ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-10-29
    Description: The electric power industry sector has become increasingly aware of how counterproductive voltage sag affects distribution network systems (DNS). The voltage sag backfires disastrously at the demand load side and affects equipment in DNS. To settle the voltage sag issue, this paper achieved its primary purpose to mitigate the voltage sag based on integrating a hydrogen fuel cell (HFC) with the DNS using a distribution static synchronous compensator (D-STATCOM) system. Besides, this paper discusses the challenges and opportunities of D-STATCOM in DNS. In this paper, using HFC is well-designed, modeled, and simulated to mitigate the voltage sag in DNS with a positive impact on the environment and an immediate response to the issue of the injection of voltage. Furthermore, this modeling and controller are particularly suitable in terms of cost-effectiveness as well as reliability based on the adaptive network fuzzy inference system (ANFIS), fuzzy logic system (FLC), and proportional–integral (P-I). The effectiveness of the MATLAB simulation is confirmed by implementing the system and carrying out a DNS connection, obtaining efficiencies over 94.5% at three-phase fault for values of injection voltage in HFC D-STATCOM using a P-I controller. Moreover, the HFC D-STATCOM using FLC proved capable of supporting the network by 97.00%. The HFC D-STATCOM based ANFIS proved capable of supporting the network by 98.00% in the DNS.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-29
    Description: Horizontal wells can significantly improve the gas production and are expected to be an efficient exploitation method for the industrialization of natural gas hydrates (NGHs) in the future. However, the near-wellbore hydrate is highly prone to decomposition during the drilling process, owing to the disturbance aroused by the factors such as the drilling fluid temperature, pressure, and salinity. These issues can result in the engineering accidents such as bit sticking and wellbore instability, which are required for further investigations. This paper studies the characteristics of drilling fluid invasion into the marine NGH reservoir with varied drilling fluid parameters via numerical simulation. The effects of the drilling fluid parameters on the decomposition behavior of near-wellbore hydrates are presented. The simulating results show that the adjustments of drilling fluid density within the mud safety window have limited effects on the NGH decomposition, meanwhile the hydrates reservoir is most sensitive to the drilling fluid temperature variation. If the drilling fluid temperature grows considerably due to improper control, the range of the hydrates decomposition around the horizontal well tends to expand, which then aggravates wellbore instability. When the drilling fluid salinity varies in the range of 3.5–7.5%, the increase in the ion concentration speeds up the hydrate decomposition, which is adverse to maintaining wellbore stability.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-29
    Description: Apart from numerous technical challenges, the transition towards a carbon-neutral energy supply is greatly hindered by limited economic feasibility of renewable energy sources. This results in their slow and bounded penetration in both commercial and residential sectors that are responsible for over 40% of final energy consumption. This paper aims to demonstrate that combined application of sophisticated planning methodologies at building-level and presents incentive mechanisms for renewables that can result in prosumers, featuring hybrid renewable energy systems (HRES), with economic performance comparable to that of conventional energy systems. The presented research enhances existing planning methodologies by integrating appliance-level demand side management into the decision process and investigates its effect on the planning problem. Moreover, the proposed methodology features an innovative and holistic approach that simultaneously assess electrical and thermal domain in both an isolated and grid-connected context. The analyzed hybrid system consists of solar photovoltaic, wind turbine and battery with thermal supply featuring solar thermal collector and a ground-source heat pump. Overall optimization problem is modeled as a mixed-integer linear program, while ranking of all feasible alternatives is made by the multicriteria decision-making algorithm against several technological, economic, and environmental criteria. A real-life scenario of energy system retrofit for a building in the United Kingdom was employed to demonstrate overall cost savings of 12% in the present market and regulation context.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-28
    Description: In the EU 28, the installed heating appliance stock is quite old, with an actual replacement rate of 4%. This is directly reflected in the average efficiency of the installed heating systems, where around 60% of the stock is rated with an energy class of C or D (the lowest classes of the energy label scale). The European project HARP aims at raising consumers’ awareness of the planned replacement of their old and inefficient heating appliances with more efficient and renewable solutions. In this direction, an energy labeling methodology for old appliances has been developed to rate the installed stock before the introduction of the EU energy label. The methodology has been developed for space heating appliances and water heaters, targeting two types of users: end consumers and professional users. The validation considered about 4600 space heating appliances and 800 water heaters built between 1972 and 2019. Three heating appliances and two water heaters were tested in the laboratory, confirming the reliability of the proposed methodology. The expected impact of defining an energy labeling methodology for installed heating appliances increases the current replacement rate of these appliances in the EU from 4% to 5%.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-28
    Description: This work presents a comprehensive theoretical analysis of current-mode power amplifiers as a function of input power for different biasing classes under the common simplifying assumption of constant transconductance and hard current cut-off/saturation. Typically, the theoretical analysis of power amplifier performance and behavior are carried out only at maximum output power. However, to achieve high data-rates, modern telecommunication systems adopt signals characterized by a very high peak-to-average power ratio, thus it is useful to analyze the power amplifier behavior as a function of power back-off. Moreover, in many cases, to enhance the efficiency and/or to apply harmonic shaping techniques, a clipped drain-source current, which approaches a square wave, is required. The classical analysis can be extended to low power levels only under the assumption of power-independent conduction angle, which is true only for class-A and class-B amplifiers, and does not take into account possible waveform clipping at maximum current. This work presents a complete theoretical Fourier analysis of FET-based power amplifiers as a function of quiescent drain-source current at any input power level and accounting for the clipped current case, up to the square-wave limit, reorganizing and completing the material that can be found in classical textbooks in the field.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-28
    Description: Contemporary agriculture has become very energy-intensive and mainly uses electricity, which is needed for technological processes on livestock farms. Livestock faeces are burdensome for the environment due to the release of methane into the atmosphere. This article presents the concept of a self-sufficient livestock farm as an off-grid energy circuit that is a part of the agricultural process. The key idea is to obtain an energy flow using the concept of a smart valve to achieve a self-sufficient energy process based on a biogas plant, renewable energy sources, and energy storage. During the production process, a livestock farm produces large amounts of waste in the form of grey and black manure. On the one hand, these products are highly harmful to the environment, but on the other, they are valuable input products for another process, i.e., methane production. The methane becomes the fuel for cogeneration generators that produce heat and electricity. Heat and electricity are partly returned to the main farming process and partly used by residents of the area. In this way, a livestock farm and the inhabitants of a village or town can become energy self-sufficient and independent of national grids. The idea described in this paper shows the process of energy production combining a biogas plant, renewable energy sources, and an energy storage unit that enable farmland to become fully self-sufficient through the energy flow between all constituents of the energy cycle being maintained by a smart valve.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-28
    Description: Due to the complex and variable conditions under which wind turbines operate, existing working condition classification methods are inadequate for condition assessment of the main transmission system. Because working conditions are too few after classification, it cannot effectively describe the complex and variable working conditions of wind turbine. This can lead to high false-alarm rates in the condition monitoring, which affect normal operations. This paper proposes a working condition classification method for the main transmission system of wind turbines based on supervisory control and data acquisition (SCADA) data. Firstly, correlation analysis of SCADA data acquired by wind farm is used to select the parameters relevant to the main transmission system. Secondly, according to the wind turbine control principle, the working conditions are initially divided into four phases: shutdown, start-up, maximum wind energy tracking, and constant speed. The k-means clustering algorithm is used to subdivide the maximum wind energy-tracking phase and constant speed phase, which account for a larger proportion of the working conditions, to achieve better classification. Finally, a case study is used to demonstrate the calculation of alarm thresholds and alarm rates for each working condition. The results are compared with the direct use of k-means clustering for working condition classification. It is concluded that the proposed method can significantly reduce the false-alarm rate of the vibration detection process.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-28
    Description: In our research, we analyzed the energy and water consumption in diamond mining and laboratory synthesis operations. We used publicly available reports issued by two market leaders, DeBeers and ALROSA, to estimate water and energy use per carat of a rough diamond. The efficiency of the two most popular synthesis technologies for artificial diamonds—High-Pressure-High-Temperature (HPHT) and Microwave-assisted Chemical Vapor Deposition (M-CVD)—was examined. We found that the modern HPHT presses, with open cooling circuits, consume about 36 kWh/ct when producing gem-quality and average-sized (near-) colorless diamonds. ALROSA and DeBeers use about 96 kWh/ct and 150 kWh/ct, respectively, including all energy required to mine. Energy consumption of M-CVD processes can be different and depends on technological conditions. Our M-CVD machine is the least energy-efficient, requiring about 215 kWh/ct in the single-crystal regime, using 2.45-GHz magnetron for the support synthesis. The M-CVD methods of individual synthetic companies IIa Technology and Ekati Mine are different from our results and equal 77 and 143 kWh/ct, respectively. Water consumption for the HPHT and M-CVD methods was insignificant: approximately zero and 0.002 m3/ct, respectively, and below 0.077 m3/ct for ALROSA-mined diamonds. This study touches upon the impact of the diamond production methods used on the carbon footprint.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-28
    Description: By combining the advantages of different energy storage technologies, the hybrid energy storage system (HESS) can satisfy the multiple requirements of prosumer systems. However, the required capacity of the HESS is larger than that of the single-battery energy storage system (ESS). This paper investigates the energy exchange within the HESS caused by the phase shift of the low-pass filter controller and its relevant impact on the HESS. The results show that unnecessary energy exchange results in an oversized capacity and increased energy loss. In addition, the increase in the time constant of the low-pass filter controller leads to a larger phase shift, further contributing to the increases in the total capacity and energy loss. Furthermore, this paper compares the single-battery ESS, the battery-supercapacitor HESS, and the battery-flywheel HESS implemented in a household-prosumer system along with a renewable energy source (RES). The comparison of the ESS combinations demonstrates the differences between their power flows, the required capacities of their individual energy storage devices (ESDs), their energy losses, their battery lifetimes, and their project costs. The results indicate that techno-economic analysis should be performed carefully to select the appropriate ESS solution for specific household-prosumer systems.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-28
    Description: This study evaluated a potential transition of India’s power sector to 100% wind and solar energy sources. Applying a macro-energy IDEEA (Indian Zero Carbon Energy Pathways) model to 32 regions and 114 locations of potential installation of wind energy and 60 locations of solar energy, we evaluated a 100% renewable power system in India as a concept. We considered 153 scenarios with varying sets of generating and balancing technologies to evaluate each intermittent energy source separately and their complementarity. Our analysis confirms the potential technical feasibility and long-term reliability of a 100% renewable system for India, even with solar and wind energy only. Such a dual energy source system can potentially deliver fivefold the annual demand of 2019. The robust, reliable supply can be achieved in the long term, as verified by 41 years of weather data. The required expansion of energy storage and the grid will depend on the wind and solar energy structure and the types of generating technologies. Solar energy mostly requires intraday balancing that can be achieved through storage or demand-side flexibility. Wind energy is more seasonal and spatially scattered, and benefits from the long-distance grid expansion for balancing. The complementarity of the two resources on a spatial scale reduces requirements for energy storage. The demand-side flexibility is the key in developing low-cost supply with minimum curtailments. This can be potentially achieved with the proposed two-level electricity market where electricity prices reflect variability of the supply. A modelled experiment with price signals demonstrates how balancing capacity depends on the price levels of guaranteed and flexible types of loads, and therefore, can be defined by the market.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...