ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-06-04
    Description: The Mediterranean region is a hot spot of climate change vulnerable to increased droughts and heat waves. Scaling carbon fluxes from leaf to landscape levels is particularly challenging under drought conditions. We aimed to improve the mechanistic understanding of the seasonal acclimation of photosynthesis and morphology in sunlit and shaded leaves of four Mediterranean trees ( Quercus ilex L., Pinus halepensis Mill., Arbutus unedo L. and Quercus pubescens Willd.) under natural conditions. V c,max and J max were not constant, and mesophyll conductance was not infinite, as assumed in most terrestrial biosphere models, but varied significantly between seasons, tree species and leaf position. Favourable conditions in winter led to photosynthetic recovery and growth in the evergreens. Under moderate drought, adjustments in the photo/biochemistry and stomatal/mesophyllic diffusion behaviour effectively protected the photosynthetic machineries. Severe drought, however, induced early leaf senescence mostly in A. unedo and Q. pubescens , and significantly increased leaf mass per area in Q. ilex and P. halepensis . Shaded leaves had lower photosynthetic potentials but cushioned negative effects during stress periods. Species-specificity, seasonal variations and leaf position are key factors to explain vegetation responses to abiotic stress and hold great potential to reduce uncertainties in terrestrial biosphere models especially under drought conditions.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-04
    Description: Plants experiencing drought stress are frequently more susceptible to pathogens, likely via alterations in physiology that create favorable conditions for pathogens. Common plant responses to drought include the production of reactive oxygen species (ROS) and the accumulation of free amino acids (AAs), particularly proline. These same phenomena also frequently occur during pathogenic attack. Therefore, drought-induced perturbations in AA and ROS metabolism could potentially contribute to the observed enhanced susceptibility. Furthermore, nitrogen (N) availability can influence AA accumulation and affect plant resistance, but its contributions to drought-induced susceptibility are largely unexplored. Here we show that drought induces accumulation of hydrogen peroxide (H 2 O 2 ) in Austrian pine ( Pinus nigra Arnold) shoots, but that shoot infection by the blight and canker pathogen Diplodia sapinea (Fr.) Fuckel leads to large reductions in H 2 O 2 levels in droughted plants. In in vitro assays, H 2 O 2 was toxic to D. sapinea , and the fungus responded to this oxidative stress by increasing catalase and peroxidase activities, resulting in substantial H 2 O 2 degradation. Proline increased in response to drought and infection when examined independently, but unlike all other AAs, proline further increased in infected shoots of droughted trees. In the same tissues, the proline precursor, glutamate, decreased significantly. Proline was found to protect D. sapinea from H 2 O 2 damage, while also serving as a preferred N source in vitro. Fertilization increased constitutive and drought-induced levels of some AAs, but did not affect plant resistance. A new model integrating interactions of proline and H 2 O 2 metabolism with drought and fungal infection of plants is proposed.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-04
    Description: Small differences in the sensitivity of stomatal conductance to light intensity on leaf surfaces may lead to large differences in total canopy transpiration ( E C ) with increasing canopy leaf area ( L ). Typically, the increase of L would more than compensate for the decrease of transpiration per unit of leaf area ( E L ), resulting in concurrent increase of E C . However, highly shade-intolerant species, such as Larix principis-rupprechtii Mayr., may be so sensitive to increased shading that such compensation is not complete. We hypothesized that in such a stand, windfall-induced spatial variation at a decameter scale would result in greatly reduced E L in patches of high L leading to lower E C than low competition patches of sparse canopy. We further hypothesized that quicker extraction of soil moisture in patches of lower competition will result in earlier onset of drought symptoms in these patches. Thus, patches of low L will transition from light to soil moisture as the factor dominating E L . This process should progressively homogenize E C in the stand even as the variation of soil moisture is increasing. We tested the hypotheses utilizing sap flux of nine trees, and associated environmental and stand variables. The results were consistent with only some of the expectations. Under non-limiting soil moisture, E L was very sensitive to the spatial variation of L , decreasing sharply with increasing L and associated decrease of mean light intensity on leaf surfaces. Thus, under the conditions of ample soil moisture maximum E C decreased with increasing patch-scale L . Annual E C and biomass production also decreased with L , albeit more weakly. Furthermore, variation of E C among patches decreased as average stand soil moisture declined between rain events. However, contrary to expectation, high L plots which transpired less showed a greater E L sensitivity to decreasing stand-scale soil moisture, suggesting a different mechanism than simple control by decreasing soil moisture. We offer potential explanations to the observed phenomenon. Our results demonstrate that spatial variation of L at decameter scale, even within relatively homogeneous, single-species, even-aged stands, can produce large variation of transpiration, soil moisture and biomass production and should be considered in 1-D soil–plant–atmosphere models.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-04
    Description: The main goal of this study was to develop a method for the extraction and indirect estimation of the quantity of calcium oxalate (CaOx) in the foliage of trees. Foliar tissue was collected from a single tree of each species (five conifers and five hardwoods) for comparison of extractions in different solvents using 10 replicates per species from the same pool of tissue. For each species, calcium (Ca) and oxalate were extracted sequentially in double deionized water and 2N acetic acid, and finally, five replicate samples were extracted in 5% (0.83N) perchloric acid (PCA) and the other five in 2N hydrochloric acid (HCl); three cycles of freezing and thawing were used for each solvent. Total ions were extracted by microwave digestion. Calcium was quantified with an inductively coupled plasma emission spectrophotometer method and oxalate was eluted and quantified using a high performance liquid chromatography method. This experiment was repeated again with two conifer and two hardwood species using four trees per species, and two analytical replicates for each tree. We report here that, regardless of age of individual trees within a species, time of collection or species type, the third extraction in PCA or HCl resulted in near equimolar quantities of Ca and oxalate ( r 2  ≥ 0.99). This method provides an easy estimate of the quantity of CaOx crystals using a small sample of foliar tissue. An additional benefit of PCA is that it precipitates the nucleic acids and proteins, allowing the quantification of several free/soluble metabolites such as amino acids, polyamines, organic acids and inorganic elements all from a single sample extract.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-25
    Description: The white-rot fungus Heterobasidion parviporum Niemelä & Korhonen establishes a necrotrophic interaction with Norway spruce ( Picea abies (L.) H.Karst.) causing root and butt rot and growth losses in living trees. The interaction occurs first with the bark and the outer sapwood, as the pathogen enters the tree via wounds or root-to-root contacts. Later, when the fungus reaches the heartwood, it spreads therein creating a decay column, and the interaction mainly occurs in the inner sapwood where the tree creates a reaction zone. While bark and outer sapwood interactions are well studied, little is known about the nature of the transcriptional responses leading to the creation of a reaction zone. In this study, we sampled bark and sapwood both proximal and distal to the reaction zone in artificially inoculated and naturally infected trees. We quantified gene expression levels of candidate genes in secondary metabolite, hormone biosynthesis and signalling pathways using quantitative polymerase chain reaction. An up-regulation of mainly the phenylpropanoid pathway and jasmonic acid biosynthesis was found at the inoculation site, when inoculations were compared with wounding. We found that transcriptional responses in inner sapwood were similar to those reported upon infection through the bark. Our data suggest that the defence mechanism is induced due to direct fungal contact irrespective of the tissue type. Understanding the nature of these interactions is important when considering tree breeding-based resistance strategies to reduce the spread of the pathogen between and within trees.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-09-25
    Description: Global warming and associated decreases in summer rainfall may threaten tree vitality and forest productivity in many regions of the temperate zone in the future. One option for forestry to reduce the risk of failure is to plant genotypes which combine high productivity with drought tolerance. Growth experiments with provenances from different climates indicate that drought exposure can trigger adaptive drought responses in temperate trees, but it is not well known whether and to what extent regional precipitation reduction can increase the drought resistance of a species. We conducted a common garden growth experiment with five European beech ( Fagus sylvatica L.) populations from a limited region with pronounced precipitation heterogeneity (816–544 mm year –1 ), where phylogenetically related provenances grew under small to large water deficits. We grew saplings of the five provenances at four soil moisture levels (dry to moist) and measured ~30 morphological (leaf and root properties, root : shoot ratio), physiological (leaf water status parameters, leaf conductance) and growth-related traits (above- and belowground productivity) with the aim to examine provenance differences in the drought response of morphological and physiological traits and to relate the responsiveness to precipitation at origin. Physiological traits were more strongly influenced by provenance (one-third of the studied traits), while structural traits were primarily affected by water availability in the experiment (two-thirds of the traits). The modulus of leaf tissue elasticity reached much higher values late in summer in plants from moist origins resulting in more rapid turgor loss and a higher risk of hydraulic failure upon drought. While experimental water shortage affected the majority of morphological and productivity-related traits in the five provenances, most parameters related to leaf water status were insensitive to water shortage. Thus, plant morphology, and root growth in particular, did respond to reduced water availability with higher phenotypic plasticity than did physiology. We conclude that beech provenances exposed to different precipitation regimes have developed some genotypic differences with respect to leaf water status regulation, but these adaptations are associated with only minor adaptation in plant morphology and they do not affect the growth rate of the saplings.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-09-25
    Description: Many studies have demonstrated linkages between the occurrence of fog and ecophysiological functioning in cloud forests, but few have investigated hydraulic functioning as a determining factor that explains sharp changes in vegetation. The objective of this study was to compare the plant water status during cloud-immersed and non-immersed conditions and hydraulic vulnerability in branches and roots of species across a temperate, mountain fog ecotone. Because cloud forests are often dark, cool and very moist, we expected cloud forest species to have less drought-tolerant characteristics (i.e., lower P e and P 50 —the pressures required to induce a 12 and 50% loss in hydraulic conductivity, respectively) relative to non-cloud forest species in adjacent (lower elevation) forests. Additionally, due to the ability of cloud forest species to absorb cloud-fog water, we predicted greater improvements in hydraulic functioning during fog in cloud forest species relative to non-cloud forest species. Across the cloud forest ecotone, most species measured were very resistant to losses in conductivity with branch P 50 values from –4.5 to –6.0 MPa, hydraulic safety margins ( min – P 50 ) 〉1.5 MPa and low calculated hydraulic conductivity losses. Roots had greater vulnerabilities, with P 50 values ranging from –1.4 to –2.5 MPa, leading to greater predicted losses in conductivity (~20%). Calculated values suggested strong losses of midday leaf hydraulic conductance in three of the four species, supporting the hydraulic segmentation hypothesis. In both cloud forest and hardwood species, s were greater on foggy days than sunny days, demonstrating the importance of fog periods to plant water balance across fog regimes. Thus, frequent fog did not result in systemic changes in hydraulic functioning or vulnerability to embolism across our temperate cloud forest ecotone. Finally, roots functioned with lower hydraulic conductivity than branches, suggesting that they may serve as more sensitive indicators of hydraulic functioning in these mesic, foggy ecosystems.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-25
    Description: Climate warming is having an impact on distribution, acclimation and defence capability of plants. We compared the emission rate and composition of volatile organic compounds (VOCs) from silver birch ( Betula pendula (Roth)) provenances along a latitudinal gradient in a common garden experiment over the years 2012 and 2013. Micropropagated silver birch saplings from three provenances were acquired along a gradient of 7° latitude and planted at central (Joensuu 62°N) and northern (Kolari 67°N) sites. We collected VOCs emitted by shoots and assessed levels of herbivore damage of three genotypes of each provenance on three occasions at the central site and four occasions at the northern site. In 2012, trees of all provenances growing at the central site had higher total VOC emission rates than the same provenances growing at the northern site; in 2013 the reverse was true, thus indicating a variable effect of latitude. Trees of the southern provenance had lower VOC emission rates than trees of the central and northern provenances during both sampling years. However, northward or southward translocation itself had no significant effect on the total VOC emission rates, and no clear effect on insect herbivore damage. When VOC blend composition was studied, trees of all provenances usually emitted more green leaf volatiles at the northern site and more sesquiterpenes at the central site. The monoterpene composition of emissions from trees of the central provenance was distinct from that of the other provenances. In summary, provenance translocation did not have a clear effect in the short-term on VOC emissions and herbivory was not usually intense at the lower latitude. Our data did not support the hypothesis that trees growing at lower latitudes would experience more intense herbivory, and therefore allocate resources to chemical defence in the form of inducible VOC emissions.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-25
    Description: Virus-induced gene silencing (VIGS) has been shown to be an effective tool for investigating gene functions in herbaceous plant species, but has rarely been tested in trees. The establishment of a fast and reliable transformation system is especially important for woody plants, many of which are recalcitrant to transformation. In this study, we established a tobacco rattle virus (TRV)-based VIGS system for two Populus species, Populus euphratica and P.   x   canescens . Here, TRV constructs carrying a 266 bp or a 558 bp fragment of the phytoene desaturase (PDS) gene were Agrobacterium -infiltrated into leaves of the two poplar species. Agrobacterium -mediated delivery of the shorter insert, TRV2 -PePDS 266 , into the host poplars resulted in expected photobleaching in both tree species, but not the longer insert, PePDS 558 . The efficiency of VIGS was temperature-dependent, increasing by raising the temperature from 18 to 28 °C. The optimized TRV–VIGS system at 28 °C resulted in a high silencing frequency and efficiency up to 65–73 and 83–94%, respectively, in the two tested poplars. Moreover, syringe inoculation of Agrobacterium in 100 mM acetosyringone induced a more efficient silencing in the two poplar species, compared with other agroinfiltration methods, e.g., direct injection, misting and agrodrench. There were plant species-related differences in the response to VIGS because the photobleaching symptoms were more severe in P.   x   canescens than in P. euphratica. Furthermore, VIGS-treated P. euphratica exhibited a higher recovery rate (50%) after several weeks of the virus infection, compared with TRV-infected P.   x   canescens plants (20%). Expression stability of reference genes was screened to assess the relative abundance of PePDS mRNA in VIGS-treated P. euphratica and P.   x   canescens. PeACT7 was stably expressed in P. euphratica and UBQ-L was selected as the most suitable reference gene for P.   x   canescens using three different statistical approaches, geNorm, NormFinder and BestKeeper. Quantitative real-time PCR showed significant reductions in PDS transcripts (55–64%) in the photobleached leaves of both VIGS-treated poplar species. Our results demonstrate that the TRV-based VIGS provides a practical tool for gene functional analysis in Populus sp., especially in those poplar species which are otherwise recalcitrant to transformation.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-11-21
    Description: Latex, the cytoplasm of laticiferous cells localized in the inner bark of rubber trees ( Hevea brasiliensis Müll. Arg.), is collected by tapping the bark. Following tapping, latex flows out of the trunk and is regenerated, whereas in untapped trees, there is no natural exudation. It is still unknown whether the carbohydrates used for latex regeneration in tapped trees is coming from recent photosynthates or from stored carbohydrates, and in the former case, it is expected that latex carbon isotope composition of tapped trees will vary seasonally, whereas latex isotope composition of untapped trees will be more stable. Temporal variations of carbon isotope composition of trunk latex ( 13 C-L), leaf soluble compounds ( 13 C-S) and bulk leaf material ( 13 C-B) collected from tapped and untapped 20-year-old trees were compared. A marked difference in 13 C-L was observed between tapped and untapped trees whatever the season. Trunk latex from tapped trees was more depleted (1.6 on average) with more variable 13 C values than those of untapped trees. 13 C-L was higher and more stable across seasons than 13 C-S and 13 C-B, with a maximum seasonal difference of 0.7 for tapped trees and 0.3 for untapped trees. 13 C-B was lower in tapped than in untapped trees, increasing from August (middle of the rainy season) to April (end of the dry season). Differences in 13 C-L and 13 C-B between tapped and untapped trees indicated that tapping affects the metabolism of both laticiferous cells and leaves. The lack of correlation between 13 C-L and 13 C-S suggests that recent photosynthates are mixed in the large pool of stored carbohydrates that are involved in latex regeneration after tapping.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-11-21
    Description: Trees contain non-structural carbon (NSC), but it is unclear for how long these reserves are stored and to what degree they are used to support plant activity. We used radiocarbon ( 14 C) to show that the carbon (C) in stemwood NSC can achieve ages of several decades in California oaks. We separated NSC into two fractions: soluble (~50% sugars) and insoluble (mostly starch) NSC. Soluble NSC contained more C than insoluble NSC, but we found no consistent trend in the amount of either pool with depth in the stem. There was no systematic difference in C age between the two fractions, although ages increased with stem depth. The C in both NSC fractions was consistently younger than the structural C from which they were extracted. Together, these results indicate considerable inward mixing of NSC within the stem and rapid exchange between soluble and insoluble pools, compared with the timescale of inward mixing. We observed similar patterns in sympatric evergreen and deciduous oaks and the largest differences among tree stems with different growth rates. The 14 C signature of carbon dioxide (CO 2 ) emitted from tree stems was higher than expected from very recent photoassimilates, indicating that the mean age of C in respiration substrates included a contribution from C fixed years previously. A simple model that tracks NSC produced each year, followed by loss (through conversion to CO 2 ) in subsequent years, matches our observations of inward mixing of NSC in the stem and higher 14 C signature of stem CO 2 efflux. Together, these data support the idea of continuous accumulation of NSC in stemwood and that ‘vigor’ (growth rate) and leaf habit (deciduous vs evergreen) control NSC pool size and allocation.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-11-21
    Description: Gibberellins (GAs) are important regulators of plant shoot biomass growth, and GA 20-oxidase (GA20ox) is one of the major regulatory enzymes in the GA biosynthetic pathway. Previously, we showed that the expression levels of a putative GA20ox1 (i.e., PdGA20ox1 ) in stem tissue of 3-month-old seedlings of 12 families of Pinus densiflora were positively correlated with stem diameter growth across those same families growing in an even-aged 32-year-old pine forest (Park EJ, Lee WY, Kurepin LV, Zhang R, Janzen L, Pharis RP (2015) Plant hormone-assisted early family selection in Pinus densiflora via a retrospective approach. Tree Physiol 35:86–94). To further investigate the molecular function of this gene in the stem wood growth of forest trees, we produced transgenic poplar lines expressing PdGA20ox1 under the control of the 35S promoter (designated as 35S::PdGA20ox1). By age 3 months, most of the 35S::PdGA20ox1 poplar trees were showing an exceptional enhancement of stem wood growth, i.e., up to fourfold increases in stem dry weight, compared with the nontransformed control poplar plants. Significant increases in endogenous GA 1 , its immediate precursor (GA 20 ) and its catabolite (GA 8 ) in elongating internode tissue accompanied the increased stem growth in the transgenic lines. Additionally, the development of gelatinous fibers occurred in vertically grown stems of the 35S::PdGA20ox1 poplars. An analysis of the cell wall monosaccharide composition of the 35S::PdGA20ox1 poplars showed significant increases in xylose and glucose contents, indicating a qualitative increase in secondary wall depositions. Microarray analyses led us to find a total of 276 probe sets that were upregulated (using threefold as a threshold) in the stem tissues of 35S::PdGA20ox1 poplars relative to the controls. ‘Cell organization or biogenesis’- and ‘cell wall’-related genes were overrepresented, including many of genes that are involved in cell wall modification. Several transcriptional regulators, which positively regulate cell elongation through GA signaling, were also upregulated. In contrast, genes involved in defense signaling were appreciably downregulated in the 35S::PdGA20ox1 stem tissues, suggesting a growth versus defense trade-off. Taken together, our results suggest that PdGA20ox1 functions to promote stem growth and wood formation in poplar, probably by activating GA signaling while coincidentally depressing defense signaling.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-11-21
    Description: Bark beetles (Coleoptera: Curculionidae, Scolytinae) cause widespread tree mortality in coniferous forests worldwide. Constitutive and induced host defenses are important factors in an individual tree’s ability to survive an attack and in bottom-up regulation of bark beetle population dynamics, yet quantifying defense levels is often difficult. For example, in Pinus spp., resin flow is important for resistance to bark beetles but is extremely variable among individuals and within a season. While resin is produced and stored in resin ducts, the specific resin duct metrics that best correlate with resin flow remain unclear. The ability and timing of some pine species to produce induced resin is also not well understood. We investigated (i) the relationships between ponderosa pine ( Pinus ponderosa Lawson & C. Lawson) resin flow and axial resin duct characteristics, tree growth and physiological variables, and (ii) if mechanical wounding induces ponderosa pine resin flow and resin ducts in the absence of bark beetles. Resin flow increased later in the growing season under moderate water stress and was highest in faster growing trees. The best predictors of resin flow were nonstandardized measures of resin ducts, resin duct size and total resin duct area, both of which increased with tree growth. However, while faster growing trees tended to produce more resin, models of resin flow using only tree growth were not statistically significant. Further, the standardized measures of resin ducts, density and duct area relative to xylem area, decreased with tree growth rate, indicating that slower growing trees invested more in resin duct defenses per unit area of radial growth, despite a tendency to produce less resin overall. We also found that mechanical wounding induced ponderosa pine defenses, but this response was slow. Resin flow increased after 28 days, and resin duct production did not increase until the following year. These slow induced responses may allow unsuccessfully attacked or wounded trees to resist future bark beetle attacks. Forest management that encourages healthy, vigorously growing trees will also favor larger resin ducts, thereby conferring increased constitutive resistance to bark beetle attacks.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-11-21
    Description: Temperature responses and sensitivity of photosynthesis ( A n _ T ) and respiration for leaves at different ages are crucial to modeling ecosystem carbon (C) cycles and productivity of evergreen forests. Understanding the mechanisms and processes of temperature sensitivity may further shed lights on temperature acclimation of photosynthesis and respiration with leaf aging. The current study examined temperature responses of photosynthesis and respiration of young leaves (YLs) (fully expanded in current growth season) and old leaves (OLs) (fully expanded in last growth season) of Quercus aquifolioides Rehder and E.H. Wilson in an alpine oak forest, southwestern China. Temperature responses of dark respiration ( R dark ), net assimilation ( A n ), maximal velocity of carboxylation ( V cmax ) and maximum rate of electron transport ( J max ) were significantly different between the two leaf ages. Those differences implied different temperature response parameters should be used for leaves of different ages in modeling vegetation productivity and ecosystem C cycles in Q. aquifolioides forests and other evergreen forests. We found that RuBP carboxylation determined the downward shift of A n _ T in OLs, while RuBP regeneration and the balance between Rubisco carboxylation and RuBP regeneration made little contribution. Sensitivity of stomatal conductance to vapor pressure deficit changed in OLs and compensated part of the downward shift. We also found that OLs of Q. aquifolioides had lower A n due to lower stomatal conductance, higher stomatal conductance limitation and deactivation of the biochemical processes. In addition, the balance between R dark and A n changed between OLs and YLs, which was represented by a higher R dark / A n ratio for OLs.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-11-21
    Description: Plants allocate carbon (C) to sink tissues depending on phenological, physiological or environmental factors. We still have little knowledge on C partitioning into various cellular compounds and metabolic pathways at various ecophysiological stages. We used compound-specific stable isotope analysis to investigate C partitioning of freshly assimilated C into tree compartments (needles, branches and stem) as well as into needle water-soluble organic C (WSOC), non-hydrolysable structural organic C (stOC) and individual chemical compound classes (amino acids, hemicellulose sugars, fatty acids and alkanes) of Norway spruce ( Picea abies ) following in situ 13 C pulse labelling 15 days after bud break. The 13 C allocation within the above-ground tree biomass demonstrated needles as a major C sink, accounting for 86% of the freshly assimilated C 6 h after labelling. In needles, the highest allocation occurred not only into the WSOC pool (44.1% of recovered needle 13 C) but also into stOC (33.9%). Needle growth, however, also caused high 13 C allocation into pathways not involved in the formation of structural compounds: (i) pathways in secondary metabolism, (ii) C-1 metabolism and (iii) amino acid synthesis from photorespiration. These pathways could be identified by a high 13 C enrichment of their key amino acids. In addition, 13 C was strongly allocated into the n -alkyl lipid fraction (0.3% of recovered 13 C), whereby 13 C allocation into cellular and cuticular exceeded that of epicuticular fatty acids. 13 C allocation decreased along the lipid transformation and translocation pathways: the allocation was highest for precursor fatty acids, lower for elongated fatty acids and lowest for the decarbonylated n -alkanes. The combination of 13 C pulse labelling with compound-specific 13 C analysis of key metabolites enabled tracing relevant C allocation pathways under field conditions. Besides the primary metabolism synthesizing structural cell compounds, a complex network of pathways consumed the assimilated 13 C and kept most of the assimilated C in the growing needles.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-11-21
    Description: Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g –1 for soluble sugars, 6–533 (mean = 94) mg g –1 for starch and 53–649 (mean = 153) mg g –1 for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R 2 = 0.05–0.12 for soluble sugars, 0.10–0.33 for starch and 0.01–0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g –1 for total NSC, compared with the range of laboratory estimates of 596 mg g –1 . Laboratories were reasonably consistent in their ranks of estimates among tissues for starch ( r = 0.41–0.91), but less so for total NSC ( r = 0.45–0.84) and soluble sugars ( r = 0.11–0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-08-03
    Description: We employed the warm temperate conifer Cunninghamia lanceolata (Lamb.) Hook. as a model of plantation forest species to investigate ecophysiological responses to root treatments (control (0%), and ~25, 50 or 75% of the initial root mass) under well-watered and water-limited conditions. Our results indicated that total root dry mass accumulation was negatively associated with the severity of root pruning, but there was evidence of multiple compensatory responses. The plants exhibited higher instantaneous and long-term (assessed by carbon isotope composition, 13 C) water-use efficiency in pruning treatments, especially under low water availability. Root pruning also increased the fine root/total root mass ratio, specific root length and fine root vitality in both water availability treatments. As a result of the compensatory responses, under well-watered conditions, height, stem dry mass accumulation, leaf/fine root biomass ratio (L/FR), transpiration rate, photosynthetic capacity and photosynthetic nitrogen-use efficiency ( E N ) were the highest under 25% pruning. Yet, all these traits except L/FR and foliage nitrogen content were severely reduced under 75% pruning. Drought negatively affected growth and leaf gas exchange rates, and there was a greater negative effect on growth, water potential, gas exchange and E N when 〉25% of total root biomass was removed. The stem/aboveground mass ratio was the highest under 25% pruning in both watering conditions. These results indicate that the responses to root severance are related to the excision intensity and soil moisture content. A moderate root pruning proved to be an effective means to improve stem dry mass accumulation.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-08-03
    Description: The timing of wood formation is crucial to determine how environmental factors affect tree growth. The long-lived bristlecone pine ( Pinus longaeva D. K. Bailey) is a foundation treeline species in the Great Basin of North America reaching stem ages of about 5000 years. We investigated stem cambial phenology and radial size variability to quantify the relative influence of environmental variables on bristlecone pine growth. Repeated cellular measurements and half-hourly dendrometer records were obtained during 2013 and 2014 for two high-elevation stands included in the Nevada Climate-ecohydrological Assessment Network. Daily time series of stem radial variations showed rehydration and expansion starting in late April–early May, prior to the onset of wood formation at breast height. Formation of new xylem started in June and lasted until mid-September. There were no differences in phenological timing between the two stands, or in the air and soil temperature thresholds for the onset of xylogenesis. A multiple logistic regression model highlighted a separate effect of air and soil temperature on xylogenesis, the relevance of which was modulated by the interaction with vapor pressure and soil water content. While air temperature plays a key role in cambial resumption after winter dormancy, soil thermal conditions coupled with snowpack dynamics also influence the onset of wood formation by regulating plant–soil water exchanges. Our results help build a physiological understanding of climate–growth relationships in P. longaeva , the importance of which for dendroclimatic reconstructions can hardly be overstated. In addition, environmental drivers of xylogenesis at the treeline ecotone, by controlling the growth of dominant species, ultimately determine ecosystem responses to climatic change.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-08-03
    Description: Seasonal analyses of cambial cell production and day-by-day stem radial increment can help to elucidate how climate modulates wood formation in conifers. Intra-annual dynamics of wood formation were determined with microcores and dendrometers and related to climatic signals in Norway spruce ( Picea abies (L.) Karst.). The seasonal dynamics of these processes were observed at two sites of different altitude, Savignano (650 m a.s.l.) and Lavazè (1800 m a.s.l.) in the Italian Alps. Seasonal dynamics of cambial activity were found to be site specific, indicating that the phenology of cambial cell production is highly variable and plastic with altitude. There was a site-specific trend in the number of cells in the wall thickening phase, with the maximum cell production in early July (DOY 186) at Savignano and in mid-July (DOY 200) at Lavazè. The formation of mature cells showed similar trends at the two sites, although different numbers of cells and timing of cell differentiation were visible in the model shapes; at the end of ring formation in 2010, the number of cells was four times higher at Savignano (106.5 cells) than at Lavazè (26.5 cells). At low altitudes, microcores and dendrometers described the radial growth patterns comparably, though the dendrometer function underlined the higher upper asymptote of maximum growth in comparison with the cell production function. In contrast, at high altitude, these functions exhibited different trends. The best model was obtained by fitting functions of the Gompertz model to the experimental data. By combining radial growth and cambial activity indices we defined a model system able to synchronize these processes. Processes of adaptation of the pattern of xylogenesis occurred, enabling P. abies to occupy sites with contrasting climatic conditions. The use of daily climatic variables in combination with plant functional traits obtained by sensors and/or destructive sampling could provide a suitable tool to better investigate the effect of disturbances on response strategies in trees and, consequently, contribute to improving our prediction of tree growth and species resilience based on climate scenarios.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-08-03
    Description: In deciduous trees growing in temperate forests, bud break and growth in spring must rely on intrinsic carbon (C) reserves. Yet it is unclear whether growth and C storage occur simultaneously, and whether starch C in branches is sufficient for refoliation. To test in situ the relationships between growth, phenology and C utilization, we monitored stem growth, leaf phenology and stem and branch nonstructural carbohydrate (NSC) dynamics in three deciduous species: Carpinus betulus L., Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. To quantify the role of NSC in C investment into growth, a C balance approach was applied. Across the three species, 〉95% of branchlet starch was consumed during bud break, confirming the importance of C reserves for refoliation in spring. The C balance calculation showed that 90% of the C investment in foliage (7.0–10.5 kg tree –1 and 5–17 times the C needed for annual stem growth) was explained by simultaneous branchlet starch degradation. Carbon reserves were recovered sooner than expected, after leaf expansion, in parallel with stem growth. Carpinus had earlier leaf phenology (by ~25 days) but delayed cambial growth (by ~15 days) than Fagus and Quercus , the result of a competitive strategy to flush early, while having lower NSC levels.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-08-03
    Description: Fungal infections result in decreases in photosynthesis, induction of stress and signaling volatile emissions and reductions in constitutive volatile emissions, but the way different physiological processes scale with the severity of infection is poorly known. We studied the effects of infection by the obligate biotrophic fungal pathogen Melampsora larici-populina Kleb., the causal agent of poplar leaf rust disease, on photosynthetic characteristics, and constitutive isoprene and induced volatile emissions in leaves of Populus balsamifera var. suaveolens (Fisch.) Loudon. exhibiting different degrees of damage. The degree of fungal damage, quantified by the total area of chlorotic and necrotic leaf areas, varied between 0 (noninfected control) and ~60%. The rates of all physiological processes scaled quantitatively with the degree of visual damage, but the scaling with damage severity was weaker for photosynthetic characteristics than for constitutive and induced volatile release. Over the whole range of damage severity, the net assimilation rate per area ( A A ) decreased 1.5-fold, dry mass per unit area 2.4-fold and constitutive isoprene emissions 5-fold, while stomatal conductance increased 1.9-fold and dark respiration rate 1.6-fold. The emissions of key stress and signaling volatiles (methanol, green leaf volatiles, monoterpenes, sesquiterpenes and methyl salicylate) were in most cases nondetectable in noninfested leaves, and increased strongly with increasing the spread of infection. The moderate reduction in A A resulted from the loss of photosynthetically active biomass, but the reduction in constitutive isoprene emissions and the increase in induced volatile emissions primarily reflected changes in the activities of corresponding biochemical pathways. Although all physiological alterations in fungal-infected leaves occurred in a stress severity-dependent manner, modifications in primary and secondary metabolic pathways scaled differently due to contrasting operational mechanisms.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-08-03
    Description: Current knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine ( Pinus sylvestris L.) grown on two sites under non-stress conditions. These parameters were derived from the OJIP part of the ChlF kinetics curve and characterize individual parts of primary photosynthetic processes associated, for example, with the exciton trapping by light-harvesting antennae, energy utilization in photosystem II (PSII) reaction centers (RCs) and its transfer further down the photosynthetic electron-transport chain. An additive relationship matrix was estimated based on pedigree reconstruction, utilizing a set of highly polymorphic single sequence repeat markers. Variance decomposition was conducted using the animal genetic evaluation mixed-linear model. The majority of ChlF parameters in the analyzed pine populations showed significant additive genetic variation. Statistically significant heritability estimates were obtained for most ChlF indices, with the exception of DI 0 /RC, D0 and P0 ( F v / F m ) parameters. Estimated heritabilities varied around the value of 0.15 with the maximal value of 0.23 in the ET 0 /RC parameter, which indicates electron-transport flux from Q A to Q B per PSII RC. No significant correlation was found between these indices and selected growth traits. Moreover, no genotype  x  environment interaction (G  x  E) was detected, i.e., no differences in genotypes’ performance between sites. The absence of significant G  x  E in our study is interesting, given the relatively low heritability found for the majority of parameters analyzed. Therefore, we infer that polygenic variability of these indices is selectively neutral.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-08-03
    Description: The ethylene response factor (ERF) family is one of the largest plant-specific transcription factor families, playing an important role in plant development and response to stresses. The ERF76 gene is a member of the poplar ERF transcription factor gene family. First, we validated that the ERF76 gene expressed in leaf and root tissues is responsive to salinity stress. We then successfully cloned the ERF76 cDNA fragment containing an open reading frame from di-haploid Populus simonii   x   Populus nigra and proved that ERF76 protein is targeted to the nucleus. Finally, we transferred the gene into the same poplar clone by the Agrobacterium -mediated leaf disc method. Using both RNA-Seq and reverse transcription-quantitative polymerase chain reaction, we validated that expression level of ERF76 is significantly higher in transgenic plants than that in the nontransgenic control. Using RNA-Seq data, we have identified 375 genes that are differentially expressed between the transgenic plants and the control under salt treatment. Among the differentially expressed genes, 16 are transcription factor genes and 45 are stress-related genes, both of which are upregulated significantly in transgenic plants, compared with the control. Under salt stress, the transgenic plants showed significant increases in plant height, root length, fresh weight, and abscisic acid (ABA) and gibberellin (GA) concentration compared with the control, suggesting that overexpression of ERF76 in transgenic poplar upregulated the expression of stress-related genes and increased the ability of ABA and GA biosynthesis, which resulted in stronger tolerance to salt stress.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-08-03
    Description: Summer droughts are likely to increase in frequency and intensity across Europe, yet long-lived trees may have a limited ability to tolerate drought. It is therefore critical that we improve our understanding of phenotypic plasticity to drought in natural populations for ecologically and economically important trees such as Populus nigra L. A common garden experiment was conducted using ~500 wild P. nigra trees, collected from 11 river populations across Europe. Phenotypic variation was found across the collection, with southern genotypes from Spain and France characterized by small leaves and limited biomass production. To examine the relationship between phenotypic variation and drought tolerance, six genotypes with contrasting leaf morphologies were subjected to a water deficit experiment. ‘North eastern’ genotypes were collected at wet sites and responded to water deficit with reduced biomass growth, slow stomatal closure and reduced water use efficiency (WUE) assessed by 13 C. In contrast, ‘southern’ genotypes originating from arid sites showed rapid stomatal closure, improved WUE and limited leaf loss. Transcriptome analyses of a genotype from Spain (Sp2, originating from an arid site) and another from northern Italy (Ita, originating from a wet site) revealed dramatic differences in gene expression response to water deficit. Transcripts controlling leaf development and stomatal patterning, including SPCH , ANT , ER , AS1 , AS2 , PHB , CLV1 , ERL1–3 and TMM , were down-regulated in Ita but not in Sp2 in response to drought.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-08-03
    Description: Isoprene is the most abundant type of nonmethane, biogenic volatile organic compound in the atmosphere, and it is produced mainly by terrestrial plants. The tropical tree species Ficus septica Burm. F. (Rosales: Moraceae) has been shown to cease isoprene emissions when exposed to temperatures of 12 °C or lower and to re-induce isoprene synthesis upon subsequent exposure to temperatures of 30 °C or higher for 24 h. To elucidate the regulation of genes underlying the disabling and then induction of isoprene emission during acclimatization to ambient temperature, we conducted gene expression analyses of F. septica plants under changing temperature using quantitative real-time polymerase chain reaction and western blotting. Transcription levels were analyzed for 17 genes that are involved in metabolic pathways potentially associated with isoprene biosynthesis, including isoprene synthase ( ispS ). The protein levels of ispS were also measured. Changes in transcription and protein levels of the ispS gene, but not in the other assessed genes, showed identical temporal patterns to isoprene emission capacity under the changing temperature regime. The ispS protein levels strongly and positively correlated with isoprene emission capacity ( R 2  = 0.92). These results suggest that transcriptional regulation of ispS gave rise to the temporal variation in isoprene emission capacity in response to changing temperature.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-08-03
    Description: Clonal integration between ramets can be an ecological advantage of clonal plant species in environments where resources are patchily distributed. We investigated physiological integration among Populus balsamifera L. ramets under drought stress in order to demonstrate water sharing between connected ramets. Pairs of connected ramets were grown in separate pots in the greenhouse where half of ramets had the parental root connection severed and half were left intact. Drought stress was applied to one ramet, and growth, specific leaf area (SLA), net photosynthesis, stomatal conductance, leaf water potential and carbon isotopic composition ( 13 C) were measured after an 8-week growing period. Droughted ramets connected to watered ramets were able to maintain high gas exchange activity and water potential, similar to watered ramets. Leaf water potential and SLA results showed that the root connection was more beneficial for proximal compared with distal ramets. The parental root connection also allowed droughted ramets to discriminate more against 13 C compared with severed ramets. In conclusion, this study shows compelling evidence of physiological integration of connected P. balsamifera ramets through water sharing.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-04-30
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-04-30
    Description: Wood biophysical properties and the dynamics of water storage discharge and refilling were studied in the trunk of canopy tree species with diverse life history and functional traits in subtropical forests of northeast Argentina. Multiple techniques assessing capacitance and storage capacity were used simultaneously to improve our understanding of the functional significance of internal water sources in trunks of large trees. Sapwood capacitances of 10 tree species were characterized using pressure–volume relationships of sapwood samples obtained from the trunk. Frequency domain reflectometry was used to continuously monitor the volumetric water content in the main stems. Simultaneous sap flow measurements on branches and at the base of the tree trunk, as well as diurnal variations in trunk contraction and expansion, were used as additional measures of stem water storage use and refilling dynamics. All evidence indicates that tree trunk internal water storage contributes from 6 to 28% of the daily water budget of large trees depending on the species. The contribution of stored water in stems of trees to total daily transpiration was greater for deciduous species, which exhibited higher capacitance and lower sapwood density. A linear relationship across species was observed between wood density and growth rates with the higher wood density species (mostly evergreen) associated with lower growth rates and the lower wood density species (mostly deciduous) associated with higher growth rates. The large sapwood capacitance in deciduous species may help to avoid catastrophic embolism in xylem conduits. This may be a low-cost adaptation to avoid water deficits during peak water use at midday and under temporary drought periods and will contribute to higher growth rates in deciduous tree species compared with evergreen ones. Large capacitance appears to have a central role in the rapid growth patterns of deciduous species facilitating rapid canopy access as these species are less shade tolerant than evergreen species.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-04-30
    Description: Nuclear magnetic resonance (NMR) and NMR imaging (magnetic resonance imaging) offer the possibility to quantitatively and non-invasively measure the presence and movement of water. Unfortunately, traditional NMR hardware is expensive, poorly suited for plants, and because of its bulk and complexity, not suitable for use in the field. But does it need to be? We here explore how novel, small-scale portable NMR devices can be used as a flow sensor to directly measure xylem sap flow in a poplar tree ( Populus nigra L.), or in a dendrometer-like fashion to measure dynamic changes in the absolute water content of fruit or stems. For the latter purpose we monitored the diurnal pattern of growth, expansion and shrinkage in a model fruit (bean pod, Phaseolus vulgaris L.) and in the stem of an oak tree ( Quercus robur L.). We compared changes in absolute stem water content, as measured by the NMR sensor, against stem diameter variations as measured by a set of conventional point dendrometers, to test how well the sensitivities of the two methods compare and to investigate how well diurnal changes in trunk absolute water content correlate with the concomitant diurnal variations in stem diameter. Our results confirm the existence of a strong correlation between the two parameters, but also suggest that dynamic changes in oak stem water content could be larger than is apparent on the basis of the stem diameter variation alone.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-04-30
    Description: While natural spatial temperature gradients between measurement needles have been thoroughly investigated for continuous heat-based sap flow methods, little attention has been given to how natural changes in stem temperature impact heat pulse-based methods through temporal rather than spatial effects. By modelling the theoretical equation for both an ideal instantaneous pulse and a step pulse and applying a finite element model which included actual needle dimensions and wound effects, the influence of a varying stem temperature on heat pulse-based methods was investigated. It was shown that the heat ratio (HR) method was influenced, while for the compensation heat pulse and T max methods changes in stem temperatures of up to 0.002 °C s –1 did not lead to significantly different results. For the HR method, rising stem temperatures during measurements led to lower heat pulse velocity values, while decreasing stem temperatures led to both higher and lower heat pulse velocities, and to imaginary results for high flows. These errors of up to 40% can easily be prevented by including a temperature correction in the data analysis procedure, calculating the slope of the natural temperature change based on the measured temperatures before application of the heat pulse. Results of a greenhouse and outdoor experiment on Pinus pinea L. show the influence of this correction on low and average sap flux densities.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-04-30
    Description: The control of plant transpiration by stomata under water stress and recovery conditions is of paramount importance for plant performance and survival. Although both chemical and hydraulic signals emitted within a plant are considered to play a major role in controlling stomatal dynamics, they have rarely been assessed together. The aims of this study were to evaluate (i) the dynamics of chemical and hydraulic signals at leaf, stem and root level, and (ii) their effect on the regulation of stomatal conductance ( g s ) during water stress and recovery. Measurements of g s , water potential, abscisic acid (ABA) content and loss of hydraulic functioning at leaf, stem and root level were conducted during a water stress and recovery period imposed on 1-year-old olive plants ( Olea europaea L.). Results showed a strong hydraulic segmentation in olive plants, with higher hydraulic functioning losses in roots and leaves than in stems. The dynamics of hydraulic conductance of roots and leaves observed as water stress developed could explain both a protection of the hydraulic functionality of larger organs of the plant (i.e., branches, etc.) and a role in the down-regulation of g s . On the other hand, ABA also increased, showing a similar pattern to g s dynamics, and thus its effect on g s in response to water stress cannot be ruled out. However, neither hydraulic nor non-hydraulic factors were able to explain the delay in the full recovery of g s after soil water availability was restored.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-04-30
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-04-30
    Description: For isohydric trees mid-day water uptake is stable and depends on soil water status, reflected in pre-dawn leaf water potential ( pd ) and mid-day stem water potential ( md ), tree hydraulic conductance and a more-or-less constant leaf water potential ( l ) for much of the day, maintained by the stomata. Stabilization of l can be represented by a linear relationship between canopy resistance ( R c ) and vapor pressure deficit ( D ), and the slope ( B D ) is proportional to the steady-state water uptake. By analyzing sap flow (SF), meteorological and md measurements during a series of wetting and drying ( D / W ) cycles in a nectarine orchard, we found that for the range of md relevant for irrigated orchards the slope of the relationship of R c to D , B D is a linear function of md . R c was simulated using the above relationships, and its changes in the morning and evening were simulated using a rectangular hyperbolic relationship between leaf conductance and photosynthetic irradiance, fitted to leaf-level measurements. The latter was integrated with one-leaf, two-leaf and integrative radiation models, and the latter gave the best results. Simulated R c was used in the Penman–Monteith equation to simulate tree transpiration, which was validated by comparing with SF from a separate data set. The model gave accurate estimates of diurnal and daily total tree transpiration for the range of md s used in regular and deficit irrigation. Diurnal changes in tree water content were determined from the difference between simulated transpiration and measured SF . Changes in water content caused a time lag of 90–105 min between transpiration and SF for md between –0.8 and –1.55 MPa, and water depletion reached 3 l h –1 before noon. Estimated mean diurnal changes in water content were 5.5 l day –1  tree –1 at md of –0.9 MPa and increased to 12.5 l day –1  tree –1 at –1.45 MPa, equivalent to 6.5 and 16.5% of daily tree water use, respectively. Sixteen percent of the dynamic water volume was in the leaves. Inversion of the model shows that md can be predicted from D and R c , which may have some importance for irrigation management to maintain target values of md . That relationship will be explored in future research.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-04-08
    Description: Drought-related tree die-off episodes have been observed in all vegetated continents. Despite much research effort, however, the multiple interactions between carbon starvation, hydraulic failure and biotic agents in driving tree mortality under field conditions are still not well understood. We analysed the seasonal variability of non-structural carbohydrates (NSCs) in four organs (leaves, branches, trunk and roots), the vulnerability to embolism in roots and branches, native embolism (percentage loss of hydraulic conductivity (PLC)) in branches and the presence of root rot pathogens in defoliated and non-defoliated individuals in a declining Scots pine ( Pinus sylvestris L.) population in the NE Iberian Peninsula in 2012, which included a particularly dry and warm summer. No differences were observed between defoliated and non-defoliated pines in hydraulic parameters, except for a higher vulnerability to embolism at pressures below –2 MPa in roots of defoliated pines. No differences were found between defoliation classes in branch PLC. Total NSC (TNSC, soluble sugars plus starch) values decreased during drought, particularly in leaves. Defoliation reduced TNSC levels across tree organs, especially just before (June) and during (August) drought. Root rot infection by the fungal pathogen Onnia P. Karst spp. was detected but it did not appear to be associated to tree defoliation. However, Onnia infection was associated with reduced leaf-specific hydraulic conductivity and sapwood depth, and thus contributed to hydraulic impairment, especially in defoliated pines. Infection was also associated with virtually depleted root starch reserves during and after drought in defoliated pines. Moreover, defoliated and infected trees tended to show lower basal area increment. Overall, our results show the intertwined nature of physiological mechanisms leading to drought-induced mortality and the inherent difficulty of isolating their contribution under field conditions.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-04-08
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-04-08
    Description: Non-structural carbohydrates (NSCs) are critical to maintain plant metabolism under stressful environmental conditions, but we do not fully understand how NSC allocation and utilization from storage varies with stress. While it has become established that storage allocation is unlikely to be a mere overflow process, very little empirical evidence has been produced to support this view, at least not for trees. Here we present the results of an intensively monitored experimental manipulation of whole-tree carbon (C) balance (young Picea abies (L.) H Karst.) using reduced atmospheric [CO 2 ] and drought to reduce C sources. We measured specific C storage pools (glucose, fructose, sucrose, starch) over 21 weeks and converted concentration measurement into fluxes into and out of the storage pool. Continuous labeling ( 13 C) allowed us to track C allocation to biomass and non-structural C pools. Net C fluxes into the storage pool occurred mainly when the C balance was positive. Storage pools increased during periods of positive C gain and were reduced under negative C gain. 13 C data showed that C was allocated to storage pools independent of the net flux and even under severe C limitation. Allocation to below-ground tissues was strongest in control trees followed by trees experiencing drought followed by those grown under low [CO 2 ]. Our data suggest that NSC storage has, under the conditions of our experimental manipulation (e.g., strong progressive drought, no above-ground growth), a high allocation priority and cannot be considered an overflow process. While these results also suggest active storage allocation, definitive proof of active plant control of storage in woody plants requires studies involving molecular tools.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-04-08
    Description: This study quantified the effect of soil warming on sap flow density ( Q s ) of Pinus cembra L. at the treeline in the Central Tyrolean Alps. To enhance soil temperature we installed a transparent roof construction above the forest floor around six trees. Six other trees served as controls in the absence of any manipulation. Roofing enhanced growing season mean soil temperature by 1.6, 1.3 and 1.0 °C at 5, 10 and 20 cm soil depth, respectively, while soil water availability was not affected. Sap flow density (using Granier-type thermal dissipation probes) and environmental parameters were monitored throughout three growing seasons. During the first year of treatment, no warming effect was detected on Q s . However, soil warming caused Q s to increase significantly by 11 and 19% above levels in control trees during the second and third year, respectively. This effect appeared to result from warming-induced root production, a reduction in viscosity and perhaps an increase also in root hydraulic conductivity. Hardly affected were leaf-level net CO 2 uptake rate and conductance for water vapour, so that water-use efficiency stayed unchanged as confirmed by needle 13 C analysis. We conclude that tree water loss will increase with soil warming, which may alter the water balance within the treeline ecotone of the Central Austrian Alps in a future warming environment.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-04-08
    Description: Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine ( Pinus pinaster (L.) Aït.) stand exposed to seasonal droughts. Intra-annual variations in tracheid anatomy and wood density were identified through image analysis and X-ray densitometry on stem cores covering the growth period 1999–2010. A cambial growth model was integrated with modelled plant water status and sugar availability from the soil–plant–atmosphere transfer model MuSICA to generate estimates of cell number, cell volume, cell mass and wood density on a weekly time step. The model successfully predicted inter-annual variations in cell number, ring width and maximum wood density. The model was also able to predict the occurrence of special anatomical features such as intra-annual density fluctuations (IADFs) in growth rings. Since cell wall thickness remained surprisingly constant within and between growth rings, variations in wood density were primarily the result of variations in lumen diameter, both in the model and anatomical data. In the model, changes in plant water status were identified as the main driver of the IADFs through a direct effect on cell volume. The anatomy data also revealed that a trade-off existed between hydraulic safety and hydraulic efficiency. Although a simplified description of cambial physiology is presented, this integrated modelling approach shows potential value for identifying universal patterns of tree-ring growth and anatomical features over a broad climatic gradient.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-04-08
    Description: Selecting plantation species to balance water use and production requires accurate models for predicting how species will tolerate and respond to environmental conditions. Although interspecific variation in water use occurs, species-specific parameters are rarely incorporated into physiologically based models because often the appropriate species parameters are lacking. To determine the physiological control over water use in Eucalyptus , five stands of Eucalyptus species growing in a common garden were measured for sap flux rates and their stomatal response to vapour pressure deficit ( D ) was assessed. Maximal canopy conductance and whole-canopy stomatal sensitivity to D and reduced water availability were lower in species originating from more arid climates of origin than those from humid climates. Species from humid climates showed a larger decline in maximal sap flux density ( J Smax ) with reduced water availability, and a lower D at which stomatal closure occurred than species from more arid climates, implying larger sensitivity to water availability and D in these species. We observed significant ( P  〈 0.05) correlations of species climate of origin with mean vessel diameter ( R 2  = 0.90), stomatal sensitivity to D ( R 2  = 0.83) and the size of the decline in J Smax to restricted water availability ( R 2  = 0.94). Thus aridity of climate of origin appears to have a selective role in constraining water-use response among the five Eucalyptus plantation species. These relationships emphasize that within this congeneric group of species, climate aridity constrains water use. These relationships have implications for species choices for tree plantation success against drought-induced losses and the ability to manage Eucalyptus plantations against projected changes in water availability and evaporation in the future.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-04-08
    Description: Mixtures can be more productive than monocultures and may therefore use more water, which may make them more susceptible to droughts. The species interactions that influence growth, transpiration and water-use efficiency (WUE, tree growth per unit transpiration) within a given mixture vary with intra- and inter-annual climatic variability, stand density and tree size, but these effects remain poorly quantified. These relationships were examined in mixtures and monocultures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman. Growth and transpiration were measured between ages 14 and 15 years. All E. globulus trees in mixture that were growing faster than similar sized trees in monocultures had higher WUE, while trees with similar growth rates had similar WUE. By the age of 14 years A. mearnsii trees were beginning to senesce and there were no longer any relationships between tree size and growth or WUE. The relationship between transpiration and tree size did not differ between treatments for either species, so stand-level increases in transpiration simply reflected the larger mean tree size in mixtures. Increasing neighbourhood basal area increased the complementarity effect on E. globulus growth and transpiration. The complementarity effect also varied throughout the year, but this was not related to the climatic seasonality. This study shows that stand-level responses can be the net effect of a much wider range of individual tree-level responses, but at both levels, if growth has not increased for a given species, it appears unlikely that there will be differences in transpiration or WUE for that species. Growth data may provide a useful initial indication of whether mixtures have higher transpiration or WUE, and which species and tree sizes contribute to this effect.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-04-08
    Description: Tree growth is frequently linked to weather conditions prior to the growing season but our understanding of these lagged climate signatures is still poorly developed. We investigated the influence of masting behaviour on the relationship between growth and climate in European Beech ( Fagus sylvatica L.) using a rare long-term dataset of seed production and a new regional tree ring chronology. Fagus sylvatica is a masting species with synchronous variations in seed production which are strongly linked to the temperature in the previous two summers. We noted that the weather conditions associated with years of heavy seed production (mast years) were the same as commonly reported correlations between growth and climate for this species. We tested the hypothesis that a trade-off between growth and reproduction in mast years could be responsible for the observed lagged correlations between growth and previous summers' temperatures. We developed statistical models of growth based on monthly climate variables, and show that summer drought (negative correlation), temperature of the previous summer (negative) and temperature of the summer 2 years previous (positive) are significant predictors of growth. Replacing previous summers' temperature in the model with annual seed production resulted in a model with the same predictive power, explaining the same variance in growth. Masting is a common behaviour in many tree species and these findings therefore have important implications for the interpretation of general climate–growth relationships. Lagged correlations can be the result of processes occurring in the year of growth (that are determined by conditions in previous years), obviating or reducing the need for ‘carry-over’ processes such as carbohydrate depletion to be invoked to explain this climate signature in tree rings. Masting occurs in many tree species and these findings therefore have important implications for the interpretation of general climate–growth relationships.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-04-08
    Description: The physiological response of plants growing in their natural habitat is strongly determined by seasonal variations in environmental conditions and the interaction of abiotic and biotic stresses. Here, leaf water and nutrient contents, changes in cellular redox state and endogenous levels of stress-related phytohormones (abscisic acid (ABA), salicylic acid and jasmonates) were examined during the rainy and dry season in Vellozia gigantea , an endemic species growing at high elevations in the rupestrian fields of the Espinhaço Range in Brazil. Enhanced stomatal closure and increased ABA levels during the dry season were associated with an efficient control of leaf water content. Moreover, reductions in 12- oxo -phytodienoic acid (OPDA) levels during the dry season were observed, while levels of other jasmonates, such as jasmonic acid and jasmonoyl-isoleucine, were not affected. Changes in ABA and OPDA levels correlated with endogenous concentrations of iron and silicon, hydrogen peroxide, and vitamin E, thus indicating complex interactions between water and nutrient contents, changes in cellular redox state and endogenous hormone concentrations. Results also suggested crosstalk between activation of mechanisms for drought stress tolerance (as mediated by ABA) and biotic stress resistance (mediated by jasmonates), in which vitamin E levels may serve as a control point. It is concluded that, aside from a tight ABA-associated regulation of stomatal closure during the dry season, crosstalk between activation of abiotic and biotic defences, and nutrient accumulation in leaves may be important modulators of plant stress responses in plants growing in their natural habitat.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-04-08
    Description: The presence of the American root-rot disease fungus Heterobasidion irregulare Garbel. & Otrosina was detected in Italian coastal pine forests ( Pinus pinea L.) in addition to the common native species Heterobasidion annosum (Fries) Brefeld. High levels of tropospheric ozone (O 3 ) as an atmospheric pollutant are usually experienced in Mediterranean pine forests. To explore the effect of interaction between the two Heterobasidion species and ozone pollution on P. pinea , an open-top chamber (OTC) experiment was carried out. Five-year-old P. pinea seedlings were inoculated with the fungal species considered ( H. irregulare , H. annosum and mock-inoculation as control), and then exposed in charcoal-filtered open-top chambers (CF-OTC) and non-filtered ozone-enriched chambers (NF+) from July to the first week of August 2010 at the experimental facilities of Curno (North Italy). Fungal inoculation effects in an ozone-enriched environment were assessed as: (i) the length of the inoculation lesion; (ii) chlorophyll a fluorescence (ChlF) responses; and (iii) analysis of resin terpenes. Results showed no differences on lesion length between fungal and ozone treatments, whereas the short-term effects of the two stress factors on ChlF indicate an increased photosynthetic efficiency, thus suggesting the triggering of compensation/repair processes. The total amount of resin terpenes is enhanced by fungal infection of both species, but depressed by ozone to the levels observed in mock-inoculated plants. Variations in terpene profiles were also induced by stem base inoculations and ozone treatment. Ozone might negatively affect terpene defences making plants more susceptible to pathogens and insects.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-08-27
    Description: Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length—SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade-tolerant broadleaves. The results of our study suggest that the combinations of plant attributes enhancing growth under high light vary with shade tolerance, but differ between leaf habit groups.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-08-27
    Description: Rhizospheric nitric oxide (NO) and carbon dioxide (CO 2 ) are signalling compounds known to affect physiological processes in plants. Their joint influence on tree nitrogen (N) nutrition, however, is still unknown. Therefore, this study investigated, for the first time, the combined effect of rhizospheric NO and CO 2 levels on N uptake and N pools in European beech ( Fagus sylvatica L.) seedlings depending on N availability. For this purpose, roots of seedlings were exposed to one of the nine combinations (i.e., low, ambient, high NO plus CO 2 concentration) at either low or high N availability. Our results indicate a significant effect of rhizospheric NO and/or CO 2 concentration on organic and inorganic N uptake. However, this effect depends strongly on NO and CO 2 concentration, N availability and N source. Similarly, allocation of N to different N pools in the fine roots of beech seedlings also shifted with varying rhizospheric gas concentrations and N availability.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-08-27
    Description: Respiration from vegetation is a substantial part of the global carbon cycle and the responses of plant respiration to daily and seasonal fluctuations in temperature and light must be incorporated in models of terrestrial respiration to accurately predict these CO 2 fluxes. We investigated how leaf respiration ( R ) responded to changes in leaf temperature ( T leaf ) and irradiance in field-grown saplings of an evergreen tree ( Eucalyptus pauciflora Sieb. ex Spreng). Seasonal shifts in the thermal sensitivity of leaf R in the dark ( R dark ) and in the light ( R light ) were assessed by allowing T leaf to vary over the day in field-grown leaves over a year. The Q 10 of R (i.e., the relative increase in R for a 10 °C increase in T leaf ) was similar for R light and R dark and had a value of ~2.5; there was little seasonal change in the Q 10 of either R light or R dark , indicating that we may be able to use similar functions to model short-term temperature responses of R in the dark and in the light. Overall, rates of R light were lower than those of R dark , and the ratio of R light / R dark tended to increase with rising T leaf , such that light suppression of R was reduced at high T leaf values, in contrast to earlier work with this species. Our results suggest we cannot assume that R light / R dark decreases with increasing T leaf on daily timescales, and highlights the need for a better mechanistic understanding of what regulates light suppression of R in leaves.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-08-27
    Description: Climate-related variations in functional traits of boreal tree species can result both from physiological acclimation and genetic adaptation of local populations to their biophysical environment. To improve our understanding and prediction of the physiological and growth responses of populations to climate change, we studied the role of climate of seed origin in determining variations in functional traits and its implications for tree improvement programs for a commonly reforested boreal conifer, white spruce ( Picea glauca (Moench) Voss). We evaluated growth, root-to-shoot ratio (R/S), specific leaf area (SLA), needle nitrogen ( N mass ), total non-structural carbohydrates (NSC) and photosynthetic traits of 3-year-old seedlings in a greenhouse experiment using seed from six seed orchards (SO) representing the different regions where white spruce is reforested in Québec. Height and total dry mass (TDM) were positively correlated with photosynthetic capacity ( A max ), stomatal conductance ( g s ) and mesophyll conductance ( g m ). Total dry mass, but not height growth, was strongly correlated with latitude of seed origin (SO) and associated climate variables. A max , g s , g m and more marginally, photosynthetic nitrogen-use efficiency (PNUE) were positively associated with the mean July temperature of the SO, while water use efficiency (WUE) was negatively associated. Maximum rates of carboxylation ( V cmax ), maximum rates of electron transport ( J max ), SLA, N mass , NSC and R/S showed no pattern. Our results did not demonstrate a higher A max for northern seed orchards, although this has been previously hypothesized as an adaptation mechanism for maintaining carbon uptake in northern regions . We suggest that g s , g m , WUE and PNUE are the functional traits most associated with fine-scale geographic clines and with the degree of local adaptation of white spruce populations to their biophysical environments. These geographic patterns may reflect in situ adaptive genetic differences in photosynthetic efficiency along the cline.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-08-27
    Description: We evaluated the long-term (1995–2008) trends in foliar and sapwood metabolism, soil solution chemistry and tree mortality rates in response to chronic nitrogen (N) additions to pine and hardwood stands at the Harvard Forest Long Term Ecological Research (LTER) site. Common stress-related metabolites like polyamines (PAs), free amino acids (AAs) and inorganic elements were analyzed for control, low N (LN, 50 kg NH 4 NO 3  ha –1  year –1 ) and high N (HN, 150 kg NH 4 NO 3  ha –1  year –1 ) treatments. In the pine stands, partitioning of excess N into foliar PAs and AAs increased with both N treatments until 2002. By 2005, several of these effects on N metabolites disappeared for HN, and by 2008 they were mostly observed for LN plot. A significant decline in foliar Ca and P was observed mostly with HN for a few years until 2005. However, sapwood data actually showed an increase in Ca, Mg and Mn and no change in PAs in the HN plot for 2008, while AAs data revealed trends that were generally similar to foliage for 2008. Concomitant with these changes, mortality data revealed a large number of dead trees in HN pine plots by 2002; the mortality rate started to decline by 2005. Oak trees in the hardwood plot did not exhibit any major changes in PAs, AAs, nutrients and mortality rate with LN treatment, indicating that oak trees were able to tolerate the yearly doses of 50 kg NH 4 NO 3 ha –1  year –1 . However, HN trees suffered from physiological and nutritional stress along with increased mortality in 2008. In this case also, foliar data were supported by the sapwood data. Overall, both low and high N applications resulted in greater physiological stress to the pine trees than the oaks. In general, the time course of changes in metabolic data are in agreement with the published reports on changes in soil chemistry and microbial community structure, rates of soil carbon sequestration and production of woody biomass for this chronic N study. This correspondence of selected metabolites with other measures of forest functions suggests that the metabolite analyses are useful for long-term monitoring of the health of forest trees.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-08-27
    Description: To buffer against the high spatial and temporal heterogeneity of the riparian habitat, riparian tree species, such as black poplar ( Populus nigra L.), may display a high level of genetic variation and phenotypic plasticity for functional traits. Using a multisite common garden experiment, we estimated the relative contribution of genetic and environmental effects on the phenotypic variation expressed for individual leaf area, leaf shape, leaf structure and leaf carbon isotope discrimination ( 13 C) in natural populations of black poplar. Twenty-four to 62 genotypes were sampled in nine metapopulations covering a latitudinal range from 48°N to 42°N in France and in Italy and grown in two common gardens at Orléans (ORL) and at Savigliano (SAV). In the two common gardens, substantial genetic variation was expressed for leaf traits within all metapopulations, but its expression was modulated by the environment, as attested by the genotype x environment ( G x E ) interaction variance being comparable to or even greater than genetic effects. For LA, G x E interactions were explained by both changes in genotype ranking between common gardens and increased variation in SAV, while these interactions were mainly attributed to changes in genotype ranking for 13 C. The nine P. nigra metapopulations were highly differentiated for LA, as attested by the high coefficient of genetic differentiation ( Q ST = 0.50 at ORL and 0.51 at SAV), and the pattern of metapopulation differentiation was highly conserved between the two common gardens. In contrast, they were moderately differentiated for 13 C ( Q ST = 0.24 at ORL and 0.25 at SAV) and the metapopulation clustering changed significantly between common gardens. Our results evidenced that the nine P. nigra metapopulations present substantial genetic variation and phenotypic plasticity for leaf traits, which both represent potentially significant determinants of populations' capacities to respond, on a short-term basis and over generations, to environmental variations.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-08-27
    Description: Conifers have incurred high mortality during recent global-change-type drought(s) in the western USA. Mechanisms of drought-related tree mortality need to be resolved to support predictions of the impacts of future increases in aridity on vegetation. Hydraulic failure, carbon starvation and lethal biotic agents are three potentially interrelated mechanisms of tree mortality during drought. Our study compared a suite of measurements related to these mechanisms between 49 mature piñon pine ( Pinus edulis Engelm.) trees that survived severe drought in 2002 (live trees) and 49 trees that died during the drought (dead trees) over three sites in Arizona and New Mexico. Results were consistent over all sites indicating common mortality mechanisms over a wide region rather than site-specific mechanisms. We found evidence for an interactive role of hydraulic failure, carbon starvation and biotic agents in tree death. For the decade prior to the mortality event, dead trees had twofold greater sapwood cavitation based on frequency of aspirated tracheid pits observed with scanning electron microscopy (SEM), smaller inter-tracheid pit diameter measured by SEM, greater diffusional constraints to photosynthesis based on higher wood 13 C, smaller xylem resin ducts, lower radial growth and more bark beetle (Coleoptera: Curculionidae) attacks than live trees. Results suggest that sapwood cavitation, low carbon assimilation and low resin defense predispose piñon pine trees to bark beetle attacks and mortality during severe drought. Our novel approach is an important step forward to yield new insights into how trees die via retrospective analysis.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-10-23
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-10-23
    Description: High-resolution stem diameter variations (SDV) are widely recognized as a useful drought stress indicator and have therefore been used in many irrigation scheduling studies. More recently, SDV have been used in combination with other plant measurements and biophysical modelling to study fundamental mechanisms underlying whole-plant functioning and growth. The present review aims to scrutinize the important insights emerging from these more recent SDV applications to identify trends in ongoing fundamental research. The main mechanism underlying SDV is variation in water content in stem tissues, originating from reversible shrinkage and swelling of dead and living tissues, and irreversible growth. The contribution of different stem tissues to the overall SDV signal is currently under debate and shows variation with species and plant age, but can be investigated by combining SDV with state-of-the-art technology like magnetic resonance imaging. Various physiological mechanisms, such as water and carbon transport, and mechanical properties influence the SDV pattern, making it an extensive source of information on dynamic plant behaviour. To unravel these dynamics and to extract information on plant physiology or plant biophysics from SDV, mechanistic modelling has proved to be valuable. Biophysical models integrate different mechanisms underlying SDV, and help us to explain the resulting SDV signal. Using an elementary modelling approach, we demonstrate the application of SDV as a tool to examine plant water relations, plant hydraulics, plant carbon relations, plant nutrition, freezing effects, plant phenology and dendroclimatology. In the ever-expanding SDV knowledge base we identified two principal research tracks. First, in detailed short-term experiments, SDV measurements are combined with other plant measurements and modelling to discover patterns in phloem turgor, phloem osmotic concentrations, root pressure and plant endogenous control. Second, long-term SDV time series covering many different species, regions and climates provide an expanding amount of phenotypic data of growth, phenology and survival in relation to microclimate, soil water availability, species or genotype, which can be coupled with genetic information to support ecological and breeding research under on-going global change. This under-exploited source of information has now encouraged research groups to set up coordinated initiatives to explore this data pool via global analysis techniques and data-mining.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-10-23
    Description: Even-aged forest stands are competitive communities where competition for light gives advantages to tall individuals, thereby inducing a race for height. These same individuals must however balance this competitive advantage with height-related mechanical and hydraulic risks. These phenomena may induce variations in height–diameter growth relationships, with primary dependences on stand density and tree social status as proxies for competition pressure and access to light, and on availability of local environmental resources, including water. We aimed to investigate the effects of stand density, tree social status and water stress on the individual height–circumference growth allocation ( h – c ), in even-aged stands of Quercus petraea Liebl. (sessile oak). Within-stand c was used as surrogate for tree social status. We used an original long-term experimental plot network, set up in the species production area in France, and designed to explore stand dynamics on a maximum density gradient. Growth allocation was modelled statistically by relating the shape of the h – c relationship to stand density, stand age and water deficit. The shape of the h – c relationship shifted from linear with a moderate slope in open-grown stands to concave saturating with an initial steep slope in closed stands. Maximum height growth was found to follow a typical mono-modal response to stand age. In open-grown stands, increasing summer soil water deficit was found to decrease height growth relative to radial growth, suggesting hydraulic constraints on height growth. A similar pattern was found in closed stands, the magnitude of the effect however lowering from suppressed to dominant trees. We highlight the high phenotypic plasticity of growth in sessile oak trees that further adapt their allocation scheme to their environment. Stand density and tree social status were major drivers of growth allocation variations, while water stress had a detrimental effect on height in the h – c allocation.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-10-23
    Description: Phenological synchronisms between apical and lateral meristems could clarify some aspects related to the physiological relationships among the different organs of trees. This study correlated the phenological phases of bud development and xylem differentiation during spring 2010–14 in balsam fir ( Abies balsamea Mill.) and black spruce [( Picea mariana Mill. (BSP)] of the Monts-Valin National Park (Quebec, Canada) by testing the hypothesis that bud development occurs after the reactivation of xylem growth. From May to September, we conducted weekly monitoring of xylem differentiation using microcores and bud development with direct observations on terminal branches. Synchronism between the beginning of bud development and xylem differentiation was found in both species with significant correlations between the phases of bud and xylem phenology. Degree-day sum was more appropriate in assessing the date of bud growth resumption, while thermal thresholds were more suitable for cambium phenology. Our results provide new knowledge on the dynamics of spring phenology and novel information on the synchronisms between two meristems in coniferous trees. The study demonstrates the importance of precisely defining the phases of bud development in order to correctly analyse the relationships with xylem phenology.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-10-23
    Description: Salicylic acid (SA) is a defense-related key signaling molecule involved in plant immunity. In this study, a subgroup IIa WRKY gene PtrWRKY40 was isolated from Populus trichocarpa , which displayed amino acid sequence similar to Arabidopsis AtWRKY40 , AtWRKY18 and AtWRKY60. PtrWRKY40 transcripts accumulated significantly in response to SA, methyl jasmonate and hemibiotrophic fungus Dothiorella gregaria Sacc. Overexpression of PtrWRKY40 in transgenic poplar conferred higher susceptibility to D. gregaria infection. This susceptibility was coupled with reduced expression of SA-associated genes ( PR1.1 , PR2.1 , PR5.9 , CPR5 and SID2 ) and jasmonic acid (JA)-related gene JAZ8 . Decreased accumulation of endogenous SA was observed in transgenic lines overexpressing PtrWRKY40 when compared with wild-type plants. However, constitutive expression of PtrWRKY40 in Arabidopsis thaliana displayed resistance to necrotrophic fungus Botrytis cinerea , and the expression of JA-defense-related genes such as PDF1.2 , VSP2 and PR3 was remarkably increased in transgenic plants upon infection with fugal pathogens. Together, our findings indicate that PtrWRKY40 plays a negative role in resistance to hemibiotrophic fungi in poplar but functions as a positive regulator of resistance toward the necrotrophic fungi in Arabidopsis .
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-10-23
    Description: Urea fertilization decreases Pinus taeda L. growth in clay soils of subtropical areas. The negative effect of urea is related to changes in some hydraulic traits, similar to those observed in plants growing under drought. The aims of this work were (i) to determine whether different sources of nitrogen applied as fertilizers produce similar changes in growth and hydraulic traits to those observed by urea fertilization and (ii) to analyze the impact of those changes in plant drought tolerance. Plants fertilized with urea, nitrate (NO3–) or ammonium (NH4+) were grown well watered or with reduced water supply. Urea and NO3– fertilization reduced plant growth and increased root hydraulic conductance scaled by root dry weight (DW). NH4+ fertilization did not reduce plant growth and increased shoot hydraulic conductance and stem hydraulic conductivity. We conclude that NO3– is the ion involved in the changes linked to the negative effect of urea fertilization on P. taeda growth. NH4+ fertilization does not change drought susceptibility and it produces changes in shoot hydraulic traits, therefore plants avoid the depressive effect of fertilization. Urea and NO3– fertilizers induce changes in DW and root hydraulic conductance and consequently plants are less affected by drought.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-10-23
    Description: It is unclear how or even if phosphorus (P) input alters the influence of nitrogen (N) deposition in a forest. In theory, nutrients in leaves and twigs differing in age may show different responses to elevated nutrient input. To test this possibility, we selected Chinese fir ( Cunninghamia lanceolata ) for a series of N and P addition experiments using treatments of +N1 – P (50 kg N ha –1 year –1 ), +N2 – P (100 kg N ha –1 year –1 ), –N + P (50 kg P ha –1 year –1 ), +N1 + P, +N2 + P and –N – P (without N and P addition). Soil samples were analyzed for mineral N and available P concentrations. Leaves and twigs in summer and their litters in winter were classified as and sorted into young and old components to measure N and P concentrations. Soil mineral N and available P increased with N and P additions, respectively. Nitrogen addition increased leaf and twig N concentrations in the second year, but not in the first year; P addition increased leaf and twig P concentrations in both years and enhanced young but not old leaf and twig N accumulations. Nitrogen and P resorption proficiencies in litters increased in response to N and P additions, but N and P resorption efficiencies were not significantly altered. Nitrogen resorption efficiency was generally higher in leaves than in twigs and in young vs old leaves and twigs. Phosphorus resorption efficiency showed a minimal variation from 26.6 to 47.0%. Therefore, P input intensified leaf and twig N enrichment with N addition, leaf and twig nutrients were both gradually resorbed with aging, and organ and age effects depended on the extent of nutrient limitation.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-10-23
    Description: Manipulating tree belowground carbon (C) transport enables investigation of the ecological and physiological roles of tree roots and their associated mycorrhizal fungi, as well as a range of other soil organisms and processes. Girdling remains the most reliable method for manipulating this flux and it has been used in numerous studies. However, girdling is destructive and irreversible. Belowground C transport is mediated by phloem tissue, pressurized through the high osmotic potential resulting from its high content of soluble sugars. We speculated that phloem transport may be reversibly blocked through the application of an external pressure on tree stems. Thus, we here introduce a technique based on compression of the phloem, which interrupts belowground flow of assimilates, but allows trees to recover when the external pressure is removed. Metal clamps were wrapped around the stems and tightened to achieve a pressure theoretically sufficient to collapse the phloem tissue, thereby aiming to block transport. The compression's performance was tested in two field experiments: a 13 C canopy labelling study conducted on small Scots pine ( Pinus sylvestris L.) trees [2–3 m tall, 3–7 cm diameter at breast height (DBH)] and a larger study involving mature pines (~15 m tall, 15–25 cm DBH) where stem respiration, phloem and root carbohydrate contents, and soil CO 2 efflux were measured. The compression's effectiveness was demonstrated by the successful blockage of 13 C transport. Stem compression doubled stem respiration above treatment, reduced soil CO 2 efflux by 34% and reduced phloem sucrose content by 50% compared with control trees. Stem respiration and soil CO 2 efflux returned to normal within 3 weeks after pressure release, and 13 C labelling revealed recovery of phloem function the following year. Thus, we show that belowground phloem C transport can be reduced by compression, and we also demonstrate that trees recover after treatment, resuming C transport in the phloem.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-10-23
    Description: The Mediterranean region is an area of special interest for conservation where the incidence of multiple drivers of global change is expected to increase. One of the factors predicted to change is soil-nutrient availability, an essential factor for plant growth. Thus, study of the effects of variation in this parameter is especially relevant in species with a circum-Mediterranean distribution, such as Arbutus unedo L., in which the different provenances grow in different habitats, which must differ in nutritional conditions. We aimed to determine the effect of provenance on plasticity, to establish whether structural and morphological traits differ in the level of plasticity and to assess how nutrients affect the photosynthetic light response. In a common garden experiment, we studied seven provenances from the circum-Mediterranean range of A. unedo and established two nutrient treatments (low and high nutrient availability). We measured physiological and structural traits in 1-year-old sapling and determined a phenotypic plasticity index (PPI) to quantify the level of plasticity, whereas the radiation effects were tested by construction and analysis of light response curves. Interestingly, provenance did not explain a significant amount of variance, but the plasticity was four times higher for the structural traits than for the physiological traits. Therefore, the plasticity to nutrient availability will not favour or prevent the expansion or contraction of the range of any of these provenances of A. unedo . Furthermore, the structural plasticity demonstrated the ability of the strawberry tree to optimize resource allocation, whereas the physiology remained stable, thus avoiding extra expenditure. The study findings also suggest that increased availability of nutrients would improve the performance of the species during the Mediterranean summer, characterized by high irradiance. These abilities will be key to the survival of saplings of the species under the future scenario of changes in nutrient availability.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-10-23
    Description: An increase in temperature along with a decrease in summer precipitation in Central Europe will result in an increased frequency of drought events and gradually lead to a change in species composition in forest ecosystems. In the present study, young oaks ( Quercus robur L. and Quercus petraea (Matt.) Liebl.) were transplanted into large mesocosms and exposed for 3 years to experimental warming and a drought treatment with yearly increasing intensities. Carbon and oxygen isotopic ( 13 C and 18 O) patterns were analysed in leaf tissue and tree-ring cellulose and linked to leaf physiological measures and tree-ring growth. Warming had no effect on the isotopic patterns in leaves and tree rings, while drought increased 18 O and 13 C. Under severe drought, an unexpected isotopic pattern, with a decrease in 18 O, was observed in tree rings but not in leaves. This decrease in 18 O could not be explained by concurrent physiological analyses and is not supported by current physiological knowledge. Analysis of intra-annual tree-ring growth revealed a drought-induced growth cessation that interfered with the record of isotopic signals imprinted on recently formed leaf carbohydrates. This missing record indicates isotopic uncoupling of leaves and tree rings, which may have serious implications for the interpretation of tree-ring isotopes, particularly from trees that experienced growth-limiting stresses.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-12-18
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-12-18
    Description: Climate change, via warmer springs and autumns, may lengthen the carbon uptake period of boreal tree species, increasing the potential for carbon sequestration in boreal forests, which could help slow climate change. However, if other seasonal cues such as photoperiod dictate when photosynthetic capacity declines, warmer autumn temperatures may have little effect on when carbon uptake capacity decreases in these species. We investigated whether autumn warming would delay photosynthetic decline in Norway spruce ( Picea abies (L.) H. Karst.) by growing seedlings under declining weekly photoperiods and weekly temperatures either at ambient temperature or a warming treatment 4 °C above ambient. Photosynthetic capacity was relatively constant in both treatments when weekly temperatures were 〉8 °C, but declined rapidly at lower temperatures, leading to a delay in the autumn decline in photosynthetic capacity in the warming treatment. The decline in photosynthetic capacity was not related to changes in leaf nitrogen or chlorophyll concentrations, but was correlated with a decrease in the apparent fraction of leaf nitrogen invested in Rubisco, implicating a shift in nitrogen allocation away from the Calvin cycle at low autumn growing temperatures. Our data suggest that as the climate warms, the period of net carbon uptake will be extended in the autumn for boreal forests dominated by Norway spruce, which could increase total carbon uptake in these forests.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-12-18
    Description: Boreal trees experience repeated freeze–thaw cycles annually. While freezing has been extensively studied in trees, the dynamic responses occurring during the freezing and thawing remain poorly understood. At freezing and thawing, rapid changes take place in the water relations of living cells in needles and in stem. While freezing is mostly limited to extracellular spaces, living cells dehydrate, shrink and their osmotic concentration increases. We studied how the freezing–thawing dynamics reflected on leaf gas exchange, chlorophyll fluorescence and xylem and living bark diameter changes of Scots pine ( Pinus sylvestris L.) saplings in controlled experiments. Photosynthetic rate quickly declined following ice nucleation and extracellular freezing in xylem and needles, almost parallel to a rapid shrinking of xylem diameter, while that of living bark followed with a slightly longer delay. While xylem and living bark diameters responded well to decreasing temperature and water potential of ice, the relationship was less consistent in the case of increasing temperature. Xylem showed strong temporal swelling at thawing suggesting water movement from bark. After thawing xylem diameter recovered to a pre-freezing level but living bark remained shrunk. We found that freezing affected photosynthesis at multiple levels. The distinct dynamics of photosynthetic rate and stomatal conductance reveals that the decreased photosynthetic rate reflects impaired dark reactions rather than stomatal closure. Freezing also inhibited the capacity of the light reactions to dissipate excess energy as heat, via non-photochemical quenching, whereas photochemical quenching of excitation energy decreased gradually with temperature in agreement with the gas exchange data.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-12-18
    Description: During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root–soil air gap and water flow resistance at the soil–root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root–soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root–soil air gap and the model-inferred water flow resistance at the soil–root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root–soil contact with decreasing soil water potential. The average widths of the root–soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil–root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root–soil air gap. A combination of soil water potential, soil temperature, root–air water potential difference and soil–root water potential difference best predicted the resistance to water flow at the soil–root interface.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-12-18
    Description: The effects of prolonged drought were studied on olive ( Olea europaea L.; drought-sensitive cultivar Biancolilla and drought-tolerant cultivar Coratina) to examine how morpho-anatomical modifications in roots impact on root radial hydraulic conductivity ( L pr ). Two-year-old self-rooted plants were subjected to a gradual water depletion. The levels of drought stress were defined by pre-dawn leaf water potentials ( w ) of –1.5, –3.5 and –6.5 MPa. After reaching the maximum level of drought, plants were rewatered for 23 days. Progressive drought stress, for both cultivars, caused a strong reduction in L pr (from 1.2 to 1.3  x  10 –5  m MPa –1  s –1 in unstressed plants to 0.2–0.6  x  10 –5  m MPa –1  s –1 in plants at w  = –6.5 MPa), particularly evident in the more suberized (brown) roots, accompanied with decreases in stomatal conductance ( g s ). No significant differences in L pr and g s between the two olive cultivars were observed. Epifluorescence microscopy and image analyses revealed a parallel increase of wall suberization that doubled in white stressed roots and tripled in brown ones when compared with unstressed plants. In drought-stressed plants, the number of suberized cellular layers from the endodermis towards the cortex increased from 1–2 to 6–7. Recovery in L pr during rewatering was correlated to the physical disruption of hydrophobic barriers, while the time necessary to obtain new mature roots likely accounted for the observed delay in the complete recovery of g s . Radial hydraulic conductivity in olive roots was strongly influenced by soil and plant water availability and it was also modulated by structural root modifications, size, growth and anatomy. These findings could be important for maintaining an optimal water status in cultivated olive trees by scheduling efficient irrigation methods, saving irrigation water and obtaining yield of high quality.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-12-18
    Description: Nitrogen (N) starvation and excess have distinct effects on N uptake and metabolism in poplars, but the global transcriptomic changes underlying morphological and physiological acclimation to altered N availability are unknown. We found that N starvation stimulated the fine root length and surface area by 54 and 49%, respectively, decreased the net photosynthetic rate by 15% and reduced the concentrations of NH4+, NO3– and total free amino acids in the roots and leaves of Populus simonii Carr. in comparison with normal N supply, whereas N excess had the opposite effect in most cases. Global transcriptome analysis of roots and leaves elucidated the specific molecular responses to N starvation and excess. Under N starvation and excess, gene ontology (GO) terms related to ion transport and response to auxin stimulus were enriched in roots, whereas the GO term for response to abscisic acid stimulus was overrepresented in leaves. Common GO terms for all N treatments in roots and leaves were related to development, N metabolism, response to stress and hormone stimulus. Approximately 30–40% of the differentially expressed genes formed a transcriptomic regulatory network under each condition. These results suggest that global transcriptomic reprogramming plays a key role in the morphological and physiological acclimation of poplar roots and leaves to N starvation and excess.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-12-18
    Description: Climate change can induce substantial modifications in xylem structure and water transport capacity of trees exposed to environmental constraints. To elucidate mechanisms of xylem plasticity in response to climate, we retrospectively analysed different cell anatomical parameters over tree-ring series in Norway spruce ( Picea abies L. Karst.). We sampled 24 trees along an altitudinal gradient (1200, 1600 and 2100 m above sea level, a.s.l.) and processed 2335 ± 1809 cells per ring. Time series for median cell lumen area (MCA), cell number (CN), tree-ring width (RW) and tree-ring-specific hydraulic conductivity (Kr) were crossed with daily temperature and precipitation records (1926–2011) to identify climate influence on xylem anatomical traits. Higher Kr at the low elevation site was due to higher MCA and CN. These variables were related to different aspects of intra-seasonal climatic variability under different environmental conditions, with MCA being more sensitive to summer precipitation. Winter precipitation (snow) benefited most parameters in all the sites. Descending the gradient, sensitivity of xylem features to summer climate shifted mostly from temperature to precipitation. In the context of climate change, our results indicate that higher summer temperatures at high elevations will benefit cell production and xylem hydraulic efficiency, whereas reduced water availability at lower elevations could negatively affect tracheids enlargement and thus stem capacity to transport water.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-12-18
    Description: To recover verticality after disturbance, angiosperm trees produce ‘tension wood’ allowing them to bend actively. The driving force of the tension has been shown to take place in the G-layer, a specific unlignified layer of the cell wall observed in most temperate species. However, in tropical rain forests, the G-layer is often absent and the mechanism generating the forces to reorient trees remains unclear. A study was carried out on tilted seedlings, saplings and adult Simarouba amara Aubl. trees—a species known to not produce a G-layer. Microscopic observations were done on sections of normal and tension wood after staining or observed under UV light to assess the presence/absence of lignin. We showed that S. amara produces a cell-wall layer with all of the characteristics typical of G-layers, but that this G-layer can be observed only as a temporary stage of the cell-wall development because it is masked by a late lignification. Being thin and lignified, tension wood fibres cannot be distinguished from normal wood fibres in the mature wood of adult trees. These observations indicate that the mechanism generating the high tensile stress in tension wood is likely to be the same as that in species with a typical G-layer and also in species where the G-layer cannot be observed in mature cells.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-12-18
    Description: Hydraulic segmentation between proximal and distal organs has been hypothesized to be an important protective mechanism for plants to minimize the detrimental effects of drought-induced hydraulic failure. Uncertainties still exist regarding the degree of segmentation and the role of stomatal regulation in keeping hydraulic integrity of organs at different hierarchies. In the present study, we measured hydraulic conductivity and vulnerability in stems, compound leaf petioles and leaflet laminas of Fraxinus mandshurica Rupr. and Juglans mandshurica Maxim. growing in Changbai Mountain of Northeast China to identify the main locality where hydraulic segmentation occurs along the shoot water transport pathway. Stomatal conductance in response to leaf water potential change was also measured to investigate the role of stomatal regulation in avoiding extensive transpiration-induced embolism. No major contrasts were found between stems and compound leaf petioles in either hydraulic conductivity or vulnerability to drought-induced embolism, whereas a large difference in hydraulic vulnerability exists between compound leaf petioles and leaflet laminas. Furthermore, in contrast to the relatively large safety margins in stems (4.13 and 2.04 MPa) and compound leaf petioles (1.33 and 1.93 MPa), leaflet lamina hydraulic systems have substantially smaller or even negative safety margins (–0.17 and 0.47 MPa) in F. mandshurica and J. mandshurica . Under unstressed water conditions, gas exchange may be better optimized by allowing leaflet vascular system function with small safety margins. In the meantime, hydraulic safety of compound leaf petioles and stems are guaranteed by their large safety margins. In facing severe drought stress, larger safety margins in stems than in compound leaf petioles would allow plants to minimize the risk of catastrophic embolism in stems by sacrificing the whole compound leaves. A strong coordination between hydraulic and stomatal regulation appears to play a critical role in balancing the competing efficiency and safety requirements for xylem water transport and use in plants.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-12-18
    Description: Recently, three types of cavitation: (i) expanding gradually; (ii) expanding—exploding, becoming a long-shaped bubble—lengthening by degrees; (iii) suddenly exploding and fully filling the conduit instantly, were proposed. Directed by this theory, experiments were performed using light microscopy to study the natural drying processes of xylem sections of Platycladus orientalis (L.) Franco. Three different phenomena of gas filling process in conduits were captured by replaying recorded videos. The first phenomenon is that a bubble emerging in a conduit expands and elongates gradually to fill the conduit. The second phenomenon is that a bubble emerging in a conduit expands gradually, and then suddenly becomes long-shaped, and extends continuously. The third phenomenon is that a bubble instantly fully fills a conduit. This paper suggests in these experiments that after losing the bulk water of a section, as the water stress of that section became more severe, the water pressures of different conduits of the section were not necessarily the same, and as time went on, the water pressures decreased constantly. Considering some practical factors, the three phenomena captured in our experiment are explained by our theory.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-06-17
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-06-17
    Description: Water storage in the stems of woody plants contributes to their responses to short-term water shortages. To estimate the contribution of water storage to the daily water budget of trees, time lags of sap flow between different positions of trunk are used as a proxy of stem water storage. In lianas, another large group of woody species, it has rarely been studied whether stored water functions in their daily water use, despite their increasing roles in the carbon and water dynamics of tropical forests caused by their increasing abundance. We hypothesized that lianas would exhibit large time lags due to their extremely long stems, wide vessels and large volume of parenchyma in the stem. We examined time lags in sap flow, diel changes of stem volumetric water content (VWC) and biophysical properties of sapwood of 19 lianas and 26 co-occurring trees from 27 species in 4 forests (karst, tropical seasonal, flood plain and savanna) during a wet season. The plants varied in height/length from 〈5 to 〉60 m. The results showed that lianas had significantly higher saturated water content (SWC) and much lower wood density than trees. Seven of 19 liana individuals had no time lags; in contrast, only 3 of 26 tree individuals had no time lags. In general, lianas had shorter time lags than trees in our data set, but this difference was not significant for our most conservative analyses. Across trees and lianas, time lag duration increased with diurnal maximum changeable VWC but was independent of the body size, path length, wood density and SWC. The results suggest that in most lianas, internal stem water storage contributes little to daily water budget, while trees may rely more on stored water in the stem.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-06-17
    Description: The release of water from storage compartments to the transpiration stream is an important functional mechanism that provides the buffering of sudden fluctuations in water potential. The ability of tissues to release water per change in water potential, referred to as hydraulic capacitance, is assumed to be associated with the anatomy of storage tissues. However, information about how specific anatomical parameters determine capacitance is limited. In this study, we measured sapwood capacitance ( C ) in terminal branches and roots of five temperate tree species ( Fagus sylvatica L., Picea abies L., Quercus robur L., Robinia pseudoacacia L., Tilia cordata Mill.). Capacitance was calculated separately for water released mainly from capillary ( C I ; open vessels, tracheids, fibres, intercellular spaces and cracks) and elastic storage compartments ( C II ; living parenchyma cells), corresponding to two distinct phases of the moisture release curve. We found that C was generally higher in roots than branches, with C I being 3–11 times higher than C II . Sapwood density and the ratio of dead to living xylem cells were most closely correlated with C . In addition, the magnitude of C I was strongly correlated with fibre/tracheid lumen area, whereas C II was highly dependent on the thickness of axial parenchyma cell walls. Our results indicate that water released from capillary compartments predominates over water released from elastic storage in both branches and roots, suggesting the limited importance of parenchyma cells for water storage in juvenile xylem of temperate tree species. Contrary to intact organs, water released from open conduits in our small wood samples significantly increased C I at relatively high water potentials. Linking anatomical parameters with the hydraulic capacitance of a tissue contributes to a better understanding of water release mechanisms and their implications for plant hydraulics.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-06-17
    Description: A prerequisite for reliable hydraulic measurements is an accurate collection of the plant material. Thereby, the native hydraulic state of the sample has to be preserved during harvesting (i.e., cutting the plant or plant parts) and preparation (i.e., excising the target section). This is particularly difficult when harvesting has to be done under transpiring conditions. In this article, we present a harvesting and sampling protocol designed for hydraulic measurements on Malus domestica Borkh. and checked for possible sampling artefacts. To test for artefacts, we analysed the percentage loss of hydraulic conductivity, maximum specific conductivity and water contents of bark and wood of branches, taking into account conduit length, time of day of harvesting, different shoot ages and seasonal effects. Our results prove that use of appropriate protocols can avoid artefactual embolization or refilling even when the xylem is under tension at harvest. The presented protocol was developed for Malus but may also be applied for other angiosperms with similar anatomy and refilling characteristics.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-06-17
    Description: The formation of air emboli in the xylem during drought is one of the key processes leading to plant mortality due to loss in hydraulic conductivity, and strongly fuels the interest in quantifying vulnerability to cavitation. The acoustic emission (AE) technique can be used to measure hydraulic conductivity losses and construct vulnerability curves. For years, it has been believed that all the AE signals are produced by the formation of gas emboli in the xylem sap under tension. More recent experiments, however, demonstrate that gas emboli formation cannot explain all the signals detected during drought, suggesting that different sources of AE exist. This complicates the use of the AE technique to measure emboli formation in plants. We therefore analysed AE waveforms measured on branches of grapevine ( Vitis vinifera L. ‘Chardonnay’) during bench dehydration with broadband sensors, and applied an automated clustering algorithm in order to find natural clusters of AE signals. We used AE features and AE activity patterns during consecutive dehydration phases to identify the different AE sources. Based on the frequency spectrum of the signals, we distinguished three different types of AE signals, of which the frequency cluster with high 100–200 kHz frequency content was strongly correlated with cavitation. Our results indicate that cavitation-related AE signals can be filtered from other AE sources, which presents a promising avenue into quantifying xylem embolism in plants in laboratory and field conditions.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-06-17
    Description: In recent years, the validity of embolism quantification methods has been questioned, especially for long-vesseled plants. Some studies have suggested that cutting xylem while under tension, even under water, might generate artificial cavitation. Accordingly, a rehydration procedure prior to hydraulic measurements has been recommended to avoid this artefact. On the other hand, concerns have been raised that xylem refilling might occur when samples are rehydrated. Here, we explore the potential biases affecting embolism quantification for grapevine ( Vitis vinifera L.) petioles harvested under tension or after xylem relaxation. We employ direct visualization of embolism through X-ray micro-computed tomography (microCT) to test for the occurrence of fast refilling (artifactually low per cent loss of conductivity (PLC) due to rehydration prior to sample harvest) as well as excision-induced embolism (artifactually high embolism due to air introduction during harvest). Additionally, we compared the response functions of both stomatal regulation and xylem embolism to xylem pressure ( x ). Short-time (20 min) xylem tension relaxation prior to the hydraulic measurement resulted in a lower degree of embolism than found in samples harvested under native tensions, and yielded xylem vulnerability curves similar to the ones obtained using direct microCT visualization. Much longer periods of hydration (overnight) were required before xylem refilling was observed to occur. In field-grown vines, over 85% of stomatal closure occurred at less negative x than that required to induce 12% PLC. Our results demonstrate that relaxation of xylem tension prior to hydraulic measurement allows for the reliable quantification of native embolism in grapevine petioles. Furthermore, we find that stomatal regulation is sufficiently conservative to avoid transpiration-induced cavitation. These results suggest that grapevines have evolved a strategy of cavitation resistance, rather than one of cavitation tolerance (diurnal cycles of embolism and repair).
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-06-17
    Description: Atmospheric carbon dioxide (CO 2 ) concentrations are expected to increase throughout this century, potentially fostering tree growth. A wealth of studies have examined the variation in CO 2 responses across tree species, but the extent of intraspecific variation in response to elevated CO 2 (eCO 2 ) has, so far, been examined in individual studies and syntheses of published work are currently lacking. We conducted a meta-analysis on the effects of eCO 2 on tree growth (height, stem biomass and stem volume) and photosynthesis across genotypes to examine whether there is genetic variation in growth responses to eCO 2 and to understand their dependence on photosynthesis. We additionally examined the interaction between the responses to eCO 2 and ozone (O 3 ), another global change agent. Most of the published studies so far have been conducted in juveniles and in Populus spp., although the patterns observed were not species dependent. All but one study reported significant genetic variation in stem biomass, and the magnitude of intraspecific variation in response to eCO 2 was similar in magnitude to previous analyses on interspecific variation. Growth at eCO 2 was predictable from growth at ambient CO 2 ( R 2  = 0.60), and relative rankings of genotype performance were preserved across CO 2 levels, indicating no significant interaction between genotypic and environmental effects. The growth response to eCO 2 was not correlated with the response of photosynthesis ( P  〉 0.1), and while we observed 57.7% average increases in leaf photosynthesis, stem biomass and volume increased by 36 and 38.5%, respectively, and height only increased by 9.5%, suggesting a predominant role for carbon allocation in ultimately driving the response to eCO 2 . Finally, best-performing genotypes under eCO 2 also responded better under eCO 2 and elevated O 3 . Further research needs include widening the study of intraspecific variation beyond the genus Populus and examining the interaction between eCO 2 and other environmental stressors. We conclude that significant potential to foster CO 2 -induced productivity gains through tree breeding exists, that these programs could be based upon best-performing genotypes under ambient conditions and that they would benefit from an increased understanding on the controls of allocation.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-06-17
    Description: The decrease of stomatal conductance ( g s ) is one of the prime responses to water shortage and the main determinant of yield limitation in fruit trees. Understanding the mechanisms related to stomatal closure in response to imposed water stress is crucial for correct irrigation management. The loss of leaf hydraulic functioning is considered as one of the major factors triggering stomatal closure. Thus, we conducted an experiment to quantify the dehydration response of leaf hydraulic conductance ( K leaf ) and its impact on g s in two Mediterranean fruit tree species, one deciduous (almond) and one evergreen (olive). Our hypothesis was that a higher K leaf would be associated with a higher g s and that the reduction in K leaf would predict the reduction in g s in both species. We measured K leaf in olive and almond during a cycle of irrigation withholding. We also compared the results of two methods to measure K leaf : dynamic rehydration kinetics and evaporative flux methods. In addition, determined g s , leaf water potential ( leaf ), vein density, photosynthetic capacity and turgor loss point. Results showed that g s was higher in almond than in olive and so was K leaf ( K max  = 4.70 and 3.42 mmol s –1  MPa –1  m –2 , in almond and olive, respectively) for leaf  〉 –1.2 MPa. At greater water stress levels than –1.2 MPa, however, K leaf decreased exponentially, being similar for both species, while g s was still higher in almond than in olive. We conclude that although the K leaf decrease with increasing water stress does not drive unequivocally the g s response to water stress, K leaf is the variable most strongly related to the g s response to water stress, especially in olive. Other variables such as the increase in abscisic acid (ABA) may be playing an important role in g s regulation, although in our study the g s –ABA relationship did not show a clear pattern.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-06-17
    Description: Although plant competition is recognized as a fundamental factor that limits survival and species coexistence, its relative importance on light capture efficiency and carbon gain is not well understood. Here, we propose a new framework to explain the effects of neighborhood structures and light availability on plant attributes and their effect on plant performance in two understory shade-tolerant species ( Palicourea padifolia (Roem. & Schult.) C.M. Taylor & Lorence and Psychotria elata (Swartz)) within two successional stages of a cloud forest in Costa Rica. Features of plant neighborhood physical structure and light availability, estimated by hemispherical photographs, were used to characterize the plant competition. Plant architecture, leaf attributes and gas exchange parameters extracted from the light-response curve were used as functional plant attributes, while an index of light capture efficiency (silhouette to total area ratio, averaged over all viewing angles, STAR) and carbon gain were used as indicators of plant performance. This framework is based in a partial least square Path model, which suggests that changes in plant performance in both species were affected in two ways: (i) increasing size and decreasing distance of neighbors cause changes in plant architecture (higher crown density and greater leaf dispersion), which contribute to lower STAR and subsequently lower carbon gain; and (ii) reductions in light availability caused by the neighbors also decrease plant carbon gain. The effect of neighbors on STAR and carbon gain were similar for the two forests sites, which were at different stages of succession, suggesting that the architectural changes of the two understory species reflect functional convergence in response to plant competition. Because STAR and carbon gain are variables that depend on multiple plant attributes and environmental characteristics, we suggest that changes in these features can be used as a whole-plant response approach to detect environmental filtering in highly diverse tropical forest communities.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-06-17
    Description: The ability of plants to sequester carbon is highly variable over the course of the year and reflects seasonal variation in photosynthetic efficiency. This seasonal variation is most prominent during autumn, when leaves of deciduous tree species such as sugar maple ( Acer saccharum Marsh.) undergo senescence, which is associated with downregulation of photosynthesis and a change of leaf color. The remote sensing of leaf color by spectral reflectance measurements and digital repeat images is increasingly used to improve models of growing season length and seasonal variation in carbon sequestration. Vegetation indices derived from spectral reflectance measurements and digital repeat images might not adequately reflect photosynthetic efficiency of red-senescing tree species during autumn due to the changes in foliar pigment content associated with autumn phenology. In this study, we aimed to assess how effectively several widely used vegetation indices capture autumn phenology and reflect the changes in physiology and photosynthetic pigments during autumn. Chlorophyll fluorescence and pigment content of green, yellow, orange and red leaves were measured to represent leaf senescence during autumn and used as a reference to validate and compare vegetation indices derived from leaf-level spectral reflectance measurements and color analysis of digital images. Vegetation indices varied in their suitability to track the decrease of photosynthetic efficiency and chlorophyll content despite increasing anthocyanin content. Commonly used spectral reflectance indices such as the normalized difference vegetation index and photochemical reflectance index showed major constraints arising from a limited representation of gradual decreases in chlorophyll content and an influence of high foliar anthocyanin levels. The excess green index and green–red vegetation index were more suitable to assess the process of senescence. Similarly, digital image analysis revealed that vegetation indices such as Hue and normalized difference index are superior compared with the often-used green chromatic coordinate. We conclude that indices based on red and green color information generally represent autumn phenology most efficiently.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-06-17
    Description: Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45–55%) but not with sandy loam soil (〈20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-09-01
    Description: Accurately scaling sap flux observations to tree or stand levels requires accounting for variation in sap flux between wood types and by depth into the tree. However, existing models for radial variation in axial sap flux are rarely used because they are difficult to implement, there is uncertainty about their predictive ability and calibration measurements are often unavailable. Here we compare different models with a diverse sap flux data set to test the hypotheses that radial profiles differ by wood type and tree size. We show that radial variation in sap flux is dependent on wood type but independent of tree size for a range of temperate trees. The best-fitting model predicted out-of-sample sap flux observations and independent estimates of sapwood area with small errors, suggesting robustness in the new settings. We develop a method for predicting whole-tree water use with this model and include computer code for simple implementation in other studies.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-09-01
    Description: Surface winds have declined in many regions of the world over the past few decades. These trends are referred to as global stilling and have recently been observed in the Western Cape Province of South Africa. The potential consequences of such changes on ecosystem function and productivity are a particular concern for the highly diverse and endemic local flora, largely associated with the fynbos biome. Yet, few studies have directly examined the impact of wind in the region. In this study, we explored the importance of wind and other drivers of plant transpiration ( E ) in a stand of Leucospermum conocarpodendron (L.) Buek trees on the Cape Peninsula. Wind speeds can be high in the Cape and could play an important role in influencing the rate of E . Overall, the influence of wind appeared to be significantly greater at night than during the day. While daytime E responded most strongly to changes in solar radiation ( R 2  = 0.79) and vapour pressure deficit ( R 2  = 0.57–0.67), night-time E ( E n ) was primarily driven by wind speed ( R 2  = 0.30–0.59). These findings have important implications for stilling and other aspects of climate change. Since E n was found to be a regular and significant ( P  〈 0.00) component of total daily E (10–27%), plants may conserve water should stilling continue. Still, the extent of this could be offset by strong daytime drivers. As such, plant water consumption will most likely increase in response to a warmer and drier climate. Changes in other biophysical variables are, however, clearly important to consider in the current debate on the impact of climate change.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-09-01
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-09-01
    Description: Water transport from soils to the atmosphere is critical for plant growth and survival. However, we have a limited understanding about many portions of the whole-tree hydraulic pathway, because the vast majority of published information is on terminal branches. Our understanding of mature tree trunk hydraulic physiology, in particular, is limited. The hydraulic vulnerability segmentation hypothesis (HVSH) stipulates that distal portions of the plant (leaves, branches and roots) should be more vulnerable to embolism than trunks, which are nonredundant organs that require a massive carbon investment. In the current study, we compared vulnerability to loss of hydraulic function, leaf and xylem water potentials and the resulting hydraulic safety margins (in relation to the water potential causing 50% loss of hydraulic conductivity) in leaves, branches, trunks and roots of four angiosperms and four conifer tree species. Across all species, our results supported strongly the HVSH as leaves and roots were less resistant to embolism than branches or trunks. However, branches were consistently more resistant to embolism than any other portion of the plant, including trunks. Also, calculated whole-tree vulnerability to hydraulic dysfunction was much greater than vulnerability in branches. This was due to hydraulic dysfunction in roots and leaves at less negative water potentials than those causing branch or trunk dysfunction. Leaves and roots had narrow or negative hydraulic safety margins, but trunks and branches maintained positive safety margins. By using branch-based hydraulic information as a proxy for entire plants, much research has potentially overestimated embolism resistance, and possibly drought tolerance, for many species. This study highlights the necessity to reconsider past conclusions made about plant resistance to drought based on branch xylem only. This study also highlights the necessity for more research of whole-plant hydraulic physiology to better understand strategies of plant drought tolerance and the critical control points within the hydraulic pathway.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-09-01
    Description: Freezing resistance through avoidance or tolerance of extracellular ice nucleation is important for plant survival in habitats with frequent subzero temperatures. However, the role of cell walls in leaf freezing resistance and the coordination between leaf and stem physiological processes under subzero temperatures are not well understood. We studied leaf and stem responses to freezing temperatures, leaf and stem supercooling, leaf bulk elastic modulus and stem xylem vessel size of six Patagonian shrub species from two sites (plateau and low elevation sites) with different elevation and minimum temperatures. Ice seeding was initiated in the stem and quickly spread to leaves, but two species from the plateau site had barriers against rapid spread of ice. Shrubs with xylem vessels smaller in diameter had greater stem supercooling capacity, i.e., ice nucleated at lower subzero temperatures. Only one species with the lowest ice nucleation temperature among all species studied exhibited freezing avoidance by substantial supercooling, while the rest were able to tolerate extracellular freezing from –11.3 to –20 °C. Leaves of species with more rigid cell walls (higher bulk elastic modulus) could survive freezing to lower subzero temperatures, suggesting that rigid cell walls potentially reduce the degree of physical injury to cell membranes during the extracellular freezing and/or thaw processes. In conclusion, our results reveal the temporal–spatial ice spreading pattern (from stem to leaves) in Patagonian shrubs, and indicate the role of xylem vessel size in determining supercooling capacity and the role of cell wall elasticity in determining leaf tolerance of extracellular ice formation.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-09-01
    Description: We aim to achieve a mechanistic understanding of the eco-physiological processes in Larix decidua and Pinus mugo var. uncinata growing on north- and south-facing aspects in the Swiss National Park in order to distinguish the short- and long-term effects of a changing climate. To strengthen the interpretation of the 18 O signal in tree rings and its coherence with the main factors and processes driving evaporative 18 O needle water enrichment, we analyzed the 18 O in needle, xylem and soil water over the growing season in 2013 and applied the mechanistic Craig–Gordon model (1965) for the short-term responses. We found that 18 O needle water strongly reflected the variability of relative humidity mainly for larch, while only 18 O in pine xylem water showed a strong link to 18 O in precipitation. Larger differences in offsets between modeled and measured 18 O needle water for both species from the south-facing aspects were detected, which could be explained by the high transpiration rates. Different soil water and needle water responses for the two species indicate different water-use strategies, further modulated by the site conditions. To reveal the long-term physiological response of the studied trees to recent and past climate changes, we analyzed 13 C and 18 O in wood chronologies from 1900 to 2013. Summer temperatures as well as summer and annual amount of precipitations are important factors for growth of both studied species from both aspects. However, mountain pine trees reduced sensitivity to temperature changes, while precipitation changes come to play an important role for the period from 1980 to 2013. Intrinsic water-use efficiency (WUEi) calculated for larch trees since the 1990s reached a saturation point at elevated CO 2 . Divergent trends between pine WUEi and 18 O are most likely indicative of a decline of mountain pine trees and are also reflected in decoupling mechanisms in the isotope signals between needles and tree-rings.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-09-01
    Description: We investigated the effects of historic soil chemistry changes associated with acid rain, i.e., reduced soil pH and a shift from nitrogen (N)- to phosphorus (P)-limitation, on the coordination of leaf water demand and xylem hydraulic supply traits in two co-occurring temperate tree species differing in growth rate. Using a full-factorial design (N  x  P  x  pH), we measured leaf nutrient content, water relations, leaf-level and canopy-level gas exchange, total biomass and allocation, as well as stem xylem anatomy and hydraulic function for greenhouse-grown saplings of fast-growing Acer rubrum (L.) and slow-growing Quercus alba (L.). We used principle component analysis to characterize trait coordination. We found that N-limitation, but not P-limitation, had a significant impact on plant water relations and hydraulic coordination of both species. Fast-growing A. rubrum made hydraulic adjustments in response to N-limitation, but trait coordination was variable within treatments and did not fully compensate for changing allocation across N-availability. For slow-growing Q. alba , N-limitation engendered more strict coordination of leaf and xylem traits, resulting in similar leaf water content and hydraulic function across all treatments. Finally, low pH reduced the propensity of both species to adjust leaf water relations and xylem anatomical traits in response to nutrient manipulations. Our data suggest that a shift from N- to P-limitation has had a negative impact on the water relations and hydraulic function of A. rubrum to a greater extent than for Q. alba . We suggest that current expansion of A. rubrum populations could be tempered by acidic N-deposition, which may restrict it to more mesic microsites. The disruption of hydraulic acclimation and coordination at low pH is emphasized as an interesting area of future study.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-09-01
    Description: Shoot size and other shoot properties more or less follow the availability of light, but there is also evidence that the topological position in a tree crown has an influence on shoot development. Whether the hydraulic properties of new shoots are more regulated by the light or the position affects the shoot acclimation to changing light conditions and thereby to changing evaporative demand. We investigated the leaf-area-specific conductivity (and its components sapwood-specific conductivity and Huber value) of the current-year shoots of Scots pine ( Pinus sylvestris L.) in relation to light environment and topological position in three different tree classes. The light environment was quantified in terms of simulated transpiration and the topological position was quantified by parent branch age. Sample shoot measurements included length, basal and tip diameter, hydraulic conductivity of the shoot, tracheid area and density, and specific leaf area. In our results, the leaf-area-specific conductivity of new shoots declined with parent branch age and increased with simulated transpiration rate of the shoot. The relation to transpiration demand seemed more decisive, since it gave higher R 2 values than branch age and explained the differences between the tree classes. The trend of leaf-area-specific conductivity with simulated transpiration was closely related to Huber value, whereas the trend of leaf-area-specific conductivity with parent branch age was related to a similar trend in sapwood-specific conductivity.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-04-30
    Description: In trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Angiosperm and gymnosperm trees have a fundamentally different phloem anatomy with respect to cell size, shape and connectivity. Whether these differences have an effect on the physiology of carbohydrate transport, however, is not clear. A meta-analysis of the experimental data on phloem transport speed in trees yielded average speeds of 56 cm h –1 for angiosperm trees and 22 cm h –1 for gymnosperm trees. Similar values resulted from theoretical modeling using a simple transport resistance model. Analysis of the model parameters clearly identified sieve element (SE) anatomy as the main factor for the significantly slower carbohydrate transport speed inside the phloem in gymnosperm compared with angiosperm trees. In order to investigate the influence of SE anatomy on the hydraulic resistance, anatomical data on SEs and sieve pores were collected by transmission electron microscopy analysis and from the literature for 18 tree species. Calculations showed that the hydraulic resistance is significantly higher in the gymnosperm than in angiosperm trees. The higher resistance is only partially offset by the considerably longer SEs of gymnosperms.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-04-30
    Description: Trees from tropical montane cloud forest (TMCF) display very dynamic patterns of water use. They are capable of downwards water transport towards the soil during leaf-wetting events, likely a consequence of foliar water uptake (FWU), as well as high rates of night-time transpiration ( E night ) during drier nights. These two processes might represent important sources of water losses and gains to the plant, but little is known about the environmental factors controlling these water fluxes. We evaluated how contrasting atmospheric and soil water conditions control diurnal, nocturnal and seasonal dynamics of sap flow in Drimys brasiliensis (Miers), a common Neotropical cloud forest species. We monitored the seasonal variation of soil water content, micrometeorological conditions and sap flow of D. brasiliensis trees in the field during wet and dry seasons. We also conducted a greenhouse experiment exposing D. brasiliensis saplings under contrasting soil water conditions to deuterium-labelled fog water. We found that during the night D. brasiliensis possesses heightened stomatal sensitivity to soil drought and vapour pressure deficit, which reduces night-time water loss. Leaf-wetting events had a strong suppressive effect on tree transpiration ( E ). Foliar water uptake increased in magnitude with drier soil and during longer leaf-wetting events. The difference between diurnal and nocturnal stomatal behaviour in D. brasiliensis could be attributed to an optimization of carbon gain when leaves are dry, as well as minimization of nocturnal water loss. The leaf-wetting events on the other hand seem important to D. brasiliensis water balance, especially during soil droughts, both by suppressing tree transpiration ( E ) and as a small additional water supply through FWU. Our results suggest that decreases in leaf-wetting events in TMCF might increase D. brasiliensis water loss and decrease its water gains, which could compromise its ecophysiological performance and survival during dry periods.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-04-30
    Description: The hydraulic performance of woody species during drought is currently of high interest in the context of climate change. It is known that woody species have the capacity to mitigate water shortage by using internally stored water. Elastic shrinkage of living cells and also water release during cavitation contribute to the so-called ‘hydraulic capacitance’ ( C ) of the plant, which adds water to the transpiration stream and buffers fluctuations in water potential. Although sap-conducting conduits may ultimately serve as a water pool, cavitation will hamper the conduction of sap. Both hydraulic conductivity and C are thus inextricably linked and the interaction between both should be studied to better understand hydraulic functioning of woody species during drought. However, measurements of C are scarce and no distinction is usually made between C from elastic storage and C supplied by cavitation. In this paper, we propose a new method to assess both the decrease in hydraulic conductivity and the change in C during bench dehydration of a whole-branch segment using continuous measurements of acoustic emissions, radial diameter shrinkage and gravimetrical water loss. With this method we could establish proper vulnerability curves for grapevine ( Vitis vinifera L. ‘Johanniter’) and quantify C during dehydration. Our results showed that loss in hydraulic conductivity during the cavitation phase was accompanied by 22–92% gain in hydraulic capacitance; therefore, a certain degree of cavitation may be tolerated in grapevine during periods of drought stress.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-04-30
    Description: Plant drought responses are still not fully understood. Improved knowledge on drought responses is, however, crucial to better predict their impact on individual plant and ecosystem functioning. Mechanistic models in combination with plant measurements are promising for obtaining information on plant water status and can assist us in understanding the effect of limiting soil water availability and drought stress. While existing models are reliable under sufficient soil water availability, they generally fail under dry conditions as not all appropriate mechanisms seem yet to have been implemented. We therefore aimed at identifying mechanisms underlying plant drought responses, and in particular investigated the behaviour of hydraulic resistances encountered in the soil and xylem for grapevine ( Vitis vinifera L.) and oak ( Quercus robur L.). A variable hydraulic soil-to-stem resistance was necessary to describe plant drought responses. In addition, implementation of a variable soil-to-stem hydraulic resistance enabled us to generate an in situ soil-to-stem vulnerability curve, which might be an alternative to the conventionally used vulnerability curves. Furthermore, a daily recalibration of the model revealed a drought-induced increase in radial hydraulic resistance between xylem and elastic living tissues. Accurate information on plant hydraulic resistances and simulation of plant drought responses can foster important discussions regarding the functioning of plants and ecosystems during droughts.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-06-25
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-06-25
    Description: Simultaneous and accurate measurements of whole-plant instantaneous carbon-use efficiency (ICUE) and annual total carbon-use efficiency (TCUE) are difficult to make, especially for trees. One usually estimates ICUE based on the net photosynthetic rate or the assumed proportional relationship between growth efficiency and ICUE. However, thus far, protocols for easily estimating annual TCUE remain problematic. Here, we present a theoretical framework (based on the metabolic scaling theory) to predict whole-plant annual TCUE by directly measuring instantaneous net photosynthetic and respiratory rates. This framework makes four predictions, which were evaluated empirically using seedlings of nine Picea taxa: (i) the flux rates of CO 2 and energy will scale isometrically as a function of plant size, (ii) whole-plant net and gross photosynthetic rates and the net primary productivity will scale isometrically with respect to total leaf mass, (iii) these scaling relationships will be independent of ambient temperature and humidity fluctuations (as measured within an experimental chamber) regardless of the instantaneous net photosynthetic rate or dark respiratory rate, or overall growth rate and (iv) TCUE will scale isometrically with respect to instantaneous efficiency of carbon use (i.e., the latter can be used to predict the former) across diverse species. These predictions were experimentally verified. We also found that the ranking of the nine taxa based on net photosynthetic rates differed from ranking based on either ICUE or TCUE. In addition, the absolute values of ICUE and TCUE significantly differed among the nine taxa, with both ICUE and temperature-corrected ICUE being highest for Picea abies and lowest for Picea schrenkiana . Nevertheless, the data are consistent with the predictions of our general theoretical framework, which can be used to access annual carbon-use efficiency of different species at the level of an individual plant based on simple, direct measurements. Moreover, we believe that our approach provides a way to cope with the complexities of different ecosystems, provided that sufficient measurements are taken to calibrate our approach to that of the system being studied.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-06-25
    Description: How trees sense source–sink carbon balance remains unclear. One potential mechanism is a feedback from non-structural carbohydrates regulating photosynthesis and removing excess as waste respiration when the balance of photosynthesis against growth and metabolic activity changes. We tested this carbohydrate regulation of photosynthesis and respiration using branch girdling in four tree species in a wet tropical rainforest in Costa Rica. Because girdling severs phloem to stop carbohydrate export while leaving xylem intact to allow photosynthesis, we expected carbohydrates to accumulate in leaves to simulate a carbon imbalance. We varied girdling intensity by removing phloem in increments of one-quarter of the circumference (zero, one-­quarter, half, three-quarters, full) and surrounded a target branch with fully girdled ones to create a gradient in leaf carbohydrate content. Light saturated photosynthesis rate was measured in situ, and foliar respiration rate and leaf carbohydrate content were measured after destructive harvest at the end of the treatment. Girdling intensity created no consistent or strong responses in leaf carbohydrates. Glucose and fructose slightly increased in all species by 3.4% per one-quarter girdle, total carbon content and leaf mass per area increased only in one species by 5.4 and 5.5% per one-quarter girdle, and starch did not change. Only full girdling lowered photosynthesis in three of four species by 59–69%, but the decrease in photosynthesis was unrelated to the increase in glucose and fructose content. Girdling did not affect respiration. The results suggest that leaf carbohydrate content remains relatively constant under carbon imbalance, and any changes are unlikely to regulate photosynthesis or respiration. Because girdling also stops the export of hormones and reactive oxygen species, girdling may induce physiological changes unrelated to carbohydrate accumulation and may not be an effective method to study carbohydrate feedback in leaves. In three species, removal of three-quarters of phloem area did not cause leaf carbohydrates to accumulate nor did it change photosynthesis or respiration, suggesting that phloem transport is flexible and transport rate per unit phloem can rapidly increase under an increase in carbohydrate supply relative to phloem area. Leaf carbohydrate content thus may be decoupled from whole plant carbon balance by phloem transport in some species, and carbohydrate regulation of photosynthesis and respiration may not be as common in trees as previous girdling studies suggest. Further studies in carbohydrate regulation should avoid using girdling as girdling can decrease photosynthesis through unintended means without the tested mechanisms of accumulating leaf carbohydrates.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-06-25
    Description: During the development of woody twigs, the growth in leaf may or may not be proportional to the growth in stem. The presence or absence of a synchronicity between these two phenologies may reflect differences in life history adaptive strategies concerning carbon gain. We hypothesized that sun-adapted species are more likely to be less synchronous between growths in total leaf area (TLA) and stem length compared with shade-adapted species, with a bias in growth in stem length, and that shade-adapted species are more likely to be more synchronous between increases in individual leaf area (ILA) (leaf size) and leaf number (LN) during twig development compared with sun-adapted species, giving priority to growth of leaf size. We tested these two hypotheses by recording the phenologies of leaf emergence, leaf expansion and stem elongation during twig development for 19 evergreen woody species (including five shade-adapted understory species, six sun-adapted understory species and eight sun-adapted canopy species) in a subtropical evergreen broad-leaved forest in eastern China. We constructed indices to characterize the synchronicity between TLA and stem length ( α LS ) and between leaf size and leaf number ( α SN ) and we derived the α values from logistic functions taking the general form of A  =  A max /[1 + exp( β  –  αB )] (where A is the TLA or average ILA, B is the corresponding stem length or LN at a specific time, and A max is the maximum TLA or the maximum ILA of a twig; the higher the numerical value of α , the less synchronous the corresponding phenologies). Consistent with our hypotheses, sun-adapted species were higher both in α LS and α SN , showing less synchronous patterns in the growths of TLA vs stem length and leaf size vs LN during twig development. Moreover, α LS and α SN were significantly positively correlated with relative growth rates of LN and leaf size across species, as indicated by both analyses of ordinary regression and phylogenetic generalized least squares. The across-species synchronies during twig development show that the temporal dynamics of the leaf size–twig size spectrum is of adaptive significance in plants. We suggest that temporal dynamics of plant functional traits should be extensively studied to characterize plant life history.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-06-25
    Description: The degree to which branches are autonomous in their acclimation responses to alteration in light environment is still poorly understood. We investigated the effects of shading of the sapling crown of Cunninghamia lanceolata (Lamb.) Hook on the whole-tree and mid-crown branch growth and current-year foliage structure and physiology. Four treatments providing 0, 50, 75 and 90% shading compared with full daylight (denoted as Treatment 0 , Treatment 50% , Treatment 75% and Treatment 90% , and Shaded 0 , Shaded 50% , Shaded 75% and Shaded 90% for the shaded branches and Sunlit 0 , Sunlit 50% , Sunlit 75% and Sunlit 90% for the opposite sunlit branches under natural light conditions, respectively), were applied over two consecutive growing seasons. Shading treatments decreased the growth of basal stem diameter, leaf dry mass per unit leaf area, stomatal conductance, transpiration rate, the ratio of water-soluble to structural leaf nitrogen content, photosynthetic nitrogen-use efficiency and instantaneous and long-term (estimated from carbon isotope composition) water-use efficiency in shaded branches. Differences between shaded and sunlit branches increased with increasing severity and duration of shading. A non-autonomous, partly compensatory behavior of non-shaded branches was observed for most traits, thus reflecting the dependence between the traits of sunlit branches and the severity of shading of the opposite crown half. The results collectively indicated that tree growth and branch and leaf acclimation responses of C. lanceolata are not only affected by the local light environment, but also by relative within-crown light conditions. We argue that such a non-autonomous branch response to changes in light conditions can improve whole-tree resource optimization. These results contribute to better understanding of tree growth and utilization of water and nitrogen under heterogeneous light conditions within tree canopies.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-06-25
    Description: Patterns of root traits among different root orders and their variation across seasons are of considerable importance for soil resource acquisition and partitioning in forest ecosystems. We evaluated whether morphological, anatomical and biochemical traits varied among root orders of Quercus robur (L.) sampled across spring, summer and fall seasons and growing in two different soil types with contrasting site fertility. We found no consistent differences in root diameter and specific root length in relation to soil type or growing season. There was, however, a strong seasonal variation in patterns of nitrogen (N) concentration among root orders. During spring and summer, N concentration was highest in the most distal, absorptive portion of the root system. At the end of the growing season, we observed a sharp decline in the N concentration of these lower-order, absorptive roots and an increase in N concentration of the higher-order, transport roots. The specific mechanisms driving the seasonally changing N concentration remain unclear but are likely related to different functions of lower-order roots for absorption and higher-order roots for structure and storage. Future work should identify how common the observed seasonal changes in N concentration are across species and determine what specific environmental cues plants or roots use to trigger shifts in resource allocation within the root branching hierarchy.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-06-25
    Description: The Arabidopsis vacuolar H + -pyrophosphatase ( AVP1 ) has been well studied and subsequently employed to improve salt and/or drought resistance in herbaceous plants. However, the exact function of H + -pyrophosphatase in woody plants still remains unknown. In this work, we cloned a homolog of type I H + -pyrophosphatase gene, designated as PtVP1.1 , from Populus trichocarpa , and investigated its function in both Arabidopsis and poplar. The deduced translation product PtVP1.1 shares 89.74% identity with AVP1. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR analyses revealed a ubiquitous expression pattern of PtVP1.1 in various tissues, including roots, stems, leaves and shoot tips. Heterologous expression of PtVP1.1 rescued the retarded-root-growth phenotype of avp1 , an Arabidopsis knock out mutant of AVP1 , on low carbohydrate medium. Overexpression of PtVP1.1 in poplar ( P. davidiana   x   P. bolleana ) led to more vigorous growth of transgenic plants in the presence of 150 mM NaCl. Microsomal membrane vesicles derived from PtVP1.1 transgenic plants exhibited higher H + -pyrophosphatase hydrolytic activity than those from wild type (WT). Further studies indicated that the improved salt tolerance was associated with a decreased Na + and increased K + accumulation in the leaves of transgenic plants. Na + efflux and H + influx in the roots of transgenic plants were also significantly higher than those in the WT plants. All these results suggest that PtVP1.1 is a functional counterpart of AVP1 and can be genetically engineered for salt tolerance improvement in trees.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...