Despite major efforts over the past two decades to elucidate the molecular functions of MeCP2, the mechanisms underlying the delayed appearance of symptoms remain unclear. In this review, we will highlight recent findings that have expanded our knowledge of MeCP2's functions, and we will discuss how epigenetic regulation, chromatin organization and circuit dynamics may contribute to the postnatal onset of Rett syndrome.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-09-22
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-09-22
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-09-22
    Description: The selfing syndrome constitutes a suite of floral and reproductive trait changes that have evolved repeatedly across many evolutionary lineages in response to the shift to selfing. Convergent evolution of the selfing syndrome suggests that these changes are adaptive, yet our understanding of the detailed molecular genetic basis of the selfing syndrome remains limited. Here, we investigate the role of cis- regulatory changes during the recent evolution of the selfing syndrome in Capsella rubella , which split from the outcrosser Capsella grandiflora less than 200 ka. We assess allele-specific expression (ASE) in leaves and flower buds at a total of 18,452 genes in three interspecific F1 C. grandiflora x C. rubella hybrids. Using a hierarchical Bayesian approach that accounts for technical variation using genomic reads, we find evidence for extensive cis- regulatory changes. On average, 44% of the assayed genes show evidence of ASE; however, only 6% show strong allelic expression biases. Flower buds, but not leaves, show an enrichment of cis- regulatory changes in genomic regions responsible for floral and reproductive trait divergence between C. rubella and C. grandiflora . We further detected an excess of heterozygous transposable element (TE) insertions near genes with ASE, and TE insertions targeted by uniquely mapping 24-nt small RNAs were associated with reduced expression of nearby genes. Our results suggest that cis -regulatory changes have been important during the recent adaptive floral evolution in Capsella and that differences in TE dynamics between selfing and outcrossing species could be important for rapid regulatory divergence in association with mating system shifts.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-09-22
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-09-22
    Description: The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-09-22
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-09-22
    Description: Horizontal gene transfer threatens the therapeutic success of antibiotics by facilitating the rapid dissemination of resistance alleles among bacterial species. The conjugative mobile element Tn916 provides an excellent context for examining the role of adaptive parasexuality as it carries the tetracycline-resistance allele tetM and has been identified in a wide range of pathogens. We have used a combination of experimental evolution and allelic frequency measurements to gain insights into the adaptive trajectories leading to tigecycline resistance in a hospital strain of Enterococcus faecalis and predict what mechanisms of resistance are most likely to appear in the clinical setting. Here, we show that antibiotic selection led to the near fixation of adaptive alleles that simultaneously altered TetM expression and produced remarkably increased levels of Tn916 horizontal gene transfer. In the absence of drug, approximately 1 in 120,000 of the nonadapted E. faecalis S613 cells had an excised copy of Tn916, whereas nearly 1 in 50 cells had an excised copy of Tn916 upon selection for resistance resulting in a more than 1,000-fold increase in conjugation rates. We also show that tigecycline, a translation inhibitor, selected for a mutation in the ribosomal S10 protein. Our results show the first example of mutations that concurrently confer resistance to an antibiotic and lead to constitutive conjugal-transfer of the resistance allele. Selection created a highly parasexual phenotype and high frequency of Tn916 jumping demonstrating how the use of antibiotics can lead directly to the proliferation of resistance in, and potentially among, pathogens.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-09-22
    Description: Organisms with nonphotosynthetic plastids often retain genomes; their gene contents provide clues as to the functions of these organelles. Yet the functional roles of some retained genes—such as those coding for ATP synthase—remain mysterious. In this study, we report the complete plastid genome and transcriptome data of a nonphotosynthetic diatom and propose that its ATP synthase genes may function in ATP hydrolysis to maintain a proton gradient between thylakoids and stroma, required by the twin arginine translocator (Tat) system for translocation of particular proteins into thylakoids. Given the correlated retention of ATP synthase genes and genes for the Tat system in distantly related nonphotosynthetic plastids, we suggest that this Tat-related role for ATP synthase was a key constraint during parallel loss of photosynthesis in multiple independent lineages of algae/plants.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-09-22
    Description: The brown rat, Rattus norvegicus , is both a notorious pest and a frequently used model in biomedical research. By analyzing genome sequences of 12 wild-caught brown rats from their presumed ancestral range in NE China, along with the sequence of a black rat, Rattus rattus , we investigate the selective and demographic forces shaping variation in the genome. We estimate that the recent effective population size ( N e ) of this species = 1.24 x 105 , based on silent site diversity. We compare patterns of diversity in these genomes with patterns in multiple genome sequences of the house mouse ( Mus musculus castaneus ), which has a much larger N e . This reveals an important role for variation in the strength of genetic drift in mammalian genome evolution. By a Pairwise Sequentially Markovian Coalescent analysis of demographic history, we infer that there has been a recent population size bottleneck in wild rats, which we date to approximately 20,000 years ago. Consistent with this, wild rat populations have experienced an increased flux of mildly deleterious mutations, which segregate at higher frequencies in protein-coding genes and conserved noncoding elements. This leads to negative estimates of the rate of adaptive evolution ( α ) in proteins and conserved noncoding elements, a result which we discuss in relation to the strongly positive estimates observed in wild house mice. As a consequence of the population bottleneck, wild rats also show a markedly slower decay of linkage disequilibrium with physical distance than wild house mice.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-09-22
    Description: Despite much attention, history of sheep ( Ovis aries ) evolution, including its dating, demographic trajectory and geographic spread, remains controversial. To address these questions, we generated 45 complete and 875 partial mitogenomic sequences, and performed a meta-analysis of these and published ovine mitochondrial DNA sequences ( n = 3,229) across Eurasia. We inferred that O. orientalis and O. musimon share the most recent female ancestor with O. aries at approximately 0.790 Ma (95% CI: 0.637–0.934 Ma) during the Middle Pleistocene, substantially predating the domestication event (~8–11 ka). By reconstructing historical variations in effective population size, we found evidence of a rapid population increase approximately 20–60 ka, immediately before the Last Glacial Maximum. Analyses of lineage expansions showed two sheep migratory waves at approximately 4.5–6.8 ka (lineages A and B: ~6.4–6.8 ka; C: ~4.5 ka) across eastern Eurasia, which could have been influenced by prehistoric West–East commercial trade and deliberate mating of domestic and wild sheep, respectively. A continent-scale examination of lineage diversity and approximate Bayesian computation analyses indicated that the Mongolian Plateau region was a secondary center of dispersal, acting as a "transportation hub" in eastern Eurasia: Sheep from the Middle Eastern domestication center were inferred to have migrated through the Caucasus and Central Asia, and arrived in North and Southwest China (lineages A, B, and C) and the Indian subcontinent (lineages B and C) through this region. Our results provide new insights into sheep domestication, particularly with respect to origins and migrations to and from eastern Eurasia.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-09-22
    Description: The frequency of horizontal gene transfer (HGT) in mitochondrial DNA varies substantially. In plants, HGT is relatively common, whereas in animals it appears to be quite rare. It is of considerable importance to understand mitochondrial HGT across the major groups of eukaryotes at a genome-wide level, but so far this has been well studied only in plants. In this study, we generated ten new mitochondrial genome sequences and analyzed 40 mitochondrial genomes from the Saccharomycetaceae to assess the magnitude and nature of mitochondrial HGT in yeasts. We provide evidence for extensive, homologous-recombination-mediated, mitochondrial-to-mitochondrial HGT occurring throughout yeast mitochondrial genomes, leading to genomes that are highly chimeric evolutionarily. This HGT has led to substantial intraspecific polymorphism in both sequence content and sequence divergence, which to our knowledge has not been previously documented in any mitochondrial genome. The unexpectedly high frequency of mitochondrial HGT in yeast may be driven by frequent mitochondrial fusion, relatively low mitochondrial substitution rates and pseudohyphal fusion to produce heterokaryons. These findings suggest that mitochondrial HGT may play an important role in genome evolution of a much broader spectrum of eukaryotes than previously appreciated and that there is a critical need to systematically study the frequency, extent, and importance of mitochondrial HGT across eukaryotes.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-09-22
    Description: Shared host cells can serve as melting pots for viral genomes, giving many phylogenies a web-like appearance due to horizontal gene transfer. However, not all virus families exhibit web-like phylogenies. Microviruses form three distinct clades, represented by X174, G4, and α3. Here, we investigate protein-based barriers to horizontal gene transfer between clades. We transferred gene G, which encodes a structural protein, between X174 and G4, and monitored the evolutionary recovery of the resulting chimeras. In both cases, particle assembly was the major barrier after gene transfer. The G4XG chimera displayed a temperature-sensitive assembly defect that could easily be corrected through single mutations that promote productive assembly. Gene transfer in the other direction was more problematic. The initial XG4G chimera required an exogenous supply of both the X174 major spike G and DNA pilot H proteins. Elevated DNA pilot protein levels may be required to compensate for off-pathway reactions that may have become thermodynamically and/or kinetically favored when the foreign spike protein was present. After three targeted genetic selections, the foreign spike protein was productively integrated into the X174 background. The first adaption involved a global decrease in gene expression. This was followed by modifications affecting key protein–protein interactions that govern assembly. Finally, gene expression was re-elevated. Although the first selection suppresses nonproductive reactions, subsequent selections promote productive assembly and ultimately viability. However, viable chimeric strains exhibited reduced fitness compared with wild-type. This chimera’s path to recovery may partially explain how unusual recombinant viruses could persist long enough to naturally emerge.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-09-22
    Description: Head crests are important display structures in wild bird species and are also common in domesticated lineages. Many breeds of domestic rock pigeon ( Columba livia ) have crests of reversed occipital feathers, and this recessive trait is associated with a nonsynonymous coding mutation in the intracellular kinase domain of EphB2 (Ephrin receptor B2). The domestic ringneck dove ( Streptopelia risoria ) also has a recessive crested morph with reversed occipital feathers, and interspecific crosses between crested doves and pigeons produce crested offspring, suggesting a similar genetic basis for this trait in both species. We therefore investigated EphB2 as a candidate for the head crest phenotype of ringneck doves and identified a nonsynonymous coding mutation in the intracellular kinase domain that is significantly associated with the crested morph. This mutation is over 100 amino acid positions away from the crest mutation found in rock pigeons, yet both mutations are predicted to negatively affect the function of ATP-binding pocket. Furthermore, bacterial toxicity assays suggest that "crest" mutations in both species severely impact kinase activity. We conclude that head crests are associated with different mutations in the same functional domain of the same gene in two different columbid species, thereby representing striking evolutionary convergence in morphology and molecules.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-09-22
    Description: The mitochondrial theory of ageing proposes that the cumulative effect of biochemical damage in mitochondria causes mitochondrial mutations and plays a key role in ageing. Numerous studies have applied comparative approaches to test one of the predictions of the theory: That the rate of mitochondrial mutations is negatively correlated with longevity. Comparative studies face three challenges in detecting correlates of mutation rate: Covariation of mutation rates between species due to ancestry, covariation between life-history traits, and difficulty obtaining accurate estimates of mutation rate. We address these challenges using a novel Poisson regression method to examine the link between mutation rate and lifespan in rockfish ( Sebastes ). This method has better performance than traditional sister-species comparisons when sister species are too recently diverged to give reliable estimates of mutation rate. Rockfish are an ideal model system: They have long life spans with indeterminate growth and little evidence of senescence, which minimizes the confounding tradeoffs between lifespan and fecundity. We show that lifespan in rockfish is negatively correlated to rate of mitochondrial mutation, but not the rate of nuclear mutation. The life history of rockfish allows us to conclude that this relationship is unlikely to be driven by the tradeoffs between longevity and fecundity, or by the frequency of DNA replications in the germline. Instead, the relationship is compatible with the hypothesis that mutation rates are reduced by selection in long-lived taxa to reduce the chance of mitochondrial damage over its lifespan, consistent with the mitochondrial theory of ageing.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-09-22
    Description: Complete genome resequencing of populations holds great promise in deconstructing complex polygenic traits to elucidate molecular and developmental mechanisms of adaptation. Egg size is a classic adaptive trait in insects, birds, and other taxa, but its highly polygenic architecture has prevented high-resolution genetic analysis. We used replicated experimental evolution in Drosophila melanogaster and whole-genome sequencing to identify consistent signatures of polygenic egg-size adaptation. A generalized linear-mixed model revealed reproducible allele frequency differences between replicated experimental populations selected for large and small egg volumes at approximately 4,000 single nucleotide polymorphisms (SNPs). Several hundred distinct genomic regions contain clusters of these SNPs and have lower heterozygosity than the genomic background, consistent with selection acting on polymorphisms in these regions. These SNPs are also enriched among genes expressed in Drosophila ovaries and many of these genes have well-defined functions in Drosophila oogenesis. Additional genes regulating egg development, growth, and cell size show evidence of directional selection as genes regulating these biological processes are enriched for highly differentiated SNPs. Genetic crosses performed with a subset of candidate genes demonstrated that these genes influence egg size, at least in the large genetic background. These findings confirm the highly polygenic architecture of this adaptive trait, and suggest the involvement of many novel candidate genes in regulating egg size.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-09-22
    Description: Although initial studies suggested that Denisovan ancestry was found only in modern human populations from island Southeast Asia and Oceania, more recent studies have suggested that Denisovan ancestry may be more widespread. However, the geographic extent of Denisovan ancestry has not been determined, and moreover the relationship between the Denisovan ancestry in Oceania and that elsewhere has not been studied. Here we analyze genome-wide single nucleotide polymorphism data from 2,493 individuals from 221 worldwide populations, and show that there is a widespread signal of a very low level of Denisovan ancestry across Eastern Eurasian and Native American (EE/NA) populations. We also verify a higher level of Denisovan ancestry in Oceania than that in EE/NA; the Denisovan ancestry in Oceania is correlated with the amount of New Guinea ancestry, but not the amount of Australian ancestry, indicating that recent gene flow from New Guinea likely accounts for signals of Denisovan ancestry across Oceania. However, Denisovan ancestry in EE/NA populations is equally correlated with their New Guinea or their Australian ancestry, suggesting a common source for the Denisovan ancestry in EE/NA and Oceanian populations. Our results suggest that Denisovan ancestry in EE/NA is derived either from common ancestry with, or gene flow from, the common ancestor of New Guineans and Australians, indicating a more complex history involving East Eurasians and Oceanians than previously suspected.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-09-22
    Description: Evidence is mounting that epistasis is widespread among mutations. The cost of carrying two deleterious mutations, or the advantage of acquiring two beneficial alleles, is typically lower that the sum of their individual effects. Much less is known on epistasis between beneficial and deleterious mutations, even though this is key to the amount of genetic hitchhiking that may occur during evolution. This is particularly important in the context of antibiotic resistance: Most resistances are deleterious, but some can be beneficial and remarkably rifampicin resistance can emerge de novo in populations evolving without antibiotics. Here we show pervasive positive pairwise epistasis on Escherichia coli fitness between beneficial mutations, which confer resistance to rifampicin, and deleterious mutations, which confer resistance to streptomycin. We find that 65% of double resistant strains outcompete sensitive bacteria in an environment devoid of antibiotics. Weak beneficial mutations may therefore overcome strong deleterious mutations and can even render double mutants strong competitors.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-09-22
    Description: There is increasing evidence that dosage compensation is not a ubiquitous feature following sex chromosome evolution, especially not in organisms where females are the heterogametic sex, like in birds. Even when it occurs, compensation can be incomplete and limited to dosage-sensitive genes. However, previous work has mainly studied transcriptional regulation of sex-linked genes, which may not reflect expression at the protein level. Here, we used liquid chromatography–tandem mass spectrometry to detect and quantify expressed levels of more than 2,400 proteins in ten different tissues of male and female chicken embryos. For comparison, transcriptome sequencing was performed in the same individuals, five of each sex. The proteomic analysis revealed that dosage compensation was incomplete, with a mean male-to-female (M:F) expression ratio of Z-linked genes of 1.32 across tissues, similar to that at the RNA level (1.29). The mean Z chromosome-to-autosome expression ratio was close to 1 in males and lower than 1 in females, consistent with partly reduced Z chromosome expression in females. Although our results exclude a general mechanism for chromosome-wide dosage compensation at translation, 30% of all proteins encoded from Z-linked genes showed a significant change in the M:F ratio compared with the corresponding ratio at the RNA level. This resulted in a pattern where some genes showed balanced expression between sexes and some close to 2-fold higher expression in males. This suggests that proteomic analyses will be necessary to reveal a more complete picture of gene regulation and sex chromosome evolution.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-09-22
    Description: Flowering time is one of the key determinants of crop adaptation to local environments during domestication. However, the genetic basis underlying flowering time is yet to be elucidated in most cereals. Although staple cereals, such as rice, maize, wheat, barley, and sorghum, have spread and adapted to a wide range of ecological environments during domestication, it is yet to be determined whether they have a common genetic basis for flowering time. In this study, we show, through map-based cloning, that flowering time in sorghum is controlled by a major quantitative trait locus (QTL) Heading Date 1 ( HD1 ), located on chromosome 10. The causal gene encodes the CONSTANS gene family which contains a CCT domain. A 5-bp deletion of a minor allele present in the coding sequence leads to a gene frameshift that delays flowering in sorghum. In contrast, in foxtail millet, association mapping of HD1 showed a common causal site with a splicing variant from "GT" to "AT" that was highly correlated with flowering time. In addition, the rice HD1 gene is known to harbor several causal variants controlling flowering time. These data indicate that the major flowering time QTL HD1 was under parallel domestication in sorghum, foxtail millet, and rice. The pattern of common mixed minor, or even rare, causal alleles in HD1 across different species may be representative of the genetic basis of the domestication syndrome. Furthermore, large DNA sequence analysis of HD1 revealed multiple origins for domesticated sorghum and a single origin for domesticated foxtail millet.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-09-22
    Description: The fundamental asymmetry of female meiosis creates an arena for genetic elements to compete for inclusion in the egg, promoting the selfish evolution of centromere variants that maximize their transmission to the future egg. Such "female meiotic drive" has been hypothesized to explain the paradoxically complex and rapidly evolving nature of centromeric DNA and proteins. Although theoretically widespread, few cases of active drive have been observed, thereby limiting the opportunities to directly assess the impact of centromeric drive on molecular variation at centromeres and binding proteins. Here, we characterize the molecular evolutionary patterns of CENH3 , the centromere-defining histone variant, in Mimulus monkeyflowers, a genus with one of the few known cases of active centromere-associated female meiotic drive. First, we identify a novel duplication of CENH3 in diploid Mimulus , including in lineages with actively driving centromeres. Second, we demonstrate long-term adaptive evolution at several sites in the N-terminus of CENH3 , a region with some meiosis-specific functions that putatively interacts with centromeric DNA. Finally, we infer that the paralogs evolve under different selective regimes; some sites in the N-terminus evolve under positive selection in the pro-orthologs or only one paralog ( CENH3_B ) and the paralogs exhibit significantly different patterns of polymorphism within populations. Our finding of long-term, adaptive evolution at CENH3 in the context of centromere-associated meiotic drive supports an antagonistic, coevolutionary battle for evolutionary dominance between centromeric DNA and binding proteins.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-09-22
    Description: The genomic G+C content of ocean bacteria varies from below 30% to over 60%. This broad range of base composition is likely shaped by distinct mutational processes, recombination, effective population size, and selection driven by environmental factors. A number of studies have hypothesized that depletion of G/C in genomes of marine bacterioplankton cells is an adaptation to the nitrogen-poor pelagic oceans, but they failed to disentangle environmental factors from mutational biases and population history. Here, we reconstructed the evolutionary changes of bases at synonymous sites in genomes of two marine SAR11 populations and a freshwater counterpart with its evolutionary origin rooted in the marine lineage. Although they all have similar genome sizes, DNA repair gene repertoire, and base compositions, there is a stronger bias toward A/T changes, a reduced frequency of nitrogenous amino acids, and an exclusive occurrence of polyamine, opine, and taurine transport systems in the ocean populations, consistent with a greater nitrogen stress in surface oceans compared with freshwater lakes. Furthermore, the ratio of nonsynoymous to synonymous nucleotide diversity is not statistically distinguishable among these populations, suggesting that population history has a limited effect. Taken together, the ecological transition of SAR11 from ocean to freshwater habitats makes nitrogen more available to these organisms, and thus relaxation of purifying selection drove a genome-wide reduction in the frequency of G/C to A/T changes in the freshwater population.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-09-22
    Description: The elevated rate of evolution for genes on sex chromosomes compared with autosomes (Fast-X or Fast-Z evolution) can result either from positive selection in the heterogametic sex or from nonadaptive consequences of reduced relative effective population size. Recent work in birds suggests that Fast-Z of coding sequence is primarily due to relaxed purifying selection resulting from reduced relative effective population size. However, gene sequence and gene expression are often subject to distinct evolutionary pressures; therefore, we tested for Fast-Z in gene expression using next-generation RNA-sequencing data from multiple avian species. Similar to studies of Fast-Z in coding sequence, we recover clear signatures of Fast-Z in gene expression; however, in contrast to coding sequence, our data indicate that Fast-Z in expression is due to positive selection acting primarily in females. In the soma, where gene expression is highly correlated between the sexes, we detected Fast-Z in both sexes, although at a higher rate in females, suggesting that many positively selected expression changes in females are also expressed in males. In the gonad, where intersexual correlations in expression are much lower, we detected Fast-Z for female gene expression, but crucially, not males. This suggests that a large amount of expression variation is sex-specific in its effects within the gonad. Taken together, our results indicate that Fast-Z evolution of gene expression is the product of positive selection acting on recessive beneficial alleles in the heterogametic sex. More broadly, our analysis suggests that the adaptive potential of Z chromosome gene expression may be much greater than that of gene sequence, results which have important implications for the role of sex chromosomes in speciation and sexual selection.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-09-22
    Description: In species with a heterogametic sex, population genetics theory predicts that DNA sequences on the X chromosome can evolve faster than comparable sequences on autosomes. Both neutral and nonneutral evolutionary processes can generate this pattern. Complex traits like gene expression are not predicted to have accelerated evolution by these theories, yet a "faster-X" pattern of gene expression divergence has recently been reported for both Drosophila and mammals. Here, we test the hypothesis that accelerated adaptive evolution of cis -regulatory sequences on the X chromosome is responsible for this pattern by comparing the relative contributions of cis - and trans -regulatory changes to patterns of faster-X expression divergence observed between strains and species of Drosophila with a range of divergence times. We find support for this hypothesis, especially among male-biased genes, when comparing different species. However, we also find evidence that trans -regulatory differences contribute to a faster-X pattern of expression divergence both within and between species. This contribution is surprising because trans -acting regulators of X-linked genes are generally assumed to be randomly distributed throughout the genome. We found, however, that X-linked transcription factors appear to preferentially regulate expression of X-linked genes, providing a potential mechanistic explanation for this result. The contribution of trans -regulatory variation to faster-X expression divergence was larger within than between species, suggesting that it is more likely to result from neutral processes than positive selection. These data show how accelerated evolution of both coding and noncoding sequences on the X chromosome can lead to accelerated expression divergence on the X chromosome relative to autosomes.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-09-22
    Description: Molecular chaperones fold many proteins and their mutated versions in a cell and can sometimes buffer the phenotypic effect of mutations that affect protein folding. Unanswered questions about this buffering include the nature of its mechanism, its influence on the genetic variation of a population, the fitness trade-offs constraining this mechanism, and its role in expediting evolution. Answering these questions is fundamental to understand the contribution of buffering to increase genetic variation and ecological diversification. Here, we performed experimental evolution, genome resequencing, and computational analyses to determine the trade-offs and evolutionary trajectories of Escherichia coli expressing high levels of the essential chaperonin GroEL. GroEL is abundantly present in bacteria, particularly in bacteria with large loads of deleterious mutations, suggesting its role in mutational buffering. We show that groEL overexpression is costly to large populations evolving in the laboratory, leading to groE expression decline within 66 generations. In contrast, populations evolving under the strong genetic drift characteristic of endosymbiotic bacteria avoid extinction or can be rescued in the presence of abundant GroEL. Genomes resequenced from cells evolved under strong genetic drift exhibited significantly higher tolerance to deleterious mutations at high GroEL levels than at native levels, revealing that GroEL is buffering mutations in these cells. GroEL buffered mutations in a highly diverse set of proteins that interact with the environment, including substrate and ion membrane transporters, hinting at its role in ecological diversification. Our results reveal the fitness trade-offs of mutational buffering and how genetic variation is maintained in populations.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-09-22
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-09-22
    Description: Natural selection inference methods often target one mode of selection of a particular age and strength. However, detecting multiple modes simultaneously, or with atypical representations, would be advantageous for understanding a population’s evolutionary history. We have developed an anomaly detection algorithm using distributions of pairwise time to most recent common ancestor (TMRCA) to simultaneously detect multiple modes of natural selection in whole-genome sequences. As natural selection distorts local genealogies in distinct ways, the method uses pairwise TMRCA distributions, which approximate genealogies at a nonrecombining locus, to detect distortions without targeting a specific mode of selection. We evaluate the performance of our method, TSel, for both positive and balancing selection over different time-scales and selection strengths and compare TSel’s performance with that of other methods. We then apply TSel to the Complete Genomics diversity panel, a set of human whole-genome sequences, and recover loci previously inferred to be under positive or balancing selection.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-09-22
    Description: Most studies on the evolution of antibiotic resistance are focused on selection for resistance at lethal antibiotic concentrations, which has allowed the detection of mutant strains that show strong phenotypic traits. However, solely focusing on lethal concentrations of antibiotics narrowly limits our perspective of antibiotic resistance evolution. New high-resolution competition assays have shown that resistant bacteria are selected at relatively low concentrations of antibiotics. This finding is important because sublethal concentrations of antibiotics are found widely in patients undergoing antibiotic therapies, and in nonmedical conditions such as wastewater treatment plants, and food and water used in agriculture and farming. To understand the impacts of sublethal concentrations on selection, we measured 30 adaptive landscapes for a set of TEM β-lactamases containing all combinations of the four amino acid substitutions that exist in TEM-50 for 15 β-lactam antibiotics at multiple concentrations. We found that there are many evolutionary pathways within this collection of landscapes that lead to nearly every TEM-genotype that we studied . While it is known that the pathways change depending on the type of β-lactam, this study demonstrates that the landscapes including fitness optima also change dramatically as the concentrations of antibiotics change. Based on these results we conclude that the presence of multiple concentrations of β-lactams in an environment result in many different adaptive landscapes through which pathways to nearly every genotype are available. Ultimately this may increase the diversity of genotypes in microbial populations.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-09-22
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-09-22
    Description: The availability of extensive databases of crop genome sequences should allow analysis of crop variability at an unprecedented scale, which should have an important impact in plant breeding. However, up to now the analysis of genetic variability at the whole-genome scale has been mainly restricted to single nucleotide polymorphisms (SNPs). This is a strong limitation as structural variation (SV) and transposon insertion polymorphisms are frequent in plant species and have had an important mutational role in crop domestication and breeding. Here, we present the first comprehensive analysis of melon genetic diversity, which includes a detailed analysis of SNPs, SV, and transposon insertion polymorphisms. The variability found among seven melon varieties representing the species diversity and including wild accessions and highly breed lines, is relatively high due in part to the marked divergence of some lineages. The diversity is distributed nonuniformly across the genome, being lower at the extremes of the chromosomes and higher in the pericentromeric regions, which is compatible with the effect of purifying selection and recombination forces over functional regions. Additionally, this variability is greatly reduced among elite varieties, probably due to selection during breeding. We have found some chromosomal regions showing a high differentiation of the elite varieties versus the rest, which could be considered as strongly selected candidate regions. Our data also suggest that transposons and SV may be at the origin of an important fraction of the variability in melon, which highlights the importance of analyzing all types of genetic variability to understand crop genome evolution.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-09-25
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-09-25
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-09-25
    Description: Glycogen branching enzyme 1 (GBE1) plays an essential role in glycogen biosynthesis by generating α-1,6-glucosidic branches from α-1,4-linked glucose chains, to increase solubility of the glycogen polymer. Mutations in the GBE1 gene lead to the heterogeneous early-onset glycogen storage disorder type IV (GSDIV) or the late-onset adult polyglucosan body disease (APBD). To better understand this essential enzyme, we crystallized human GBE1 in the apo form, and in complex with a tetra- or hepta-saccharide. The GBE1 structure reveals a conserved amylase core that houses the active centre for the branching reaction and harbours almost all GSDIV and APBD mutations. A non-catalytic binding cleft, proximal to the site of the common APBD mutation p.Y329S, was found to bind the tetra- and hepta-saccharides and may represent a higher-affinity site employed to anchor the complex glycogen substrate for the branching reaction. Expression of recombinant GBE1-p.Y329S resulted in drastically reduced protein yield and solubility compared with wild type, suggesting this disease allele causes protein misfolding and may be amenable to small molecule stabilization. To explore this, we generated a structural model of GBE1-p.Y329S and designed peptides ab initio to stabilize the mutation. As proof-of-principle, we evaluated treatment of one tetra-peptide, Leu-Thr-Lys-Glu, in APBD patient cells. We demonstrate intracellular transport of this peptide, its binding and stabilization of GBE1-p.Y329S, and 2-fold increased mutant enzymatic activity compared with untreated patient cells. Together, our data provide the rationale and starting point for the screening of small molecule chaperones, which could become novel therapies for this disease.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-09-25
    Description: Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-09-25
    Description: Trisomy 21 causes skeletal alterations in individuals with Down syndrome (DS), but the causative trisomic gene and a therapeutic approach to rescue these abnormalities are unknown. Individuals with DS display skeletal alterations including reduced bone mineral density, modified bone structure and distinctive facial features. Due to peripheral skeletal anomalies and extended longevity, individuals with DS are increasingly more susceptible to bone fractures. Understanding the genetic and developmental origin of DS skeletal abnormalities would facilitate the development of therapies to rescue these and other deficiencies associated with DS. DYRK1A is found in three copies in individuals with DS and Ts65Dn DS mice and has been hypothesized to be involved in many Trisomy 21 phenotypes including skeletal abnormalities. Return of Dyrk1a copy number to normal levels in Ts65Dn mice rescued the appendicular bone abnormalities, suggesting that appropriate levels of DYRK1A expression are critical for the development and maintenance of the DS appendicular skeleton. Therapy using the DYRK1A inhibitor epigallocatechin-3-gallate improved Ts65Dn skeletal phenotypes. These outcomes suggest that the osteopenic phenotype associated with DS may be rescued postnatally by targeting trisomic Dyrk1a .
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2015-11-21
    Description: Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase ( HPRT ), we monitor the relative utilization of three DSBR pathways following cleavage by I-Sce I or CRISPR/Cas9 nucleases. For I-Sce I, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-Sce I and Cas9 induced markedly different DSBR profiles. Also, using an I-Sce I-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-Sce I derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2015-11-21
    Description: Despite recent progress in the characterization of genetic loci associated with multiple sclerosis (MS) risk, the ubiquitous linkage disequilibrium operating across the genome has stalled efforts to distinguish causative variants from proxy single-nucleotide polymorphisms (SNPs). Here, we have identified through fine mapping and meta-analysis EVI5 as the most plausible disease risk gene within the 1p22.1 locus. We further show that an exonic SNP associated with risk induces changes in superficial hydrophobicity patterns of the coiled-coil domain of EVI5, which, in turns, affects the EVI5 interactome. Immunoprecipitation of wild-type and mutated EVI5 followed by mass spectrometry generated a roster of disease-specific interactors functionally linked to lipid metabolism. Among the exclusive binding partners of the risk variant, we describe the novel interaction with sphingosine 1-phosphate lyase (SGPL1)—a key enzyme for the creation of the sphingosine-1 phosphate gradient, which is relevant to the pathogenic process and therapeutic management of MS.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2015-11-21
    Description: Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is characterized by a loss of distal peripheral sensory and motorneuronal function, neuropathic pain and tissue necrosis. The most common cause of HSAN1 is due to dominant mutations in serine palmitoyl-transferase subunit 1 (SPT1). SPT catalyses the condensation of serine with palmitoyl-CoA, the initial step in sphingolipid biogenesis. Identified mutations in SPT1 are known to both reduce sphingolipid synthesis and generate catalytic promiscuity, incorporating alanine or glycine into the precursor sphingolipid to generate a deoxysphingoid base (DSB). Why either loss of function in SPT1 , or generation of DSBs should generate deficits in distal sensory function remains unclear. To address these questions, we generated a Drosophila model of HSAN1. Expression of dSpt1 bearing a disease-related mutation induced morphological deficits in synapse growth at the larval neuromuscular junction consistent with a dominant-negative action. Expression of mutant dSpt1 globally was found to be mildly toxic, but was completely toxic when the diet was supplemented with alanine, when DSBs were observed in abundance. Expression of mutant dSpt1 in sensory neurons generated developmental deficits in dendritic arborization with concomitant sensory deficits. A membrane trafficking defect was observed in soma of sensory neurons expressing mutant dSpt1 , consistent with endoplasmic reticulum (ER) to Golgi block. We found that we could rescue sensory function in neurons expressing mutant dSpt1 by co-expressing an effector of ER–Golgi function, Rab1 suggesting compromised ER function in HSAN1 affected dendritic neurons. Our Drosophila model identifies a novel strategy to explore the pathological mechanisms of HSAN1.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-11-21
    Description: Defective lysosomal acid β-glucosidase (GCase) in Gaucher disease causes accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) that distress cellular functions. To study novel pathological mechanisms in neuronopathic Gaucher disease (nGD), a mouse model (4L;C*), an analogue to subacute human nGD, was investigated for global profiles of differentially expressed brain mRNAs (DEGs) and miRNAs (DEmiRs). 4L;C* mice displayed accumulation of GC and GS, activated microglial cells, reduced number of neurons and aberrant mitochondrial function in the brain followed by deterioration in motor function. DEGs and DEmiRs were characterized from sequencing of mRNA and miRNA from cerebral cortex, brain stem, midbrain and cerebellum of 4L;C* mice. Gene ontology enrichment and pathway analysis showed preferential mitochondrial dysfunction in midbrain and uniform inflammatory response and identified novel pathways, axonal guidance signaling, synaptic transmission, eIF2 and mammalian target of rapamycin (mTOR) signaling potentially involved in nGD. Similar analyses were performed with mice treated with isofagomine (IFG), a pharmacologic chaperone for GCase. IFG treatment did not alter the GS and GC accumulation significantly but attenuated the progression of the disease and altered numerous DEmiRs and target DEGs to their respective normal levels in inflammation, mitochondrial function and axonal guidance pathways, suggesting its regulation on miRNA and the associated mRNA that underlie the neurodegeneration in nGD. These analyses demonstrate that the neurodegenerative phenotype in 4L;C* mice was associated with dysregulation of brain mRNAs and miRNAs in axonal guidance, synaptic plasticity, mitochondria function, eIF2 and mTOR signaling and inflammation and provides new insights for the nGD pathological mechanism.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-11-21
    Description: Fragile X-associated disorders are Repeat Expansion Diseases that result from expansion of a CGG/CCG-repeat in the FMR1 gene. Contractions of the repeat tract also occur, albeit at lower frequency. However, these contractions can potentially modulate disease symptoms or generate an allele with repeat numbers in the normal range. Little is known about the expansion mechanism and even less about contractions. We have previously demonstrated that the mismatch repair (MMR) protein MSH2 is required for expansions in a mouse model of these disorders. Here, we show that MSH3, the MSH2-binding partner in the MutSβ complex, is required for 98% of germ line expansions and all somatic expansions in this model. In addition, we provide evidence for two different contraction mechanisms that operate in the mouse model, a MutSβ-independent one that generates small contractions and a MutSβ-dependent one that generates larger ones. We also show that MutSβ complexes formed with the repeats have altered kinetics of ATP hydrolysis relative to complexes with bona fide MMR substrates and that MutSβ increases the stability of the CCG-hairpins at physiological temperatures. These data may have important implications for our understanding of the mechanism(s) of repeat instability and for the role of MMR proteins in this process.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-11-21
    Description: Amyloid-β (Aβ) peptides originating from β-amyloid precursor protein (APP) are critical in Alzheimer's disease (AD). Cellular cholesterol levels/distribution can regulate production and clearance of Aβ peptides, albeit with contradictory outcomes. To better understand the relationship between cholesterol homeostasis and APP/Aβ metabolism, we have recently generated a bigenic ANPC mouse line overexpressing mutant human APP in the absence of Niemann-Pick type C-1 protein required for intracellular cholesterol transport. Using this unique bigenic ANPC mice and complementary stable N2a cells, we have examined the functional consequences of cellular cholesterol sequestration in the endosomal–lysosomal system, a major site of Aβ production, on APP/Aβ metabolism and its relation to neuronal viability. Levels of APP C-terminal fragments (α-CTF/β-CTF) and Aβ peptides, but not APP mRNA/protein or soluble APPα/APPβ, were increased in ANPC mouse brains and N2a-ANPC cells. These changes were accompanied by reduced clearance of peptides and an increased level/activity of -secretase, suggesting that accumulation of APP-CTFs is due to decreased turnover, whereas increased Aβ levels may result from a combination of increased production and decreased turnover. APP-CTFs and Aβ peptides were localized primarily in early-/late-endosomes and to some extent in lysosomes/autophagosomes. Cholesterol sequestration impaired endocytic-autophagic-lysosomal, but not proteasomal, clearance of APP-CTFs/Aβ peptides. Moreover, markers of oxidative stress were increased in vulnerable brain regions of ANPC mice and enhanced β-CTF/Aβ levels increased susceptibility of N2a-ANPC cells to H 2 O 2 -induced toxicity. Collectively, our results show that cellular cholesterol sequestration plays a key role in APP/Aβ metabolism and increasing neuronal vulnerability to oxidative stress in AD-related pathology.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-11-20
    Description: A coregulated module of genes ("regulon") can have evolutionarily conserved expression patterns and yet have diverged upstream regulators across species. For instance, the ribosomal genes regulon is regulated by the transcription factor (TF) TBF1 in Candida albicans , while in Saccharomyces cerevisiae it is regulated by RAP1 . Only a handful of such rewiring events have been established, and the prevalence or conditions conducive to such events are not well known. Here, we develop a novel probabilistic scoring method to comprehensively screen for regulatory rewiring within regulons across 23 yeast species. Investigation of 1,713 regulons and 176 TFs yielded 5,353 significant rewiring events at 5% false discovery rate (FDR). Besides successfully recapitulating known rewiring events, our analyses also suggest TF candidates for certain processes reported to be under distinct regulatory controls in S. cerevisiae and C. albicans , for which the implied regulators are not known: 1) Oxidative stress response (Sc- MSN2 to Ca- FKH2 ) and 2) nutrient modulation (Sc- RTG1 to Ca- GCN4 /Ca- UME6 ). Furthermore, a stringent screen to detect TF rewiring at individual genes identified 1,446 events at 10% FDR. Overall, these events are supported by strong coexpression between the predicted regulator and its target gene(s) in a species-specific fashion (〉50-fold). Independent functional analyses of rewiring TF pairs revealed greater functional interactions and shared biological processes between them ( P = 1 x 10 –3 ). Our study represents the first comprehensive assessment of regulatory rewiring; with a novel approach that has generated a unique high-confidence resource of several specific events, suggesting that evolutionary rewiring is relatively frequent and may be a significant mechanism of regulatory innovation.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-11-20
    Description: Regulation of gene expression ensures an organism responds to stimuli and undergoes proper development. Although the regulatory networks in bacteria have been investigated in model microorganisms, nearly nothing is known about the evolution and plasticity of these networks in obligate, intracellular bacteria. The phylum Chlamydiae contains a vast array of host-associated microbes, including several human pathogens. The Chlamydiae are unique among obligate, intracellular bacteria as they undergo a complex biphasic developmental cycle in which large swaths of genes are temporally regulated. Coupled with the low number of transcription factors, these organisms offer a model to study the evolution of regulatory networks in intracellular organisms. We provide the first comprehensive analysis exploring the diversity and evolution of regulatory networks across the phylum. We utilized a comparative genomics approach to construct predicted coregulatory networks, which unveiled genus- and family-specific regulatory motifs and architectures, most notably those of virulence-associated genes. Surprisingly, our analysis suggests that few regulatory components are conserved across the phylum, and those that are conserved are involved in the exploitation of the intracellular niche. Our study thus lends insight into a component of chlamydial evolution that has otherwise remained largely unexplored.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-11-20
    Description: Mobile genetic elements such as plasmids are important for the evolution of prokaryotes. It has been suggested that there are differences between functions coded for by mobile genes and those in the "core" genome and that these differences can be seen between plasmids and chromosomes. In particular, it has been suggested that essential genes, such as those involved in the formation of structural proteins or in basic metabolic functions, are rarely located on plasmids. We model competition between genotypically varying bacteria within a single population to investigate whether selection favors a chromosomal location for essential genes. We find that in general, chromosomal locations for essential genes are indeed favored. This is because the inheritance of chromosomes is more stable than that for plasmids. We define the "degradation" rate as the rate at which chance genetic processes, for example, mutation, deletion, or translocation, render essential genes nonfunctioning. The only way in which plasmids can be a location for functioning essential genes is if chromosomal genes degrade faster than plasmid genes. If the two degradation rates are equal, or if plasmid genes degrade faster than chromosomal genes, functioning essential genes will be found only on chromosomes.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-11-20
    Description: During their evolutionary radiation, mammals have colonized diverse habitats. Arguably the subterranean niche is the most inhospitable of these, characterized by reduced oxygen, elevated carbon dioxide, absence of light, scarcity of food, and a substrate that is energetically costly to burrow through. Of all lineages to have transitioned to a subterranean niche, African mole-rats are one of the most successful. Much of their ecological success can be attributed to a diet of plant storage organs, which has allowed them to colonize climatically varied habitats across sub-Saharan Africa, and has probably contributed to the evolution of their diverse social systems. Yet despite their many remarkable phenotypic specializations, little is known about molecular adaptations underlying these traits. To address this, we sequenced the transcriptomes of seven mole-rat taxa, including three solitary species, and combined new sequences with existing genomic data sets. Alignments of more than 13,000 protein-coding genes encompassed, for the first time, all six genera and the full spectrum of ecological and social variation in the clade. We detected positive selection within the mole-rat clade and along ancestral branches in approximately 700 genes including loci associated with tumorigenesis, aging, morphological development, and sociality. By combining these results with gene ontology annotation and protein–protein networks, we identified several clusters of functionally related genes. This family wide analysis of molecular evolution in mole-rats has identified a suite of positively selected genes, deepening our understanding of the extreme phenotypic traits exhibited by this group.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-11-20
    Description: Viviparity (live birth) has evolved more than 150 times in vertebrates, and represents an excellent model system for studying the evolution of complex traits. There are at least 23 independent origins of viviparity in fishes, with syngnathid fishes (seahorses and pipefish) unique in exhibiting male pregnancy. Male seahorses and pipefish have evolved specialized brooding pouches that provide protection, gas exchange, osmoregulation, and limited nutrient provisioning to developing embryos. Pouch structures differ widely across the Syngnathidae, offering an ideal opportunity to study the evolution of reproductive complexity. However, the physiological and genetic changes facilitating male pregnancy are largely unknown. We used transcriptome profiling to examine pouch gene expression at successive gestational stages in a syngnathid with the most complex brood pouch morphology, the seahorse Hippocampus abdominalis. Using a unique time-calibrated RNA-seq data set including brood pouch at key stages of embryonic development, we identified transcriptional changes associated with brood pouch remodeling, nutrient and waste transport, gas exchange, osmoregulation, and immunological protection of developing embryos at conception, development and parturition. Key seahorse transcripts share homology with genes of reproductive function in pregnant mammals, reptiles, and other live-bearing fish, suggesting a common toolkit of genes regulating pregnancy in divergent evolutionary lineages.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-11-20
    Description: The spread of farming out of the Balkans and into the rest of Europe followed two distinct routes: An initial expansion represented by the Impressa and Cardial traditions, which followed the Northern Mediterranean coastline; and another expansion represented by the LBK (Linearbandkeramik) tradition, which followed the Danube River into Central Europe. Although genomic data now exist from samples representing the second migration, such data have yet to be successfully generated from the initial Mediterranean migration. To address this, we generated the complete genome of a 7,400-year-old Cardial individual (CB13) from Cova Bonica in Vallirana (Barcelona), as well as partial nuclear data from five others excavated from different sites in Spain and Portugal. CB13 clusters with all previously sequenced early European farmers and modern-day Sardinians. Furthermore, our analyses suggest that both Cardial and LBK peoples derived from a common ancient population located in or around the Balkan Peninsula. The Iberian Cardial genome also carries a discernible hunter–gatherer genetic signature that likely was not acquired by admixture with local Iberian foragers. Our results indicate that retrieving ancient genomes from similarly warm Mediterranean environments such as the Near East is technically feasible.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-11-20
    Description: Although millions of RNA editing events have been reported to modify hereditary information across the primate transcriptome, evidence for their functional significance remains largely elusive, particularly for the vast majority of editing sites in noncoding regions. Here, we report a new mechanism for the functionality of RNA editing—a crosstalk with PIWI-interacting RNA (piRNA) biogenesis. Exploiting rhesus macaque as an emerging model organism closely related to human, in combination with extensive genome and transcriptome sequencing in seven tissues of the same animal, we deciphered accurate RNA editome across both long transcripts and the piRNA species. Superimposing and comparing these two distinct RNA editome profiles revealed 4,170 editing-bearing piRNA variants, or epiRNAs, that primarily derived from edited long transcripts. These epiRNAs represent distinct entities that evidence an intersection between RNA editing regulations and piRNA biogenesis. Population genetics analyses in a macaque population of 31 independent animals further demonstrated that the epiRNA-associated RNA editing is maintained by purifying selection, lending support to the functional significance of this crosstalk in rhesus macaque. Correspondingly, these findings are consistent in human, supporting the conservation of this mechanism during the primate evolution. Overall, our study reports the earliest lines of evidence for a crosstalk between selectively constrained RNA editing regulation and piRNA biogenesis, and further illustrates that such an interaction may contribute substantially to the diversification of the piRNA repertoire in primates.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-11-20
    Description: Replication timing is an important determinant of germline mutation patterns, with a higher rate of point mutations in late replicating regions. Mechanisms underlying this association remain elusive. One of the suggested explanations is the activity of error-prone DNA polymerases in late-replicating regions. Polymerase zeta (pol ), an essential error-prone polymerase biased toward transversions, also has a tendency to produce dinucleotide mutations (DNMs), complex mutational events that simultaneously affect two adjacent nucleotides. Experimental studies have shown that pol is strongly biased toward GC-〉AA/TT DNMs. Using primate divergence data, we show that the GC-〉AA/TT pol mutational signature is the most frequent among DNMs, and its rate exceeds the mean rate of other DNM types by a factor of approximately 10. Unlike the overall rate of DNMs, the pol signature drastically increases with the replication time in the human genome. Finally, the pol signature is enriched in transcribed regions, and there is a strong prevalence of GC-〉TT over GC-〉AA DNMs on the nontemplate strand, indicating association with transcription. A recurrently occurring GC-〉TT DNM in HRAS and SOD1 genes causes the Costello syndrome and amyotrophic lateral sclerosis correspondently; we observe an approximately 1 kb long mutation hotspot enriched by transversions near these DNMs in both cases, suggesting a link between these diseases and pol activity. This study uncovers the genomic preferences of pol , shedding light on a novel cause of mutational heterogeneity along the genome.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-11-20
    Description: In this study, we present an analysis of Neanderthal introgression at the dipeptidase 1 gene, DPEP1 . A Neanderthal origin for the putative introgressive haplotypes was demonstrated using an established three-step approach. This introgression was under positive natural selection, reached a frequency of 〉50%, and introduced a homocysteine level- and pigmentation-associated allele (rs460879-T) into East Asians. However, the same allele was also found in non-East Asians, but not from Neanderthal introgression. It is likely that rs460879-T was lost in East Asians and was reintroduced subsequently through Neanderthal introgression. Our findings suggest that Neanderthal introgression could reintroduce an important previously existing allele into populations where the allele had been lost. This study sheds new light on understanding the contribution of Neanderthal introgression to the adaptation of non-Africans.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-11-20
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-11-20
    Description: RNase P is the endonuclease that removes 5' leader sequences from tRNA precursors. In Eukarya, separate RNase P activities exist in the nucleus and mitochondria/plastids. Although all RNase P enzymes catalyze the same reaction, the different architectures found in Eukarya range from ribonucleoprotein (RNP) enzymes with a catalytic RNA and up to 10 protein subunits to single-subunit protein-only RNase P (PRORP) enzymes. Here, analysis of the phylogenetic distribution of RNP and PRORP enzymes in Eukarya revealed 1) a wealth of novel P RNAs in previously unexplored phylogenetic branches and 2) that PRORP enzymes are more widespread than previously appreciated, found in four of the five eukaryal supergroups, in the nuclei and/or organelles. Intriguingly, the occurrence of RNP RNase P and PRORP seems mutually exclusive in genetic compartments of modern Eukarya. Our comparative analysis provides a global picture of the evolution and diversification of RNase P throughout Eukarya.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...