ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9,326)
  • Springer  (9,326)
  • American Chemical Society (ACS)
  • Climate Dynamics  (2,548)
  • 862
  • Physics  (9,326)
  • 1
    Publication Date: 2020-07-21
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-01
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-15
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2020-07-11
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-11
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-07-12
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-07-07
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-08
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-07-06
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
  • 12
  • 13
    Publication Date: 2020-07-04
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2007-02-06
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-11
    Description: Impacts of spectral nudging on simulations of Arctic climate in coupled simulations have been investigated in a set of simulations with a regional climate model (RCM). The dominantly circumpolar circulation in the Arctic lead to weak constraints on the lateral boundary conditions (LBCs) for the RCM, which causes large internal variability with strong deviations from the driving model. When coupled to an ocean and sea ice model, this results in sea ice concentrations that deviate from the observed spatial distribution. Here, a method of spectral nudging is applied to the atmospheric model RCA4 in order to assess the potentials for improving results for the sea ice concentrations when coupled to the RCO ocean-sea ice model. The spectral nudging applied to reanalysis driven simulations significantly improves the generated sea ice regarding its temporal evolution, extent and inter-annual trends, compared to simulations with standard LBC nesting. The method is furthermore evaluated with driving data from two CMIP5 GCM simulations for current and future conditions. The GCM biases are similar to the RCA4 biases with ERA-Interim, however, the spectral nudging still improves the surface winds enough to show improvements in the simulated sea ice. For both GCM downscalings, the spectrally nudged version retains a larger sea ice extent in September further into the future. Depending on the sea ice formulation in the GCM, the temporal evolution of the regional sea ice model can deviate strongly.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-11
    Description: The increased rate of Tropical Indian Ocean (TIO) surface warming has gained a lot of attention in the recent years mainly due to its regional climatic impacts. The processes associated with this increased surface warming is highly complex and none of the mechanisms in the past studies could comprehend the important features associated with this warming such as the negative trends in surface net heat fluxes and the decreasing temperature trends at thermocline level. In this work we studied a previously unexplored aspect, the changes in large scale surface circulation pattern modulating the surface warming pattern over TIO. We use ocean reanalysis datasets and a suit of Ocean General Circulation Model (OGCM) experiments to address this problem. Both reanalysis and OGCM reveal strengthening large scale surface circulation pattern in the recent years. The most striking feature is the intensification of cyclonic gyre circulation around the thermocline ridge in the southwestern TIO. The surface circulation change in TIO is mainly associated with the surface wind changes and the geostrophic response to sea surface height decrease in the western/southwestern TIO. The surface wind trends closely correspond to SST warming pattern. The strengthening mean westerlies over the equatorial region are conducive to convergence in the central and divergence in the western equatorial Indian Ocean (IO) resulting central warming and western cooling. The resulting east west SST gradient further enhances the equatorial westerlies. This positive feedback mechanism supports strengthening of the observed SST trends in the equatorial Indian Ocean. The cooling induced by the enhanced upwelling in the west is compensated to a large extent by warming due to reduction in mixed layer depth, thereby keeping the surface temperature trends in the west to weak positive values. The OGCM experiments showed that the wind induced circulation changes redistribute the excess heat received in the western TIO to central and east thereby enhancing warming in the central equatorial IO. The increased surface warming in central TIO increases the latent heat loss, and keeps the net heat flux trends negative. Model sensitivity experiments reveal that the subsurface cooling at thermocline level in TIO is contributed by variability in Pacific via Indonesian Through Flow whereas the surface warming trend is mainly induced by the changes in the local forcing. The long term changes in IO Rossby waves are not induced by local atmospheric forcing but are forced by Pacific. The thermocline shoaling in the west is therefore amplified by the remote influence of Pacific via wave transmission through Indonesian archipelago.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-04
    Description: An on-line, ensemble-based data assimilation (DA) method is performed to reconstruct the climate for 1750–1850 AD, and the performance is evaluated on large and small spatial scales. We use a low-resolution version of the Max Planck Institute for Meteorology MPI-ESM model and assimilate the PAGES 2K continental mean temperature reconstructions for the Northern Hemisphere (NH). The ensembles are generated sequentially for sub-periods based on the analysis of previous sub-periods. The assimilation has good skill for large-scale temperatures, but there is no agreement between the DA analysis and proxy-based reconstructions for small-scale temperature patterns within Europe or with reconstructions for the North Atlantic Oscillation (NAO) index. To explain the lack of added value in small spatial scales, a maximum covariance analysis (MCA) of links between NH temperature and sea level pressure is performed based on a control simulation with MPI-ESM. For annual values, winter and spring the Northern Annular Mode (NAM) is the pattern that is most closely linked to the NH continental temperatures, while for summer and autumn it is a wave-like pattern. This link is reproduced in the DA for winter, spring and annual means, providing potential for constraining the NAM/NAO phase and in turn regional temperature variability. It is shown that the lack of actual small-scale skill is likely due to the fact that the link might be too weak, as the NH continental mean temperatures are not the best predictors for large-scale circulation anomalies, or that the PAGES 2K temperatures include noise. Both factors can lead to circulation anomalies in the DA analysis that are substantially different from reality, leading to unrealistic representation of small-scale temperature variability. Moreover, we show that even if the true amplitudes of the leading MCA circulation patterns were known, there is still a large amount of unexplained local temperature variance. Based on these results, we argue that assimilating temperature reconstructions with a higher spatial resolution might improve the DA performance.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-04
    Description: We analyse the impact of migration and strength of Southern Hemisphere westerly winds on the ocean carbon cycle in a systematic sensitivity study with the University of Victoria Earth System Climate Model. We find that changes in the biological pump are mainly driven by changes in ocean residence times while changes in export production are negligible. Changes in the biological and physical pumps are always of opposite sign; with the physical pump being dominant for southward shifts and the biological pump being dominant for northward shifts. Furthermore, changes in the Pacific Ocean carbon budget dictate the overall changes in global marine and atmospheric carbon. Overall, atmospheric \(\hbox {CO}_2\) increases (and \(\Delta ^{14}\hbox {C}\) decreases) for northward shifts or a strengthening in wind forcing. The opposite is true for a southward shift or a weakening in wind forcing. Combining forcings (shift and intensity change) results in a combination of their impacts with the direction of the shift being the first order forcing. The terrestrial carbon reservoir absorbs (releases) 50–70 % of the net oceanic carbon loss (increase), counterbalancing the effect on atmospheric \(\hbox {CO}_2\) .
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-08-04
    Description: Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated using a fully coupled climate model. The AMOC can change significantly when perturbed by either wind stress or freshwater flux in the North Atlantic. This study focuses on wind stress effect. Our model results show that the wind forcing is crucial in maintaining the AMOC. Reducing wind forcing over the ocean can cause immediately weakening of the vertical salinity diffusion and convection in the mid-high latitudes Atlantic, resulting in an enhancement of vertical salinity stratification that restrains the deep water formation there, triggering a slowdown of the thermohaline circulation. As the thermohaline circulation weakens, the sea ice expands southward and melts, providing the upper ocean with fresh water that weakens the thermohaline circulation further. The wind perturbation experiments suggest a positive feedback between sea-ice and thermohaline circulation strength, which can eventually result in a complete shutdown of the AMOC. This study also suggests that sea-ice variability may be also important to the natural AMOC variability on decadal and longer timescales.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-08-05
    Description: The relationship between the large-scale circulation dynamics and regional precipitation regime in the Tibetan Plateau (TP) has so far not been well understood. In this study, we classify the circulation types using the self-organizing maps based on the daily field of 500 hPa geopotential height and link them to the precipitation climatology in the eastern and central TP. By virtue of an objective determining method, 18 circulation types are quantified. The results show that the large amount of precipitation in summer is closely related to the circulation types in which the enhanced and northward shifted subtropical high (SH) over the northwest Pacific and the obvious cyclconic circulation anomaly over the Bay of Bengal are helpful for the Indian summer monsoon and East Asian summer monsoon to take abundant low-latitude moisture to the eastern and southern TP. On the contrary, the dry winter in the central and eastern Tibet corresponds to the circulation types with divergence over the central and eastern TP and the water vapor transportations of East Asian winter monsoon and mid-latitude westerly are very weak. Some circulation types are associated with some well-known circulation patterns/monsoons influencing the TP (e.g. East Atlantic Pattern, El Niño Southern Oscillation, Indian Summer Monsoon and the mid-latitude westerly), and exhibit an overall good potential for explaining the variability of regional seasonal precipitation. Moreover, the climate shift signals in the late 1970s over the eastern Pacific/North Pacific Oceans could also be reflected by both the variability of some circulation types and their correspondingly composite precipitations. This study extends our understandings for the large-scale atmospheric dynamics and their linkages with regional precipitation and is beneficial for the climate change projection and related adaptation activities in the highest and largest plateau in the world.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-08-08
    Description: Based on the historical and RCP8.5 experiments from 25 Coupled Model Intercomparison Project phase 5 (CMIP5) models, the impacts of sea surface temperature (SST) warming in the tropical Indian Ocean (IO) on the projected change in summer rainfall over Central Asia (CA) are investigated. The analysis is designed to answer three questions: (1) Can CMIP5 models reproduce the observed influence of the IO sea surface temperatures (SSTs) on the CA rainfall variations and the associated dynamical processes? (2) How well do the models agree on their projected rainfall changes over CA under warmed climate? (3) How much of the uncertainty in such rainfall projections is due to different impacts of IO SSTs in these models? The historical experiments show that in most models summer rainfall over CA are positively correlated to the SSTs in the IO. Furthermore, for models with higher rainfall-SSTs correlations, the dynamical processes accountable for such impacts are much closer to what have been revealed in observational data: warmer SSTs tend to favor the development of anti-cyclonic circulation patterns at low troposphere over north and northwest of the Arabian Sea and the Bay of Bengal. These anomalous circulation patterns correspond to significantly enhanced southerly flow which carries warm and moisture air mass from the IO region up to the northeast. At the same time, there is a cyclonic flow over the central and eastern part of the CA which further brings the tropical moisture into the CA and provides essential moist conditions for its rainfall generation. In the second half of twenty-first century, although all the 25 models simulate warmed SSTs, significant uncertainty exists in their projected rainfall changes over CA: half of them suggest summer rainfall increases, but the other half project rainfall decreases. However, when we select seven models out of the 25 based on their skills in capturing the dynamical processes as observed, then the model projected changes are much closer. Five out of the seven models predicted more rainfall over CA. Such a result is helpful for allowing us to attribute part of the observed upward rainfall trend in the CA region in the last several decades to the IO SST warming.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-08-20
    Description: Cyclonic windstorms are one of the most important natural hazards for Europe, but robust climate projections of the position and the strength of the North Atlantic storm track are not yet possible, bearing significant risks to European societies and the (re)insurance industry. Previous studies addressing the problem of climate model uncertainty through statistical comparisons of simulations of the current climate with (re-)analysis data show large disagreement between different climate models, different ensemble members of the same model and observed climatologies of intense cyclones. One weakness of such evaluations lies in the difficulty to separate influences of the climate model’s basic state from the influence of fast processes on the development of the most intense storms, which could create compensating effects and therefore suggest higher reliability than there really is. This work aims to shed new light into this problem through a cost-effective “seamless” approach of hindcasting 20 historical severe storms with the two global climate models, ECHAM6 and GA4 configuration of the Met Office Unified Model, run in a numerical weather prediction mode using different lead times, and horizontal and vertical resolutions. These runs are then compared to re-analysis data. The main conclusions from this work are: (a) objectively identified cyclone tracks are represented satisfactorily by most hindcasts; (b) sensitivity to vertical resolution is low; (c) cyclone depth is systematically under-predicted for a coarse resolution of T63 by both climate models; (d) no systematic bias is found for the higher resolution of T127 out to about three days, demonstrating that climate models are in fact able to represent the complex dynamics of explosively deepening cyclones well, if given the correct initial conditions; (e) an analysis using a recently developed diagnostic tool based on the surface pressure tendency equation points to too weak diabatic processes, mainly latent heating, as the main source for the under-prediction in the coarse-resolution runs. Finally, an interesting implication of these results is that the too low number of deep cyclones in many free-running climate simulations may therefore be related to an insufficient number of storm-prone initial conditions. This question will be addressed in future work.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-08-12
    Description: Extreme precipitation and flood episodes in the Himalayas are oftentimes traced to synoptic situations involving connections between equatorward advancing upper level extratropical circulations and moisture-laden tropical monsoon circulation. While previous studies have documented precipitation characteristics in the Himalayan region during severe storm cases, a comprehensive understanding of circulation dynamics of extreme precipitation mechanisms is still warranted. In this study, a detailed analysis is performed using rainfall observations and reanalysis circulation products to understand the evolution of monsoon-extratropical circulation features and their interactions based on 34 extreme precipitation events which occurred in the Western Himalayas (WEH) during the period 1979–2013. Our results provide evidence for a common large-scale circulation pattern connecting the extratropics and the South Asian monsoon region, which is favorable for extreme precipitation occurrences in the WEH region. This background upper level large-scale circulation pattern consists of a deep southward penetrating midlatitude westerly trough, a blocking high over western Eurasia and an intensifying Tibetan anticyclone. It is further seen from our analysis that the key elements of monsoon-midlatitude interactions, responsible for extreme precipitation events over the WEH region, are: (1) midlatitude Rossby wave breaking, (2) west-northwest propagation of monsoon low-pressure system from the Bay of Bengal across the Indian subcontinent, (3) eddy shedding of the Tibetan anticyclone, (4) ageostrophic motions and transverse circulation across the Himalayas, and (5) strong moist convection over the Himalayan foothills. Furthermore, high-resolution numerical simulations indicate that diabatic heating and mesoscale ageostrophic effects can additionally amplify the convective motions and precipitation in the WEH region.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-08-12
    Description: This paper examines the difference in the Atlantic Meridional Overturning Circulation (AMOC) mean state between free and assimilative simulations of a common ocean model using a common interannual atmospheric forcing. In the assimilative simulation, the reproduction of cold cores in the Nordic Seas, which is absent in the free simulation, enhances the overflow to the North Atlantic and improves AMOC with enhanced transport of the deeper part of the southward return flow. This improvement also induces an enhanced supply of North Atlantic Deep Water (NADW) and causes better representation of the Atlantic deep layer despite the fact that correction by the data assimilation is applied only to temperature and salinity above a depth of 1750 m. It also affects Circumpolar Deep Water in the Southern Ocean. Although the earliest influence of the improvement propagated by coastal waves reaches the Southern Ocean in 10–15 years, substantial influence associated with the arrival of the renewed NADW propagates across the Atlantic Basin in several decades. Although the result demonstrates that data assimilation is able to improve the deep ocean state even if there is no data there, it also indicates that long-term integration is required to reproduce variability in the deep ocean originating from variations in the upper ocean. This study thus provides insights on the reliability of AMOC and the ocean state in the Atlantic deep layer reproduced by data assimilation systems.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-15
    Description: The southeast region of Brazil experienced in austral summer 2014 a major drought event leading to a number of impacts in water availability for human consumption, agricultural irrigation and hydropower production. This study aims to perform a diagnostic analysis of the observed climate conditions during this event, including an inspection of the occurred precipitation anomalies in the context of previous years, and an investigation of possible relationships with sea surface temperatures and atmospheric circulation patterns. The sea surface temperature analysis revealed that the southwestern South Atlantic Ocean region near the coast of southeast Brazil showed strong negative association with precipitation over southeast Brazil, indicating that increased sea temperatures in this ocean region are consistent with reduced precipitation as observed in summer 2014. The circulation analysis revealed prevailing anti-cyclonic anomalies at lower levels (850 hPa) with northerly anomalies to the west of southeast Brazil, channeling moisture from the Amazon towards Paraguay, northern Argentina and southern Brazil, and drier than normal air from the South Atlantic Ocean towards the southeast region of Brazil. This circulation pattern was found to be part of a large-scale teleconnection wave train linked with the subsidence branch of the Walker circulation in the tropical east Pacific, which in turn was generated by an anomalous tropical heat source in north/northeastern Australia. A regional Hadley circulation with an ascending branch to the south of the subsidence branch of the Walker circulation in the tropical east Pacific was identified as an important component connecting the tropical and extratropical circulation. The ascending branch of this Hadley circulation in the south Pacific coincided with an identified Rossby wave source region, which contributed to establishing the extratropical component of the large-scale wave train connecting the south Pacific and the Atlantic region surrounding southeast Brazil. This connection between the Pacific and the Atlantic was confirmed with Rossby ray tracing analyses. The local circulation response was associated to downward air motion (subsidence) over Southeast Brazil, contributing to the expressive negative precipitation anomalies observed during summer 2014, and leading to a major drought event in the historical context. The analysis of atmospheric and oceanic patterns of this event helped defining a schematic framework leading to the observed drought conditions in southeast Brazil, including the involved teleconnections, blocking high pressure, radiative and humidity transport effects.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2015-08-03
    Description: The existence of cut-off lows (COLs) over South Pacific and South America is often associated with adverse weather events such as intense precipitation over the central region of South America, frost episodes in southern Brazil and the development of Andes lee cyclones and intense cyclones over the southern coast of Brazil. Despite this importance, the formation and maintenance mechanisms of the COLs are not well understood. To detail the significant variability in terms of the eddy kinetic energy equation for fifty cases of COLs that formed over the southeastern Pacific Ocean is the aim of this study. Only the cases of COLs that formed over the ocean and remained there during most of their life were chosen. The main terms of the equation [ageostrophic flux convergence (AFC), baroclinic conversion (BRC) and barotropic conversion (BRT)] were calculated using the 6-hourly gridded data from the National Centers for Environmental Prediction/Department of Energy reanalysis. The formation mechanism of the COLs was associated with BRC and AFC. During the midlife period, the BRC term converted eddy kinetic energy to eddy potential energy and the AFC had a positive contribution until 6 h after the midlife point. In the dissipation phase, the BRC term remained positive and AFC became negative. The BRT extracted kinetic energy from the COL during the entire life cycle. The AFC term was the most important in all phases of the cut-off lifetime, and it was the responsible for extending the cut-off lifetime while the others terms were negatives.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-08-03
    Description: The present study examines the ability of high resolution (T382) National Centers for Environmental Prediction coupled atmosphere–ocean climate forecast system version 2 (CFS T382) in simulating the salient spatio-temporal characteristics of the boreal summertime mean climate and the intraseasonal variability. The shortcomings of the model are identified based on the observation and compared with earlier reported biases of the coarser resolution of CFS (CFS T126). It is found that the CFS T382 reasonably mimics the observed features of basic state climate during boreal summer. But some prominent biases are noted in simulating the precipitation, tropospheric temperature (TT) and sea surface temperature (SST) over the global tropics. Although CFS T382 primarily reproduces the observed distribution of the intraseasonal variability over the Indian summer monsoon region, some difficulty remains in simulating the boreal summer intraseasonal oscillation (BSISO) characteristics. The simulated eastward propagation of BSISO decays rapidly across the Maritime Continent, while the northward propagation appears to be slightly slower than observation. However, the northward propagating BSISO convection propagates smoothly from the equatorial region to the northern latitudes with observed magnitude. Moreover, the observed northwest-southeast tilted rain band is not well reproduced in CFS T382. The warm mean SST bias and inadequate simulation of high frequency modes appear to be responsible for the weak simulation of eastward propagating BSISO. Unlike CFS T126, the simulated mean SST and TT exhibit warm biases, although the mean precipitation and simulated BSISO characteristics are largely similar in both the resolutions of CFS. Further analysis of the convectively coupled equatorial waves (CCEWs) indicates that model overestimates the gravest equatorial Rossby waves and underestimates the Kelvin and mixed Rossby-gravity waves. Based on analysis of CCEWs, the study further explains the possible reasons behind the realistic simulation of northward propagating BSISO in CFS T382, even though the model shows substantial biases in simulating mean state and other BSISO modes.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-08-07
    Description: The TAO/TRITON array is the cornerstone of the tropical Pacific and ENSO observing system. Motivated by the recent rapid decline of the TAO/TRITON array, the potential utility of TAO/TRITON was assessed for ENSO monitoring and prediction. The analysis focused on the period when observations from Argo floats were also available. We coordinated observing system experiments (OSEs) using the global ocean data assimilation system (GODAS) from the National Centers for Environmental Prediction and the ensemble coupled data assimilation (ECDA) from the Geophysical Fluid Dynamics Laboratory for the period 2004–2011. Four OSE simulations were conducted with inclusion of different subsets of in situ profiles: all profiles (XBT, moorings, Argo), all except the moorings, all except the Argo and no profiles. For evaluation of the OSE simulations, we examined the mean bias, standard deviation difference, root-mean-square difference (RMSD) and anomaly correlation against observations and objective analyses. Without assimilation of in situ observations, both GODAS and ECDA had large mean biases and RMSD in all variables. Assimilation of all in situ data significantly reduced mean biases and RMSD in all variables except zonal current at the equator. For GODAS, the mooring data is critical in constraining temperature in the eastern and northwestern tropical Pacific, while for ECDA both the mooring and Argo data is needed in constraining temperature in the western tropical Pacific. The Argo data is critical in constraining temperature in off-equatorial regions for both GODAS and ECDA. For constraining salinity, sea surface height and surface current analysis, the influence of Argo data was more pronounced. In addition, the salinity data from the TRITON buoys played an important role in constraining salinity in the western Pacific. GODAS was more sensitive to withholding Argo data in off-equatorial regions than ECDA because it relied on local observations to correct model biases and there were few XBT profiles in those regions. The results suggest that multiple ocean data assimilation systems should be used to assess sensitivity of ocean analyses to changes in the distribution of ocean observations to get more robust results that can guide the design of future tropical Pacific observing systems.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-08-03
    Description: Recent numerical studies in stratospheric dynamics and its variability as well as climate, have highlighted the need of more observational analyses to improve simulation of the West African monsoon (WAM). In this paper, activity and spectral characteristics of short-scale vertical waves (wavelengths 〈4 km) are analysed in equatorial coastal and tropical lower stratosphere during the WAM. A first detailed description of such waves over West Africa is derived from high-resolution vertical profiles of temperature and horizontal wind obtained during Intensive Observation Period of the African Monsoon Multidisciplinary Analyses (AMMA) Campaign 2006. Monthly variation of wave energy density is revealed to trace the progression of the inter-tropical convergence zone (ITCZ) over West Africa. Mesoscale inertia gravity-waves structures with vertical and horizontal wavelengths of 1.5–2.5 and 400–1100 km respectively and intrinsic frequencies of 1.1–2.2 f or periods 〈2 days are observed in the tropical LS with intense activity during July and August when the WAM is installed over the tropical West Africa. Over equatorial region, gravity waves with intrinsic frequencies of 1.4–4 f or periods 〈5.2 days, vertical wavelength of 2.1 km and long horizontal wavelengths of 1300 km are intense during the WAM coastal phase. From July to October, gravity waves with intrinsic frequencies of 1.2–3.8 f or periods 〈6 days, vertical wavelength of 2.1 km and horizontal wavelengths of 1650 km are less intense during the WAM Sahelian phase of the WAM, March–June. Unlike potential energy density, kinetic energy density is observed to be a good proxy for the activity of short-scale vertical waves during the WAM because quasi-inertial waves are dominant. Long-term wave activity variation from January 2001 to December 2009, highlights strong year-to-year variation superimposed on convective activity and quasi-biennial oscillation-like variations especially above tropical stations.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-08-04
    Description: Satellite based top-of-atmosphere (TOA) and surface radiation budget observations are combined with mass corrected vertically integrated atmospheric energy divergence and tendency from reanalysis to infer the regional distribution of the TOA, atmospheric and surface energy budget terms over the globe. Hemispheric contrasts in the energy budget terms are used to determine the radiative and combined sensible and latent heat contributions to the cross-equatorial heat transports in the atmosphere (AHT EQ ) and ocean (OHT EQ ). The contrast in net atmospheric radiation implies an AHT EQ from the northern hemisphere (NH) to the southern hemisphere (SH) (0.75 PW), while the hemispheric difference in sensible and latent heat implies an AHT EQ in the opposite direction (0.51 PW), resulting in a net NH to SH AHT EQ (0.24 PW). At the surface, the hemispheric contrast in the radiative component (0.95 PW) dominates, implying a 0.44 PW SH to NH OHT EQ . Coupled model intercomparison project phase 5 (CMIP5) models with excessive net downward surface radiation and surface-to-atmosphere sensible and latent heat transport in the SH relative to the NH exhibit anomalous northward AHT EQ and overestimate SH tropical precipitation. The hemispheric bias in net surface radiative flux is due to too much longwave surface radiative cooling in the NH tropics in both clear and all-sky conditions and excessive shortwave surface radiation in the SH subtropics and extratropics due to an underestimation in reflection by clouds.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-08-08
    Description: Mineral dust aerosols are an essential component of climate over West Africa, however, little work has been performed to investigate their contributions to potential climate change. A set of regional climate model experiments with and without mineral dust processes and land cover changes is performed to evaluate their climatic effects under the Representative Concentration Pathway 8.5 for two global climate models. Results suggest surface warming to be in the range of 4–8 °C by the end of the century (2081–2100) over West Africa with respect to the present day (1981–2000). The presence of mineral dusts dampens the warming by 0.1–1 °C in all seasons. Accounting for changes in land cover enhances the warming over the north of Sahel and dampens it to the south in spring and summer; however, the magnitudes are smaller than those resulting from dusts. Overall dust loadings are projected to increase, with the greatest increase occurring over the Sahara and Sahel in summer. Accounting for land cover changes tends to reduce dust loadings over the southern Sahel. Future precipitation is projected to decrease by 5–40 % in the western Sahara and Sahel and increase by 10–150 % over the eastern Sahel and Guinea Coast in JJA. A dipole pattern of future precipitation changes is attributed to dust effects, with decrease in the north by 5–20 % and increase by 5–20 % in the south. Future changes in land cover result in a noisy non-significant response with a tendency for slight wetting in MAM, JJA, and SON and drying in DJF.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-08-15
    Description: In a previous study Pons et al. (Clim Res 54(3):197–207, 2010 . doi: 10.3354/cr01117g ) reported a significant decreasing trend of snowfall occurrence in the Northern Iberian Peninsula since the mid 70s. The study was based on observations of annual snowfall frequency (measured as the annual number of snowfall days NSD) from a network of 33 stations ranging from 60 to 1350 m. In the present work we analyze the skill of Regional Climate Models (RCMs) to reproduce this trend for the period 1961–2000 (using both reanalysis- and historical GCM-driven boundary conditions) and the trend and the associated uncertainty of the regional future projections obtained under the A1B scenario for the first half of the twenty-first century. In particular, we consider the regional simulation dataset from the EU-funded ENSEMBLES project, consisting of thirteen state-of-the-art RCMs run at 25 km resolution over Europe. While ERA40 severely underestimates both the mean NSD and its observed trend (−2.2 days/decade), the corresponding RCM simulations driven by the reanalysis appropriately capture the interannual variability and trends of the observed NSD (trends ranging from −3.4 to −0.7, −2.1 days/decade for the ensemble mean). The results driven by the GCM historical runs are quite variable, with trends ranging from −8.5 to 0.2 days/decade (−1.5 days/decade for the ensemble mean), and the greatest uncertainty by far being associated with the particular GCM used. Finally, the trends for the future 2011–2050 A1B runs are more consistent and significant, ranging in this case from −3.7 to −0.5 days/decade (−2.0 days/decade for the ensemble mean), indicating a future significant decreasing trend. These trends are mainly determined by the increasing temperatures, as indicated by the interannual correlation between temperature and NSD (−0.63 in the observations), which is preserved in both ERA40- and GCM-driven simulations.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-08-15
    Description: The interannual-decadal variability of the wintertime mixed layer depths (MLDs) over the North Pacific is investigated from an empirical orthogonal function (EOF) analysis of an ensemble of global ocean reanalyses. The first leading EOF mode represents the interannual MLD anomalies centered in the eastern part of the central mode water formation region in phase opposition with those in the eastern subtropics and the central Alaskan Gyre. This first EOF mode is highly correlated with the Pacific decadal oscillation index on both the interannual and decadal time scales. The second leading EOF mode represents the MLD variability in the subtropical mode water (STMW) formation region and has a good correlation with the wintertime West Pacific (WP) index with time lag of 3 years, suggesting the importance of the oceanic dynamical response to the change in the surface wind field associated with the meridional shifts of the Aleutian Low. The above MLD variabilities are in basic agreement with previous observational and modeling findings. Moreover the reanalysis ensemble provides uncertainty estimates. The interannual MLD anomalies in the first and second EOF modes are consistently represented by the individual reanalyses and the amplitudes of the variabilities generally exceed the ensemble spread of the reanalyses. Besides, the resulting MLD variability indices, spanning the 1948–2012 period, should be helpful for characterizing the North Pacific climate variability. In particular, a 6-year oscillation including the WP teleconnection pattern in the atmosphere and the oceanic MLD variability in the STMW formation region is first detected.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-08-11
    Description: In this paper, decadal variability of the Pacific-South America (PSA) mode is examined from year 1871 to 2008 based on the newly developed ocean and atmosphere reanalysis products. The PSA mode, mirroring the Pacific-North America mode in the Northern Hemisphere, emerges as the second EOF mode of 500 mb geopotential height anomalies. The mode displays substantial interannual-decadal variability with distinct timescales between 3–8 and 10–18 years, respectively. The decadal variability of the PSA mode is found to be associated with the coupled ocean–atmosphere interaction over the subtropical South and tropical Pacific. The subduction of the subtropical temperature anomalies in the South Pacific in conjunction with the tropical–subtropical atmospheric teleconnection plays important role in the decadal variability of the PSA mode.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-08-11
    Description: The National Center for Atmospheric Research Community Earth System Model is used to study the “spring predictability barrier” (SPB) problem for El Niño events from the perspective of initial error growth. By conducting perfect model predictability experiments, we obtain two types of initial sea temperature errors, which often exhibit obvious season-dependent evolution and cause a significant SPB when predicting the onset of El Niño events bestriding spring. One type of initial errors possesses a sea surface temperature anomaly (SSTA) pattern with negative anomalies in the central–eastern equatorial Pacific, plus a basin-wide dipolar subsurface temperature anomaly pattern with negative anomalies in the upper layers of the eastern equatorial Pacific and positive anomalies in the lower layers of the western equatorial Pacific. The other type consists of an SSTA component with positive anomalies over the southeastern equatorial Pacific, plus a large-scale zonal dipole pattern of the subsurface temperature anomaly with positive anomalies in the upper layers of the eastern equatorial Pacific and negative anomalies in the lower layers of the central–western equatorial Pacific. Both exhibit a La Niña-like evolving mode and cause an under-prediction for Niño-3 SSTA of El Niño events. For the former initial error type, the resultant prediction errors grow in a manner similar to the behavior of the growth phase of La Niña; while for the latter initial error type, they experience a process that is similar to El Niño decay and transition to a La Niña growth phase. Both two types of initial errors cause negative prediction errors of Niño-3 SSTA for El Niño events. The prediction errors for Niño-3 SSTA are mainly due to the contribution of initial sea temperature errors in the large-error-related regions in the upper layers of the eastern tropical Pacific and/or in the lower layers of the western tropical Pacific. These regions may represent ‘‘sensitive areas’’ for El Niño–Southern Oscillation (ENSO) predictions, thereby providing information for target observations to improve the forecasting skill of ENSO.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-08-13
    Description: In this study, the relationship between the El Niño-Southern Oscillation (ENSO) and precipitation variability over the Korean Peninsula is investigated. In contrast to the previously-known positive correlation between them during an El Niño developing summer and winter, we found a considerably significant negative correlation in September between Niño3 Sea Surface Temperature and Korean precipitation during ENSO developing phase. The northerly wind is only seen during El Nino developing phase and is part of the cyclonic flow over the subtropical North Pacific. The cyclonic flow over the subtropical North Pacific is induced by the subtropical diabatic heating, which is a peculiar feature during El Niño developing phase. In addition, it is demonstrated that the negative correlation is partly attributed to the tropical cyclone (TC), particularly during La Niña phase. That is, TC tends to pass through Korean Peninsula more frequently during La Niña years, which leads to more precipitation over the Korean Peninsula.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-08-13
    Description: Explosive cyclones are rapidly intensifying low pressure systems generating severe wind speeds and heavy precipitation primarily in coastal and marine environments. This study presents the first analysis on how explosive cyclones respond to climate change in the extratropics of the Northern Hemisphere. An objective-feature tracking algorithm is used to identify and track cyclones from 23 CMIP5 climate models for the recent past (1981–1999) and future (2081–2099). Explosive cyclones are projected to shift northwards by about \(2.2^\circ\) latitude on average in the northern Pacific, with fewer and weaker events south of \(45^\circ \hbox {N}\) , and more frequent and stronger events north of this latitude. This shift is correlated with a poleward shift of the jet stream in the inter-model spread ( \(R=0.56\) ). In the Atlantic, the total number of explosive cyclones is projected to decrease by about 17 % when averaging across models, with the largest changes occurring along North America’s East Coast. This reduction is correlated with a decline in the lower-tropospheric Eady growth rate ( \(R=0.51\) ), and is stronger for models with smaller frequency biases ( \(R=-0.65\) ). The same region is also projected to experience a small intensification of explosive cyclones, with larger vorticity values for models that predict stronger increases in the speed of the jet stream ( \(R=0.58\) ). This strengthening of the jet stream is correlated with an enhanced sea surface temperature gradient in the North Atlantic ( \(R=-0.63\) ). The inverse relationship between model bias and projection, and the role of model resolution are discussed.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-08-15
    Description: We identify the dynamical drivers of systematic changes in persistent quasi-stationary states (regimes) of the Southern Hemisphere troposphere and their secular trends. We apply a purely data-driven approach, whereby a multiscale approximation to nonstationary dynamical processes is achieved through optimal sequences of locally stationary fast vector autoregressive factor processes, to examine a high resolution atmospheric reanalysis over the period encompassing 1958–2013. This approach identifies regimes and their secular trends in terms of the predictability of the flow and is Granger causal. A comprehensive set of diagnostics on both isentropic and isobaric surfaces is employed to examine teleconnections over the full hemisphere and for a set of regional domains. Composite states for the hemisphere obtained from nonstationary nonparametric cluster analysis reveal patterns consistent with a circumglobal wave 3 (polar)–wave 5 (subtropical) pattern, while regional composites reveal the Pacific South American pattern and blocking modes. The respective roles of potential vorticity sources, stationary Rossby waves and baroclinic instability on the dynamics of these circulation modes are shown to be reflected by the seasonal variations of the waveguides, where Rossby wave sources and baroclinic disturbances are largely contained within the waveguides and with little direct evidence of sustained remote tropical influences on persistent synoptic features. Warm surface temperature anomalies are strongly connected with regions of upper level divergence and anticyclonic Rossby wave sources. The persistent states identified reveal significant variability on interannual to decadal time scales with large secular trends identified in all sectors apart from a region close to South America.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-09-21
    Description: The mean and variability of the Atlantic meridional overturning circulation (AMOC), as represented in six ocean reanalysis products, are analyzed over the period 1960–2007. Particular focus is on multi-decadal trends and interannual variability at 26.5°N and 45°N. For four of the six reanalysis products, corresponding reference simulations obtained from the same models and forcing datasets but without the imposition of subsurface data constraints are included for comparison. An emphasis is placed on identifying general characteristics of the reanalysis representation of AMOC relative to their reference simulations without subsurface data constraints. The AMOC as simulated in these two sets are presented in the context of results from the Coordinated Ocean-ice Reference Experiments phase II (CORE-II) effort, wherein a common interannually varying atmospheric forcing data set was used to force a large and diverse set of global ocean-ice models. Relative to the reference simulations and CORE-II forced model simulations it is shown that (1) the reanalysis products tend to have greater AMOC mean strength and enhanced variance and (2) the reanalysis products are less consistent in their year-to-year AMOC changes. We also find that relative to the reference simulations (but not the CORE-II forced model simulations) the reanalysis products tend to have enhanced multi-decadal trends (from 1975–1995 to 1995–2007) in the mid to high latitudes of the northern hemisphere.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-09-21
    Description: This study applies WACCM, a stratosphere-resolving model to dissect the stratospheric responses in the northern winter extratropics to the imposed ENSO-related SST anomalies in the tropics. It is found that the anomalously warmer and weaker stratospheric polar vortex during warm ENSO is basically a balance of the opposite effects between the SST anomalies in the tropical Pacific (TPO) and that over the tropical Indian Ocean basin (TIO). Specifically, the ENSO-related SST anomalies over the TIO are to induce an anomalously colder and stronger stratospheric polar vortex during warm ENSO, which acts to partially cancel out the much stronger warmer and weaker polar vortex response to the SST anomalies over the TPO. Further analysis indicates that, while the SST forcing from the TPO contributes to the anomalously positive Pacific North America (PNA) pattern in the troposphere and the enhancement of the stationary wavenumber (WN)-1 in the stratosphere during warm ENSO, the TIO SST forcing is to induce an anomalously negative PNA and a reduction of both WN-1 and WN-2 in the stratosphere. Diagnosis of E–P flux confirms that, the anomalously upward propagation of stationary waves in the extratropics mainly lies over the western coast of North America during warm ENSO, which is mainly associated with the TPO-induced positive PNA response and is partially suppressed by the effect of the accompanying TIO SST forcing.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-09-21
    Description: The study evaluated for the first time the ability of meteorological models of TIGGE to forecast the main features of the West African monsoon rainfall. Seven numerical models were retained over the 2008–2012 period and compared to satellite rainfall estimates. We focused on the seasonal cycle and in particular on the onset of the rainy season and on the intra-seasonal variability that are both of high importance for agriculture, water management and health sectors. We found that the seasonal latitudinal shift of the ITCZ is rather well predicted in terms of amplitude and timing by the different models although there is a systematic northward drift in the ITCZ latitude from the lead-times 1- to 10-day. Although the onset date of rainfall varies a lot according to the different definition in the literature, we also found good performance of TIGGE forecasts in predicting the onset date of the monsoon. The analysis of intra-seasonal variability revealed that the skill of TIGGE forecasts is decreasing with the lead-time from 1- to 15-day and the performance of the ensemble mean of all models overcomes the one of any individual models. Overall criteria used in this study (intra-seasonal fluctuations, onset and seasonal cycles), the skill of UKMO and ECMWF models is better than any other model. Based on such analysis it is likely than an ensemble mean based only on these two models would be more skillful than the ensemble mean based on the seven models. TIGGE forecasts represent a promising step towards the delivery of useful climate information to end-users of key sectors such as agriculture, water management, health and public safety.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-09-21
    Description: The link between interannual variability of seasonal rainfall over the Cape south coast of South Africa and different synoptic types as well as selected teleconnections is explored. Synoptic circulation over the region is classified into different synoptic types by employing a clustering technique, the self-organizing map (SOM), on daily circulation data for the 33-year period from 1979 to 2011. Daily rainfall data are used to investigate interannual variability of seasonal rainfall within the context of the identified synoptic types. The anomalous frequency of occurrence of the different synoptic types for wet and for dry seasons differs significantly within the SOM space, except for austral spring. The main rainfall-producing synoptic types are to a large extent consistent for wet and dry seasons. The main rainfall-producing synoptic types have a notable larger contribution to seasonal rainfall totals during wet seasons than during dry seasons, consistent with a higher frequency of occurrence of the main rainfall-producing synoptic types during wet seasons compared to dry seasons. Dry seasons are characterized by a smaller contribution to seasonal rainfall totals by all the different synoptic types, but with the largest negative anomalies associated with low frequencies of the main rainfall-producing synoptic types. The frequencies of occurrence of specific configurations of ridging high pressure systems, cut-off lows and tropical-temperate troughs associated with rainfall are positively linked to interannual variability of seasonal rainfall. It is also shown that the distribution of synoptic types within the SOM space is linked to the Southern Annular Mode and El Niño Southern Oscillation, implying some predictability of intraseasonal variability at the seasonal time scale.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-09-21
    Description: In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-09-21
    Description: We examined how coupled general circulation models (CGCMs) simulate changes in the jet stream differently under greenhouse warming, and how this inter-model diversity is related to the simulated Arctic climate changes by analyzing the simulation of the Coupled Model Intercomparison Project Phase 5. Although the jet stream in the multi-model ensemble mean shifts poleward, a considerable diversity exists among the 34 CGCMs. We found that inter-model differences in zonal wind responses, especially in terms of meridional shift of the midlatitude jet, are highly dependent on Arctic surface warming and lower stratospheric cooling. Specifically, the midlatitude jet tends to shift relatively equatorward (poleward) in the models with stronger (weaker) Arctic surface warming, whereas the jet tends to shift relatively poleward (equatorward) in the models with stronger (weaker) Arctic lower stratospheric cooling.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-09-21
    Description: This paper investigates the potential impact of “idealized-but-realistic” land cover degradation on the late twentieth century Sahel drought using a regional climate model (RCM) driven with lateral boundary conditions (LBCs) from three different sources, including one re-analysis data and two global climate models (GCMs). The impact of land cover degradation is quantified based on a large number of control-and-experiment pairs of simulations, where the experiment features a degraded land cover relative to the control. Two different approaches of experimental design are tested: in the 1st approach, the RCM land cover degradation experiment shares the same LBCs as the corresponding RCM control, which can be derived from either reanalysis data or a GCM; with the 2nd approach, the LBCs for the RCM control are derived from a GCM control, and the LBCs for the RCM land cover degradation experiment are derived from a corresponding GCM land cover degradation experiment. When the 1st approach is used, results from the RCM driven with the three different sources of LBCs are generally consistent with each other, indicating robustness of the model response against LBCs; when the 2nd approach is used, the RCM results show strong sensitivity to the source of LBCs and the response in the RCM is dominated by the response of the driving GCMs. The spatiotemporal pattern of the precipitation response to land cover degradation as simulated by RCM using the 1st approach closely resembles that of the observed historical changes, while results from the GCMs and the RCM using the 2nd approach bear less similarity to observations. Compared with the 1st approach, the 2nd approach has the advantage of capturing the impact on large scale circulation, but has the disadvantage of being influenced by the GCMs’ internal variability and any potential erroneous response of the driving GCMs to land degradation. The 2nd approach therefore requires a large ensemble to reduce the uncertainties derived from the driving GCMs. All RCM experiments based on the 1st approach produce a predominantly dry signal in West Africa throughout the year, with a dipole pattern found in the peak monsoon season that features a slight increase of precipitation over the Guinea Coast and strong decrease in the north; a similar spatiotemporal distribution is found for temperature changes, with warming (cooling) coinciding with precipitation decrease (increase). The model precipitation changes in West Africa are dominated by evapotranspiration changes in the north and by atmospheric moisture convergence changes in the south; in temperature changes, surface warming due to the decrease of evaporative cooling dominates over the albedo-induced radiative cooling.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-09-21
    Description: Clouds are an important regulator of climate due to their connection to the water balance of the atmosphere and their interaction with solar and infrared radiation. In this study, monthly total cloud cover (TCC) records from different sources have been inter-compared on annual and seasonal basis for the Mediterranean region and the period 1984–2005. Specifically, gridded databases from satellite projects (ISCCP, CLARA, PATMOS-x), from reanalysis products (ERA-Interim, MERRA), and from surface observations over land (EECRA) and ocean (ICOADS) have been examined. Then, simulations from 44 climate runs of the Coupled Model Intercomparison Project phase 5 corresponding to the historical scenario have been compared against the observations. Overall, we find good agreement between the mean values of TCC estimated from the three satellite products and from surface observations, while reanalysis products show much lower values across the region. Nevertheless, all datasets show similar behavior regarding the annual cycle of TCC. In addition, our results indicate an underestimation of TCC from climate model simulations as compared to the satellite products, especially during summertime, although the annual cycle is well simulated by most models. This result is quite general and apparently independent of the cloud parameterizations included in each particular model. Equally, similar results are obtained if the ISCCP simulator included in the Cloud Feedback Model Intercomparison Project Observation Simulator Package is considered, despite only few models provide the post-processed results. Finally, GCM projections of TCC over the Mediterranean are presented. These projections predict a reduction of TCC during the 21st century in the Mediterranean. Specifically, for an extreme emission scenario (RCP8.5) the projected relative rate of TCC decrease is larger than 10 % by the end of the century.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-09-21
    Description: Numerous reconstructions of tropical hydroclimate in the Pleistocene display substantial variability on precessional timescales. Precessionally-induced insolation variations, with a mean period of \({\sim }21{,}000\) years, affect the strength of the seasonal cycle, but not annual mean insolation. The existence of variations in annual mean climate on precessional timescales therefore hints at the existence of nonlinear mechanisms that rectify the zero annual mean forcing into a non-zero annual mean response. The aim of this study is to identify these nonlinear rectification mechanisms. The traditional view of precessionally-forced precipitation changes is that tropical precipitation increases with summer insolation. By comparing two simulations with an earth system model (CESM1.0.3) we find that this paradigm is true for continental but not for oceanic changes in precipitation. Focusing on the Atlantic intertropical convergence zone (ITCZ), we find that the continental temperature and precipitation response to precessional forcing are key rectifiers of annual mean precipitation over the ocean. A boundary layer response to temperature changes over northern Africa affects the meridional position of the ITCZ over the North Atlantic in boreal spring and summer, but not in fall and winter. Over the equatorial and South Atlantic, the intensity of precipitation is strongly impacted by diabatic forcing from the continents through an adjustment of the full troposphere. Although the top of atmosphere insolation forcing is seasonally symmetric, continental precipitation changes are largest in boreal summer, thus skewing the annual mean response. These results show that it is important to take into account the seasonality of climatic forcings, even when studying annual mean climate change.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-09-21
    Description: Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north–south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a strong spatial and rainfall category dependency, sometimes offsetting the effect of the water vapour increase. Additionally, we found that the moisture convergence is mainly dominated by the climatological vertical motion acting on the humidity changes and the interplay between all these processes proves to play a pivotal role for regulating the intensities of various rainfall events in the two domains.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-11-24
    Description: Using a novel Lagrangian approach, we assess the relative roles of the atmosphere and ocean in setting interannual variability in western European wintertime temperatures. We compute sensible and latent heat fluxes along atmospheric particle trajectories backtracked in time from four western European cities, using a Lagrangian atmospheric dispersion model driven with meteorological reanalysis data. The material time rate of change in potential temperature and the surface turbulent fluxes computed along the trajectory show a high degree of correlation, revealing a dominant control of ocean–atmosphere heat and moisture exchange in setting heat flux variability for atmospheric particles en route to western Europe. We conduct six idealised simulations in which one or more aspects of the climate system is held constant at climatological values and these idealised simulations are compared with a control simulation, in which all components of the climate system vary realistically. The results from these idealised simulations suggest that knowledge of atmospheric pathways is essential for reconstructing the interannual variability in heat flux and western European wintertime temperature, and that variability in these trajectories alone is sufficient to explain at least half of the internannual flux variability. Our idealised simulations also expose an important role for sea surface temperature in setting decadal scale variability of air–sea heat fluxes along the Lagrangian pathways. These results are consistent with previous studies showing that air–sea heat flux variability is driven by the atmosphere on interannual time scales over much of the North Atlantic, whereas the SST plays a leading role on longer time scales. Of particular interest is that the atmospheric control holds for the integrated fluxes along 10-day back trajectories from western Europe on an interannual time scale, despite that many of these trajectories pass over the Gulf Stream and its North Atlantic Current extension, regions where ocean dynamics influence air–sea heat exchange even on a very short time scale.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-11-21
    Description: Atmospheric model uncertainties at a seasonal time scale can be addressed by introducing stochastic perturbations in the model formulation. In this paper the stochastically perturbed parameterization tendencies (SPPT) technique is activated in the atmospheric component of the EC-Earth global coupled model and the impact on seasonal forecast quality is assessed, both at a global scale and focusing on the Tropical Pacific region. Re-forecasts for winter and summer seasons using two different settings for the perturbation patterns are evaluated and compared to a reference experiment without stochastic perturbations. We find that SPPT tends to increase the systematic error of the model sea-surface temperature over most regions of the globe, whereas the impact on precipitation and sea-level pressure is less clear. In terms of ensemble spread, larger-scale perturbation patterns lead to a greater increase in spread and in the model spread-skill ratio in a system that is overconfident. Over the Tropical Pacific, improvements in the representation of key processes associated with ENSO are highlighted. The evaluation of probabilistic re-forecasts shows that SPPT improves their reliability. Finally, we discuss the limitations to this study and future prospects with EC-Earth.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-11-21
    Description: Teleconnections originated by anomalous heat sources over the tropical Indo-Pacific oceans are investigated in this paper comparing observational results with numerical simulations run as part of the re-forecast set for the latest ECMWF seasonal forecasting system (System 4). We show that the traditional methodology of linearly relating circulation anomalies to SST anomalies, while appropriate for signals originated in central and east Pacific, fails to adequately identify the response to anomalous heating over the west Pacific and most of the Indian Ocean, because of the relatively weak (or even negative) correlation between SST and rainfall anomalies in these regions. Instead, if teleconnections are computed from covariances with rainfall anomalies, a stronger consistency is found between observed and modelled patterns, as well as between diagnostics derived from seasonal and intra-seasonal time scales. The main mode of inter-annual variability in Indo-Pacific rainfall associated with planetary-scale teleconnections is a tri-polar structure with two positively correlated centres in the western Indian Ocean and the central Pacific, and a third centre around the maritime continents which is anti-correlated with the other two. In the extratropical response, positive rainfall anomalies over the western and central Indian Ocean (WCIO) are connected with a negative height anomaly centred over Alaska and a positive North Atlantic oscillation (NAO) signal, in a way reminiscent of the Cold-Ocean–Warm-Land pattern. This teleconnection cannot be explained by the ENSO-forced component of Indian Ocean rainfall, and is in phase with signals associated with the Madden–Julian oscillation. Results from the System-4 re-forecasts show that the ECMWF coupled model reproduces the broad features of tropical and extratropical teleconnections with a good degree of fidelity. However, the model significantly over-estimates the correlation between rainfall anomalies in the WCIO with those over the western and central Pacific. The impact of this deficiency on the extratropical flow is to weaken the relationship between the NAO and Indian Ocean rainfall on the seasonal scale, and to affect the projection of the ENSO response on the NAO. Finally, we argue that reproducing the correct relationship between SST and rainfall anomalies in different part of the Indo-Pacific basin is also crucial for the correct simulation of inter-decadal variability. Particular care should be taken in interpreting results of AGCM simulations with prescribed SST, where the absence of feedbacks between convection and SST over the warm pool region affects the simulation of rainfall anomalies.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2015-11-21
    Description: The suggestion that there exist two types of El Niño in the tropical Pacific has generated a debate in the community. Applying various linear and non-linear approaches and composite analysis technique on observed and reanalyzed climate datasets primarily for the 1950–2010 period, we revisit the variability of the tropical Pacific in the light of this debate. Our objective is to examine whether the proposed El Niño Modokis need a classification distinct from canonical El Niños. Even if the distinction is subject to short data records, we demonstrate that the El Niño Modoki events indeed display a seasonal evolution and teleconnections different from the canonical El Niños, and that the distinction is not subject to inclusion of the two extreme El Niños 1982 and 1997 as canonical El Niños. We show that the El Niño Modoki events are not an artifact associated with the orthogonality constraint associated with the EOF technique. Our cluster analysis shows that evolutions of the canonical El Niño and El Niño Modokis through various seasons differ from one another. Importantly, the dynamic and thermodynamic air–sea coupling strength is distinctly different between the El Niño Modoki and the canonical El Niño events. We find that, dynamic feedback intensity is stronger for El Niño Modoki (canonical El Niño) during boreal summer (winter); though the air–sea coupling strength, a major contributor to Bjerknes feedback, is maximum for Modokis during the developing stages, it decreases thereafter. In case of thermodynamic feedback intensity, SST-wind-evaporation feedback is dominant for El Niños while SST-SHF feedback is important during El Niño Modokis. However, we find that the thermodynamic feedback values significantly differ across the flux datasets.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-08-29
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-08-29
    Description: The East Asia–Pacific (EAP) pattern is a well-known meridional teleconnection over East Asia during boreal summer. In this study, the mechanism for growth of the EAP on intraseasonal timescale is investigated through a vorticity budget. It is found that the beta-effect and high-frequency transient eddies have primary contributions to the growth of the low-frequency EAP. The former leads to a westward shift of disturbances associated with the low-frequency EAP and the latter favors an amplification of disturbances, respectively. The interaction between low-frequency disturbances and zonal flow has a damping effect by dragging disturbances eastward. The impact of boreal summer intraseasonal oscillation (BSISO) on the triggering of the low-frequency EAP is also examined in this study based on observational analysis and a linear model experiment. It is shown that an elongated anomalous convection band located in the vicinity of Philippines associated with the dominant mode of BSISO has a significant impact on the initiation of low-frequency EAP via Rossby wave propagation, whereas anomalous convection located over the North Indian Ocean has a limited impact. Based on the results of present study, the low-frequency EAP could be a self-sustained mode, and the BSISO plays a substantial role in triggering the low-frequency EAP.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-08-30
    Description: The relation between the intensity of the East Asian trough and the strength of the East Asian winter monsoon is documented. A prominent dipole of the available potential energy of the zonal mean flow can be observed over the midlatitudes and polar regions and is related to temperature anomalies. Variation in the intensity of the East Asian trough is caused by variation in the energy conversion from the available potential energy of the zonal mean flow to the East Asian trough. The in-phase relation between the intensities of the East Asian jet and East Asian trough is illustrated by the relation between the potential energy and kinetic energy of stationary eddies. The dipole of height anomalies over the midlatitude and polar regions develops in late autumn and decays in early spring. We investigate the effect of both stationary and transient eddy forcing on the evolution of the dipole. The combined forcing of the two types of eddy makes an important contribution to the development, maintenance, and decay of the dipole.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-10-27
    Description: It is widely accepted that the interannual variability of East Asian summer rainfall is forced by sea surface temperature (SST), and SST anomalies are widely used as predictors of East Asian summer rainfall. But it is still not very clear what percentage of the interannual rainfall variability is contributed by SST anomalies. In this study, Atmospheric general circulation model simulations forced by observed interannual varying SST are compared with those forced by the fixed annual cycle of SST climatology, and their ratios of interannual variance (IAV) are analyzed. The output of 12 models from the 5th Phase of Coupled Model Intercomparison Project (CMIP5) are adopted, and idealized experiments are done by Community Atmosphere Model version 4 (CAM4). Both the multi-model median of CMIP5 models and CAM4 experiments show that only about 18 % of the IAV of rainfall over East Asian land (EAL) is explained by SST, which is significantly lower than the tropical western Pacific, but comparable to the mid-latitude western Pacific. There is no significant difference between the southern part and the northern part of EAL in the percentages of SST contribution. The remote SST anomalies regulates rainfall over EAL probably by modulating the horizontal water vapor transport rather than the vertical motion, since the horizontal water vapor transport into EAL is strongly modulated by SST but the vertical motion over EAL is not. Previous studies argued about the relative importance of tropical Indian Ocean and tropical Pacific Ocean to East Asian summer rainfall anomalies. Our idealized experiments performed by CAM4 suggest that the contributions from these two ocean basins are comparable to each other, both of which account for approximately 6 % of the total IAV of rainfall over EAL.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-10-27
    Description: Precipitation projections are usually presented as the change in precipitation between a fixed current baseline and a particular time in the future. However, upcoming generations will be affected in a way probably more related to the moving trend in precipitation patterns, i.e. to the rate and the persistence of regional precipitation changes from one generation to the next, than to changes relative to a fixed current baseline. In this perspective, we propose an alternative characterization of the future precipitation changes predicted by general circulation models, focusing on the precipitation difference between two subsequent 20-year periods. We show that in a business-as-usual emission pathway, the moistening and drying rates increase by 30–40 %, both over land and ocean. As we move further over the twenty-first century, more regions exhibit a significant rate of precipitation change, while the patterns become geographically stationary and the trends persistent. The stabilization of the geographical rate patterns that occurs despite the acceleration of global warming can be physically explained: it results from the increasing contribution of thermodynamic processes compared to dynamic processes in the control of precipitation change. We show that such an evolution is already noticeable over the last decades, and that it could be reversed if strong mitigation policies were quickly implemented. The combination of intensification and increasing persistence of precipitation rate patterns may affect the way human societies and natural ecosystems adapt to climate change, especially in the Mediterranean basin, in Central America, in South Asia and in the Arctic.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-05-19
    Description: This study investigates the direct impact of El Niño in the tropical Pacific on the East Asian summer precipitation . Generalized equilibrium feedback assessment is used to isolate this direct impact from interrelated ocean forcings in the observations. Results indicate that the El Niño can directly influence the summer precipitation in East China significantly. The precipitation response presents a tri-pole pattern, with anomalous wet in the Southeast and the Northeast China and anomalous dry in the northern China. Amplitude of the precipitation response is around 20 % of the total precipitation for 1 °C El Niño forcing in most area of the East China, with maximal response up to 30 %/°C. The tri-pole precipitation response is attributed to an El Niño-induced cyclonic anomaly in the Northeast Asia and an anticyclonic anomaly in the western North Pacific (WNP). The anomalous cyclone deepens the East Asian trough southwestward, favoring an air ascending in front of the trough in the Southeast and the Northeast China, and an air descending at the rear of the trough in the northern China. The anomalous anticyclone in the WNP strengthens the WNP Subtropical High northeastward, providing adequate water vapor to the Southeast China. The anomalous cyclone and anomalous anticyclone work together to generate the tri-pole precipitation response pattern in the East China. Further investigation suggests that these two key anomalous circulations are part of a northwestward propagating Rossby wave, which is excited by the El Niño warming-induced convection over the subtropical west-central Pacific. This study can serve as a reference for the prediction of the East Asian precipitation in both the developing and decaying summer of El Niño.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-07-23
    Description: The intra-seasonal oscillation (ISO) is a prominent feature of the East Asia summer monsoon. The Beijing Climate Center model is one of the IPCC models participating in the Coupled Model Inter-comparison Project (CMIP) 3 and CMIP5 experiments. This paper presents a systematic evaluation of ISO simulated by the Beijing Climate Center atmospheric general circulation model version 2.2 against observations. The model reasonably simulates some salient features of BSISO in terms of temporal spectrum, leading EOF modes, and vertical structure, however limitations are also evident. The strength of the BSISO is overestimated and the northward propagating rain belt is tilted southwest-northeast, which is also different from the observation. The model tends to produce unrealistically strong but shallow convection associated with the ISO, leading to a northward shift of the Western Pacific Subtropical High and the main rain band compared to observations. Process studies show that the anomalous convective heating associated with the wet model bias drives a Gill-type response, resulting in the northwesterly biased position of Western Pacific Subtropical High. The study has revealed how the interaction of moist processes and large-scale dynamics can lead to model bias in simulating the east Asian regional climate system and its variability (ISO in particular). Future improvements in model resolution and convection parameterization are expected to reduce such errors.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-07-23
    Description: The last interglacial climate was influenced by substantial changes in the annual insolation cycle that led to a warmer climate state with pronounced high northern latitude warming. We analyze the impact of the insolation changes 125,000 years before present using an equilibrium snapshot simulation with the EC-Earth coupled climate model at high spatial resolution. Using additional atmosphere-only simulations, we separate the direct impact from the changed insolation from the secondary contribution from changed sea surface conditions. These simulations are forced with a combination of last interglacial sea surface temperatures and sea ice conditions and pre-industrial insolation, and vice versa. The coupled simulation yields an annual mean global warming of approximately 0.5 °C compared to pre-industrial conditions. While the warming over the continents follows the annual cycle of the insolation anomalies, two regions exhibit persistent responses throughout the year: The tropical region exhibits lower temperatures and stronger monsoonal systems, while the Arctic region shows a warming of more than 2 °C in all seasons. The hybrid simulations reveal that the changed sea surface conditions dominate the response at high northern latitudes, including the North Atlantic region and Europe, while the direct insolation impact is more dominant in the tropics.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-07-26
    Description: The North Atlantic Oscillation (NAO) is the dominant mode of winter climate variability in the North Atlantic sector. The corresponding index varies on a wide range of timescales, from days and months to decades and beyond. Sub-decadal NAO variability has been well documented, but the underlying mechanism is still under discussion. Other indices of North Atlantic sector climate variability such as indices of sea surface and surface air temperature or Arctic sea ice extent also exhibit pronounced sub-decadal variability. Here, we use sea surface temperature and sea level pressure observations, and the Kiel Climate Model to investigate the dynamics of the sub-decadal NAO variability. The sub-decadal NAO variability is suggested to originate from dynamical large-scale air-sea interactions. The adjustment of the Atlantic Meridional Overturning Circulation to previous surface heat flux variability provides the memory of the coupled mode. The results stress the role of coupled feedbacks in generating sub-decadal North Atlantic sector climate variability, which is important to multiyear climate predictability in that region.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-07-28
    Description: The study of regional rainfall trends over South Asia is critically important for food security and economy, as both these factors largely depend on the availability of water. In this study, South Asian summer monsoon rainfall trends on seasonal and monthly (June–September) time scales have been investigated using three observational data sets. Our analysis identify a dipole-type structure in rainfall trends over the region north of the Indo–Pak subcontinent, with significant increasing trends over the core monsoon region of Pakistan and significant decreasing trends over the central-north India and adjacent areas. The dipole is also evident in monthly rainfall trend analyses, which is more prominent in July and August. We show, in particular, that the strengthening of northward moisture transport over the Arabian Sea is a likely reason for the significant positive trend of rainfall in the core monsoon region of Pakistan. In contrast, over the central-north India region, the rainfall trends are significantly decreasing due to the weakening of northward moisture transport over the Bay of Bengal. The leading empirical orthogonal functions clearly show the strengthening (weakening) patterns of vertically integrated moisture transport over the Arabian Sea (Bay of Bengal) in seasonal and monthly interannual time scales. The regression analysis between the principal components and rainfall confirm the dipole pattern over the region. Our results also suggest that the extra-tropical phenomena could influence the mean monsoon rainfall trends over Pakistan by enhancing the cross-equatorial flow of moisture into the Arabian Sea.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-07-30
    Description: The skill of North American multimodel ensemble (NMME) seasonal forecasts in East Africa (EA), which encompasses one of the most food and water insecure areas of the world, is evaluated using deterministic, categorical, and probabilistic evaluation methods. The skill is estimated for all three primary growing seasons: March–May (MAM), July–September (JAS), and October–December (OND). It is found that the precipitation forecast skill in this region is generally limited and statistically significant over only a small part of the domain. In the case of MAM (JAS) [OND] season it exceeds the skill of climatological forecasts in parts of equatorial EA (Northern Ethiopia) [equatorial EA] for up to 2 (5) [5] months lead. Temperature forecast skill is generally much higher than precipitation forecast skill (in terms of deterministic and probabilistic skill scores) and statistically significant over a majority of the region. Over the region as a whole, temperature forecasts also exhibit greater reliability than the precipitation forecasts. The NMME ensemble forecasts are found to be more skillful and reliable than the forecast from any individual model. The results also demonstrate that for some seasons (e.g. JAS), the predictability of precipitation signals varies and is higher during certain climate events (e.g. ENSO). Finally, potential room for improvement in forecast skill is identified in some models by comparing homogeneous predictability in individual NMME models with their respective forecast skill.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-08-04
    Description: The El Niño/Southern Oscillation (ENSO) is the leading mode of tropical Pacific interannual variability in the present-day climate. Available proxy evidence suggests that ENSO also existed during past climates, for example during the Pliocene extending from about 5.3 million to about 2.6 million years BP. Here we investigate the influences of the Panama Seaway closing and Indonesian Passages narrowing, and also of atmospheric carbon dioxide (CO 2 ) on the tropical Pacific mean climate and annual cycle, and their combined impact on ENSO during the Pliocene. To this end the Kiel Climate Model), a global climate model, is employed to study the influences of the changing geometry and CO 2 -concentration. We find that ENSO is sensitive to the closing of the Panama Seaway, with ENSO amplitude being reduced by about 15–20 %. The narrowing of the Indonesian Passages enhances ENSO strength but only by about 6 %. ENSO period changes are modest and the spectral ENSO peak stays rather broad. Annual cycle changes are more prominent. An intensification of the annual cycle by about 50 % is simulated in response to the closing of the Panama Seaway, which is largely attributed to the strengthening of meridional wind stress. In comparison to the closing of the Panama Seaway, the narrowing of the Indonesian Passages only drives relatively weak changes in the annual cycle. A robust relationship is found such that ENSO amplitude strengthens when the annual cycle amplitude weakens.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-08-06
    Description: Understanding future changes in climate variability, which can impact human activities, is a current research priority. It is often assumed that a key part of this effort involves improving the spatial resolution of climate models; however, few previous studies comprehensively evaluate the effects of model resolution on variability. In this study, we systematically examine the sensitivity of temperature variability to horizontal atmospheric resolution in a single model (CCSM3, the Community Climate System Model 3) at three different resolutions (T85, T42, and T31), using spectral analysis to describe the frequency dependence of differences. We find that in these runs, increased model resolution is associated with reduced temperature variability at all but the highest frequencies (2–5 day periods), though with strong regional differences. (In the tropics, where temperature fluctuations are smallest, increased resolution is associated with increased variability.) At all resolutions, temperature fluctuations in CCSM3 are highly spatially correlated, implying that the changes in variability with model resolution are driven by alterations in large-scale phenomena. Because CCSM3 generally overestimates temperature variability relative to reanalysis output, the reductions in variability associated with increased resolution tend to improve model fidelity. However, the resolution-related variability differences are relatively uniform with frequency, whereas the sign of model bias changes at interannual frequencies. This discrepancy raises questions about the mechanisms underlying the improvement at subannual frequencies. The consistent response across frequencies also implies that the atmosphere plays a significant role in interannual variability.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-08-06
    Description: The summer circumglobal teleconnection (CGT), which crucially affects mid-latitude climate in the Northern Hemisphere, is generally characterized by a mid-latitude wave train along the strong upper-tropospheric westerly jet. In this study a significant change is identified in the spatial pattern of the early-summer CGT after the late 1970s: An additional high-latitude wave train has occurred over northern Eurasia. Based on observational evidences and simulation results with a linear baroclinic model, it is proposed that the post-1970s CGT change is induced by enhanced impact of rainfall over southern Europe (SE) after the late 1970s. Specifically, the mid-latitude wave train of CGT in early summer is dominated by Indian rainfall before the late 1970s but by both rainfall over India and SE after the late 1970s; the high-latitude wave train of CGT occurring after the late 1970s, however, is induced only by the SE rainfall. The coupled Indian and SE rainfall after the late 1970s, which is probably due to the basic flow change over the North Atlantic, induce both mid-latitude and high-latitude wave trains of the CGT.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-08-06
    Description: The effective radiative forcing (ERF) from the biogeophysical effects of historical land use change is quantified using the atmospheric component of the Met Office Hadley Centre Earth System model HadGEM2-ES. The global ERF at 2005 relative to 1860 (1700) is −0.4 (−0.5) Wm −2 , making it the fourth most important anthropogenic driver of climate change over the historical period (1860–2005) in this model and larger than most other published values. The land use ERF is found to be dominated by increases in the land surface albedo, particularly in North America and Eurasia, and occurs most strongly in the northern hemisphere winter and spring when the effect of unmasking underlying snow, as well as increasing the amount of snow, is at its largest. Increased bare soil fraction enhances the seasonal cycle of atmospheric dust and further enhances the ERF. Clouds are shown to substantially mask the radiative effect of changes in the underlying surface albedo. Coupled atmosphere–ocean simulations forced only with time-varying historical land use change shows substantial global cooling (d T  = −0.35 K by 2005) and the climate resistance (ERF/d T  = 1.2 Wm −2  K −1 ) is consistent with the response of the model to increases in CO 2 alone. The regional variation in land surface temperature change, in both fixed-SST and coupled atmosphere–ocean simulations, is found to be well correlated with the spatial pattern of the forced change in surface albedo. The forcing-response concept is found to work well for historical land use forcing—at least in our model and when the forcing is quantified by ERF. Our results suggest that land-use changes over the past century may represent a more important driver of historical climate change then previously recognised and an underappreciated source of uncertainty in global forcings and temperature trends over the historical period.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-07-13
    Description: Lakes influence the regional climate and hydrology in a number of ways and therefore they should be represented in climate models in a realistic manner. Lack of representation of lakes in models can lead to errors in simulated energy and water fluxes, for lake-rich regions. This study focuses on the assessment of the impact of climate change on lakes and hydrology as well as on the influence of lakes on projected changes to regional climate and surface hydrology, particularly streamflows, for Northeast Canada. To this end, transient climate change simulations spanning the 1950–2100 period are performed, with and without lakes, with the fifth generation of the Canadian Regional Climate Model (CRCM5), driven by the Canadian Earth System Model (CanESM2) at the lateral boundaries for Representative Concentration Pathway 8.5. An additional CRCM5 simulation, driven by European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-Interim) for the 1980–2010 period, is performed in order to assess performance and boundary forcing errors. Performance errors are assessed by comparing the ERA-Interim-driven simulation with available observation datasets, for the 1980–2010 period, for selected variables: 2-m air temperature, total precipitation, snow water equivalent and streamflow. The validation results indicate reasonable model performance over the study region. Boundary forcing errors are studied by comparing ERA-Interim-driven simulation with the one driven by CanESM2 for the current 1980–2010 period, to identify regions and seasons for which projected changes should be interpreted with extra caution. Comparison of projected changes from the CRCM5 simulations with and without lakes suggest that the presence of lakes results in a dampening of projected increases to 2-m air temperature for all seasons almost everywhere in the study domain, with maximum dampening of the order of 2 °C occurring during winter, mostly in the vicinity of the lakes. As for streamflows, projected increases to spring streamflows, based on the simulation with lakes, are found to be smaller than that without lakes and this is due to the storage effect of lakes. Similarly, lower decreases in summer streamflows in future climate are noted in the simulation with lakes due to the gradual release of snowmelt water stored in lakes. An additional CRCM5 transient climate change simulation with lakes and interflow, i.e. lateral flow in the soil layers, is compared with the simulation with lakes, but without interflow, to assess the impact of interflow on projected changes to regional climate and hydrology. Maximum interflow is projected to shift earlier in spring and the maximum interflow rate is expected to decrease by around 25 % in future. Results suggest that the impact of interflow on projected changes to precipitation, soil moisture and humidity are modest, even though the interflow intensity is changing noticeably in future climate. The impact of the interflow on projected changes to streamflows is in the range of ±50 m 3 /s. This study thus for the first time demonstrates the impact of lakes and interflow on projected changes to the regional climate and hydrology for the study region using a single regional modelling system.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2016-07-13
    Description: Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-07-20
    Description: The hard snowball Earth bifurcation point is determined by the level of atmospheric carbon dioxide concentration ( p CO 2 ) below which complete glaciation of the planet would occur. In previous studies, the bifurcation point was determined based on the assumption that the extent of continental glaciation could be neglected and the results thereby obtained suggested that very low values of p CO 2 would be required (~100 ppmv). Here, we deduce the upper bound on the bifurcation point using the coupled atmosphere–ocean climate model of the NCAR that is referred to as the Community Climate System Model version 3 by assuming that the continents are fully covered by ice sheets prior to executing the transition into the hard snowball state. The thickness of the ice sheet is assumed to be that obtained by an ice-sheet model coupled to an energy balance model for a soft snowball Earth. We find that the hard snowball Earth bifurcation point is in the ranges of 600–630 and 300–320 ppmv for the 720 and 570 Ma continental configurations, respectively. These critical points are between 10 and 3 times higher than their respective values when ice sheets are completely neglected. We also find that when the ice sheets are thinner than those assumed above, the climate is colder and the bifurcation point is larger. The key process that causes the excess cooling when continental ice sheets are thin is shown to be associated with the fact that atmospheric heat transport from the adjacent oceans to the ice sheet-covered continents is enhanced in such conditions. Feedbacks from sea-ice expansion and reduced water vapor concentration further cool the oceanic regions strongly.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-07-22
    Description: The last glacial period was punctuated by a series of abrupt climate shifts, the so-called Dansgaard–Oeschger (DO) events. The frequency of DO events varied in time, supposedly because of changes in background climate conditions. Here, the influence of external forcings on DO events is investigated with statistical modelling. We assume two types of simple stochastic dynamical systems models (double-well potential-type and oscillator-type), forced by the northern hemisphere summer insolation change and/or the global ice volume change. The model parameters are estimated by using the maximum likelihood method with the NGRIP \(\hbox {Ca}^{2+}\) record. The stochastic oscillator model with at least the ice volume forcing reproduces well the sample autocorrelation function of the record and the frequency changes of warming transitions in the last glacial period across MISs 2, 3, and 4. The model performance is improved with the additional insolation forcing. The BIC scores also suggest that the ice volume forcing is relatively more important than the insolation forcing, though the strength of evidence depends on the model assumption. Finally, we simulate the average number of warming transitions in the past four glacial periods, assuming the model can be extended beyond the last glacial, and compare the result with an Iberian margin sea-surface temperature (SST) record (Martrat et al. in Science 317(5837): 502–507, 2007 ). The simulation result supports the previous observation that abrupt millennial-scale climate changes in the penultimate glacial (MIS 6) are less frequent than in the last glacial (MISs 2–4). On the other hand, it suggests that the number of abrupt millennial-scale climate changes in older glacial periods (MISs 6, 8, and 10) might be larger than inferred from the SST record.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-07-22
    Description: This study investigates the impact of increased horizontal resolution in coupled and atmosphere-only global climate models on the simulation of climate patterns in South America (SA). We analyze simulations of the HadGEM1 model family with three different horizontal resolutions in the atmosphere—N96 (~135 km at 50°N), N144 (~90 km) and N216 (~60 km)—and two different resolutions in the ocean—1° and 1/3°. In general, the coupled simulation with the highest resolution (60 km in the atmosphere and 1/3° in the ocean) has smaller systematic errors in seasonal mean precipitation, temperature and circulation over SA than the atmosphere-only model at all resolutions. The models, both coupled and atmosphere-only, properly simulate spatial patterns of the seasonal shift of the Intertropical Convergence Zone (ITCZ), the formation and positioning of the South Atlantic Convergence Zone (SACZ), and the subtropical Atlantic and Pacific highs. However, the models overestimate rainfall, especially in the ITCZ and over the western border of high-elevation areas such as southern Chile. The coupling, combined with higher resolution, result in a more realistic spatial pattern of rain, particularly over the Atlantic ITCZ and the continental branch of the SACZ. All models correctly simulate the phase and amplitude of the annual cycle of precipitation and air temperature over most of South America. The overall results show that despite some problems, increasing the resolution in the HadGEM1 model family results in a more realistic representation of climate patterns over South America and the adjacent oceans.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-07-28
    Description: This work investigates spatial and temporal changes in rainfall and temperature over Central Africa, using historical and representative concentration pathways (RCP2.6, RCP4.5 and RCP8.5) of the regional climate model REMO forced by two general climate models: the Europe-wide Consortium Earth System Model (EC-Earth) and the Max Planck Institute-Earth System Model (MPI-ESM). We found that in the present period (1980–2005), the spatial distribution of rainfall is simulated with an annual spatial pattern correlation coefficient (PCC) of 0.76 for REMO driven by EC-Earth and 0.74 for REMO driven by MPI-ESM respectively when compared to CRU data. In terms of temperature, the annual PCC is 0.93 for the two REMO outputs. According to the climatology of Central Africa, we subdivided the study area into five sub-regions, we also noticed that the annual and seasonal PCC depend on the considered sub-region. For the future period (2070–2095), temperature is projected to increase following all the three scenarios. The rainfall amount is projected to decrease by up to 5 mm/day towards the end of the twenty first century under RCP8.5 scenario, and by 1–2 mm/day under RCP4.5 and RCP2.6 scenarios over Equatorial Guinea, Gabon, Congo, north-western Democratic Republic of Congo (DRC) and the Lake Victoria. Significant decrease is predicted to occur mostly in the northern part of the domain under RCP8.5 scenario. However, future rainfall over High Lands of Cameroon, Adamawa Plateau, north-eastern DRC and Atlantic Ocean is projected to increase.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-07-28
    Description: Despite recent improvements in ENSO simulations, ENSO predictions ultimately remain limited by error growth and model inadequacies. Determining the accompanying dynamical processes that drive the growth of certain types of errors may help the community better recognize which error sources provide an intrinsic limit to predictability. This study applies a dynamical analysis to previously developed CCSM4 error ensemble experiments that have been used to model noise-driven error growth. Analysis reveals that ENSO-independent error growth is instigated via a coupled instability mechanism. Daily error fields indicate that persistent stochastic zonal wind stress perturbations \((\tau_{x}^{\prime } )\) near the equatorial dateline activate the coupled instability, first driving local SST and anomalous zonal current changes that then induce upwelling anomalies and a clear thermocline response. In particular, March presents a window of opportunity for stochastic \(\tau_{x}^{\prime }\) to impose a lasting influence on the evolution of eastern Pacific SST through December, suggesting that stochastic \(\tau_{x}^{\prime }\) is an important contributor to the spring predictability barrier. Stochastic winds occurring in other months only temporarily affect eastern Pacific SST for 2–3 months. Comparison of a control simulation with an ENSO cycle and the ENSO-independent error ensemble experiments reveals that once the instability is initiated, the subsequent error growth is modulated via an ENSO-like mechanism, namely the seasonal strength of the Bjerknes feedback. Furthermore, unlike ENSO events that exhibit growth through the fall, the growth of ENSO-independent SST errors terminates once the seasonal strength of the Bjerknes feedback weakens in fall. Results imply that the heat content supplied by the subsurface precursor preceding the onset of an ENSO event is paramount to maintaining the growth of the instability (or event) through fall.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-07-29
    Description: Stochastic forcing has been used conceptually to explain ENSO irregularity. More recently, the concept of state-dependent (multiplicative) stochastic forcing has been explored as an explanation of a number of ENSO properties. By calculating the state-dependence factor of ENSO zonal wind stress noise forcing on SST, we are able to separate the additive and multiplicative components of the wind stress noise forcing of ENSO. Spatially, the months with large additive or multiplicative components all resemble previous studies on westerly wind bursts. They differ from each other in that the wind stresses are significantly stronger during months with a large multiplicative noise component. It is further shown that when the multiplicative noise component is large, there have been large values of the wind stress noise in the preceding months. This is not true of the months when the additive component is large. The multi-month growth of the wind stress from the multiplicative noise process is shown to be related to an eastward migration of the western Pacific Warm Pool, which is coupled to the wind stress through convection. This process is shown to be significantly weakened in a climate model when the ocean and atmosphere are uncoupled.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-07-30
    Description: It has been shown that El Niño events contribute to discharge the warm pool excess of energy out of the tropical Pacific. In a different climate, the energetic budget in the tropical Pacific is altered, which might have an effect on the El Niño amplitude and/or occurrence and thereby on the role of El Niño on energy redistribution. The mid-Holocene period (6 ka BP) offers a good example of changes in the distribution of incoming solar energy. In particular, the equator-pole gradient was weaker compared to the modern period. We analyze long stable simulations of the mid-Holocene and the pre-industrial era and discuss the mean- and El Niño-related energy transports in the two climates. We show that the role of global energy pump played by the tropical Pacific is reduced in the mid-Holocene in our simulation, both in long-term mean and during El Niño years. We demonstrate that this is not only a direct response to insolation forcing but this is further amplified by changes in internal processes. We analyze the relative role of El Niño events in the Pacific discharge in the two climates and show that it is reduced in the mid-Holocene, i.e. the fraction of the Pacific discharge that is due to El Niño is reduced. This is mainly due to reduction in the occurrence of El Niño events. This work gives a new approach to address El Niño changes, from the perspective of the role of El Niño in global energy redistribution.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-07-31
    Description: Snow is an important component of the cryosphere and it has a direct and important influence on water storage and supply in snowmelt-dominated regions. This study evaluates the temporal evolution of snow water equivalent (SWE) for the February–April spring period using the GlobSnow observation dataset for the 1980–2012 period. The analysis is performed for different regions of hemispherical to sub-continental scales for the Northern Hemisphere. The detection–attribution analysis is then performed to demonstrate anthropogenic and natural effects on spring SWE changes for different regions, by comparing observations with six CMIP5 model simulations for three different external forcings: all major anthropogenic and natural (ALL) forcings, greenhouse gas (GHG) forcing only, and natural forcing only. The observed spring SWE generally displays a decreasing trend, due to increasing spring temperatures. However, it exhibits a remarkable increasing trend for the southern parts of East Eurasia. The six CMIP5 models with ALL forcings reproduce well the observed spring SWE decreases at the hemispherical scale and continental scales, whereas important differences are noted for smaller regions such as southern and northern parts of East Eurasia and northern part of North America. The effects of ALL and GHG forcings are clearly detected for the spring SWE decline at the hemispherical scale, based on multi-model ensemble signals. The effects of ALL and GHG forcings, however, are less clear for the smaller regions or with single-model signals, indicating the large uncertainty in regional SWE changes, possibly due to stronger influence of natural climate variability.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-07-31
    Description: The high-salinity water masses that originate in the North Indian Ocean are Arabian Sea High-Salinity Water (ASHSW), Persian Gulf Water (PGW), and Red Sea Water (RSW). Among them, only ASHSW has been shown to exist in the Bay of Bengal. We use CTD data from recent cruises to show that PGW and RSW also exist in the bay. The presence of RSW is marked by a deviation of the salinity vertical profile from a fitted curve at depths ranging from 500 to 1000 m; this deviation, though small (of the order of ~0.005 psu and therefore comparable to the CTD accuracy of 0.003 psu), is an order of magnitude larger than the ~0.0003 psu fluctuations associated with the background turbulence or instrument noise in this depth regime, allowing us to infer the existence of RSW throughout the bay. PGW is marked by the presence of a salinity maximum at 200–450 m; in the southwestern bay, PGW can be distinguished from the salinity maximum due to ASHSW because of the intervening Arabian Sea Salinity Minimum. This salinity minimum and the maximum associated with ASHSW disappear east and north of the south-central bay (85°E, 8°N) owing to mixing between the fresher surface waters that are native to the bay (Bay of Bengal Water or BBW) with the high-salinity ASHSW. Hence, ASHSW is not seen as a distinct water mass in the northern and eastern bay and the maximum salinity over most of the bay is associated with PGW. The surface water over most of the bay is therefore a mixture of ASHSW and the low-salinity BBW. As a corollary, we can also infer that the weak oxygen peak seen within the oxygen-minimum zone in the bay at a depth of 250–400 m is associated with PGW. The hydrographic data also show that these three high-salinity water masses are advected into the bay by the Summer Monsoon Current, which is seen to be a deep current extending to 1000 m. These deep currents extend into the northern bay as well, providing a mechanism for spreading ASHSW, PGW, and RSW throughout the bay.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-08-02
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-08-05
    Description: In a suite of idealized experiments with the Community Atmospheric Model version 3 coupled to a slab ocean, we show that the atmospheric circulation response to CO 2  increase is sensitive to extratropical cloud feedback that is potentially nonlinear. Doubling CO 2  produces a poleward shift of the Southern Hemisphere (SH) midlatitude jet that is driven primarily by cloud shortwave feedback and modulated by ice albedo feedback, in agreement with earlier studies. More surprisingly, for CO 2  increases smaller than ~25 %, the SH jet shifts equatorward. Nonlinearities are also apparent in the Northern Hemisphere, but with less zonal symmetry. Baroclinic instability theory and climate feedback analysis suggest that as the CO 2  forcing amplitude is reduced, there is a transition from a regime in which cloud and circulation changes are largely decoupled to a regime in which they are highly coupled. In the dynamically coupled regime, there is an apparent cancellation between cloud feedback due to warming and cloud feedback due to the shifting jet, and this allows the ice albedo feedback to dominate in the high latitudes. The extent to which dynamical coupling effects exceed thermodynamic forcing effects is strongly influenced by cloud microphysics: an alternate model configuration with slightly increased cloud liquid (LIQ) produces poleward jet shifts regardless of the amplitude of CO 2  forcing. Altering the cloud microphysics also produces substantial spread in the circulation response to CO 2  doubling: the LIQ configuration produces a poleward SH jet shift approximately twice that produced under the default configuration. Analysis of large ensembles of the Canadian Earth System Model version 2 demonstrates that nonlinear, cloud-coupled jet shifts are also possible in comprehensive models. We still expect a poleward trend in SH jet latitude for timescales on which CO 2  increases by more than ~25 %. But on shorter timescales, our results give good reason to expect significant equatorward deviations. We also discuss the implications for understanding the circulation response to small external forcings from other sources, such as the solar cycle.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-08-05
    Description: This paper examines the forecasting skill of eight Global Climate Models from the North-American Multi-Model Ensemble project (CCSM3, CCSM4, CanCM3, CanCM4, GFDL2.1, FLORb01, GEOS5, and CFSv2) over seven major regions of the continental United States. The skill of the monthly forecasts is quantified using the mean square error skill score. This score is decomposed to assess the accuracy of the forecast in the absence of biases (potential skill) and in the presence of conditional (slope reliability) and unconditional (standardized mean error) biases. We summarize the forecasting skill of each model according to the initialization month of the forecast and lead time, and test the models’ ability to predict extended periods of extreme climate conducive to eight ‘billion-dollar’ historical flood and drought events. Results indicate that the most skillful predictions occur at the shortest lead times and decline rapidly thereafter. Spatially, potential skill varies little, while actual model skill scores exhibit strong spatial and seasonal patterns primarily due to the unconditional biases in the models. The conditional biases vary little by model, lead time, month, or region. Overall, we find that the skill of the ensemble mean is equal to or greater than that of any of the individual models. At the seasonal scale, the drought events are better forecast than the flood events, and are predicted equally well in terms of high temperature and low precipitation. Overall, our findings provide a systematic diagnosis of the strengths and weaknesses of the eight models over a wide range of temporal and spatial scales.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-07-07
    Description: Tropical Cyclones (TCs) are an important source of freshwater for the North American continent. Many studies have tried to estimate this contribution by identifying TC-induced precipitation events, but few have explicitly diagnosed the moisture fluxes across continental boundaries. We design a set of attribution schemes to isolate the column-integrated moisture fluxes that are directly associated with TCs and to quantify the flux onto the North American Continent due to TCs. Averaged over the 2004–2012 hurricane seasons and integrated over the western, southern and eastern coasts of North America, the seven schemes attribute 7–18 % (mean \(14\,\%\) ) of total net onshore flux to Atlantic TCs. A reduced contribution of \(10\,\%\) (range 9– \(11\,\%\) ) was found for the 1980–2003 period, though only two schemes could be applied to this earlier period. Over the whole 1980–2012 period, a further \(8\,\%\) (range 6– \(9\,\%\) from two schemes) was attributed to East Pacific TCs, resulting in a total TC contribution of \(19\,\%\) (range 17– \(22\,\%\) ) to the ocean-to-land moisture transport onto the North American continent between May and November. Analysis of the attribution uncertainties suggests that incorporating details of individual TC size and shape adds limited value to a fixed radius approach and TC positional errors in the ERA-Interim reanalysis do not affect the results significantly, but biases in peak wind speeds and TC sizes may lead to underestimates of moisture transport. The interannual variability does not appear to be strongly related to the El Niño-Southern Oscillation phenomenon.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-06-24
    Description: We present a validation analysis of a regional earth system model system (RegESM) for the Mediterranean Basin. The used configuration of the modeling system includes two active components: a regional climate model (RegCM4) and an ocean modeling system (ROMS). To assess the performance of the coupled modeling system in representing the climate of the basin, the results of the coupled simulation (C50E) are compared to the results obtained by a standalone atmospheric simulation (R50E) as well as several observation datasets. Although there is persistent cold bias in fall and winter, which is also seen in previous studies, the model reproduces the inter-annual variability and the seasonal cycles of sea surface temperature (SST) in a general good agreement with the available observations. The analysis of the near-surface wind distribution and the main circulation of the sea indicates that the coupled model can reproduce the main characteristics of the Mediterranean Sea surface and intermediate layer circulation as well as the seasonal variability of wind speed and direction when it is compared with the available observational datasets. The results also reveal that the simulated near-surface wind speed and direction have poor performance in the Gulf of Lion and surrounding regions that also affects the large positive SST bias in the region due to the insufficient horizontal resolution of the atmospheric component of the coupled modeling system. The simulated seasonal climatologies of the surface heat flux components are also consistent with the CORE.2 and NOCS datasets along with the overestimation in net long-wave radiation and latent heat flux (or evaporation, E), although a large observational uncertainty is found in these variables. Also, the coupled model tends to improve the latent heat flux by providing a better representation of the air–sea interaction as well as total heat flux budget over the sea. Both models are also able to reproduce the temporal evolution of the inter-annual anomaly of surface air temperature and precipitation (P) over defined sub-regions. The Mediterranean water budget (E, P and E–P) estimates also show that the coupled model has high skill in the representation of water budget of the Mediterranean Sea. To conclude, the coupled model reproduces climatological land surface fields and the sea surface variables in the range of observation uncertainty and allow studying air–sea interaction and main regional climate characteristics of the basin.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-06-21
    Description: The recent annually averaged warming of the Antarctic Peninsula, and of West Antarctica, stands in stark contrast to very small trends over East Antarctica. This asymmetry arises primarily from a highly significant warming of West Antarctica in austral spring and a cooling of East Antarctica in austral autumn. Here we examine whether this East–West asymmetry is a response to anthropogenic climate forcings or a manifestation of natural climate variability. We compare the observed Antarctic surface air temperature trends over two distinct time periods (1960–2005 and 1979–2005), and with those simulated by 40 models participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We find that the observed East–West asymmetry differs substantially between the two periods and, furthermore, that it is completely absent from the forced response seen in the CMIP5 multi-model mean, from which all natural variability is eliminated by the averaging. We also examine the relationship between the Southern Annular mode (SAM) and Antarctic temperature trends, in both models and reanalyses, and again conclude that there is little evidence of anthropogenic SAM-induced driving of the recent temperature trends. These results offer new, compelling evidence pointing to natural climate variability as a key contributor to the recent warming of West Antarctica and of the Peninsula.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-06-24
    Description: During 19–21 June 2013 a heavy precipitation event affected southern Alberta and adjoining regions, leading to severe flood damage in numerous communities and resulting in the costliest natural disaster in Canadian history. This flood was caused by a combination of meteorological and hydrological factors, which are investigated from weather and climate perspectives with the fifth generation Canadian Regional Climate Model. Results show that the contribution of orographic ascent to precipitation was important, exceeding 30 % over the foothills of the Rocky Mountains. Another contributing factor was evapotranspiration from the land surface, which is found to have acted as an important moisture source and was likely enhanced by antecedent rainfall that increased soil moisture over the northern Great Plains. Event attribution analysis suggests that human induced greenhouse gas increases may also have contributed by causing evapotranspiration rates to be higher than they would have been under pre-industrial conditions. Frozen and snow-covered soils at high elevations are likely to have played an important role in generating record streamflows. Results point to a doubling of surface runoff due to the frozen conditions, while 25 % of the modelled runoff originated from snowmelt. The estimated return time of the 3-day precipitation event exceeds 50 years over a large region, and an increase in the occurrence of similar extreme precipitation events is projected by the end of the 21st century. Event attribution analysis suggests that greenhouse gas increases may have increased 1-day and 3-day return levels of May–June precipitation with respect to pre-industrial climate conditions. However, no anthropogenic influence can be detected for 1-day and 3-day surface runoff, as increases in extreme precipitation in the present-day climate are offset by decreased snow cover and lower frozen water content in soils during the May–June transition months, compared to pre-industrial climate.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-06-24
    Description: This study examines the influence of boreal spring Arctic Oscillation (AO) on the subsequent winter El Niño-Southern Oscillation (ENSO) using 15 climate model outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Results show that, out of the 15 CMIP5 models, CCSM4 and CNRM-CM5 can well reproduce the significant AO–ENSO connection. These two models capture the observed spring AO related anomalous cyclone (anticyclone) over the subtropical western-central North Pacific, and westerly (easterly) winds over the tropical western-central Pacific. In contrast, the spring AO-related anomalous circulation over the subtropical North Pacific is insignificant in the other 13 models, and the simulations in these models cannot capture the significant influence of the spring AO on ENSO. Further analyses indicate that the performance of the CMIP5 simulations in reproducing the AO–ENSO connection is related to the ability in simulating the spring North Pacific synoptic eddy intensity and the spring AO’s Pacific component. Strong synoptic-scale eddy intensity results in a strong synoptic eddy feedback on the mean flow, leading to strong cyclonic circulation anomalies over the subtropical North Pacific, which contributes to a significant AO–ENSO connection. In addition, a strong spring AO’s Pacific component and associated easterly wind anomalies to its south may provide more favorable conditions for the development of spring AO-related cyclonic circulation anomalies over the subtropical North Pacific.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-06-24
    Description: The concurrent effects of the El Niño-Southern Oscillation (ENSO) on the northern winter stratosphere have been widely recognized; however, the delayed effects of ENSO in the next winter after mature ENSO have yet to be confirmed in multi reanalyses and model simulations. This study uses three reanalysis datasets, a long-term fully coupled model simulation, and a high-top general circulation model to examine ENSO’s delayed effects in the stratosphere. The warm-minus-cold composite analyses consistently showed that, except those quick-decaying quasi-biennial ENSO events that reverse signs during July–August–September (JAS) in their decay years, ENSO events particularly those quasi-quadrennial (QQ) that persist through JAS, always have a significant effect on the extratropical stratosphere in both the concurrent winter and the next winter following mature ENSO. During the concurrent winter, the QQ ENSO-induced Pacific-North American (PNA) pattern corresponds to an anomalous wavenumber-1 from the upper troposphere to the stratosphere, which acts to intensify/weaken the climatological wave pattern during warm/cold ENSO. Associated with the zonally quasi-homogeneous tropical forcing in spring of the QQ ENSO decay years, there appear persistent and zonally quasi-homogeneous temperature anomalies in the midlatitudes from the upper troposphere to the lower stratosphere until summer. With the reduction in ENSO forcing and the PNA responses in the following winter, an anomalous wavenumber-2 prevails in the extratropics. Although the anomalous wave flux divergence in the upper stratospheric layer is still dominated by wavenumber-1, it is mainly caused by wavenumber-2 in the lower stratosphere. However, the wavenumber-2 activity in the next winter is always underestimated in the model simulations, and wavenumber-1 activity dominates in both winters.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-06-21
    Description: The observed variability of zonal currents (ZC) at the Equator, 90°E shows a strong seasonal cycle in the near-surface 40–350 m water column with periodic east–west reversals most pronounced at semiannual frequency. Superposed on this, a strong intraseasonal variability of 30–90 day periodicity is also prominently seen in the near-surface layer (40–80 m) almost throughout the year with the only exception of February–March. An eastward flowing equatorial undercurrent (EUC) is present in the depth range of 80–160 m during March–April and October–November. The observed intraseasonal variability in the near-surface layer is primarily determined by the equatorial zonal westerly wind bursts (WWBs) through local frictional coupling between the zonal flow in the surface layer and surface zonal winds and shows large interannual variability. The eastward flowing EUC maintained by the ZPG set up by the east–west slope of the thermocline remotely controlled by the zonal wind (ZW) and zonally propagating wave fields also shows significant interannual variability. This observed variability on interannual time scales appears to be controlled by the corresponding variability in the alongshore winds off the Somalia coast during the preceding boreal winter, the ZW field along the equator, and the associated zonally propagating Kelvin and Rossby waves. The salinity induced vertical stratification observed in the near-surface layer through barrier layer thickness (BLT) effects also shows a significant influence on the ZC field on intraseasonal time scale. Interestingly, among all the 8 years (2001–2008), relatively weaker annual cycle is seen in both ZC in the 40–350 m water column and boreal spring sea surface temperature (SST) only during 2001 and 2008 along the equator caused through propagating wave dynamics.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-06-21
    Description: A regional climate model, WRF-Chem, was used to investigate the feedback between aerosols and meteorological conditions in the planetary boundary layer (PBL) over the Tibetan Plateau (TP) and Indo-Gangetic Plain (IGP). The numerical experiments (15-km horizontal resolution) with and without the aerosol effects are driven by reanalysis of data for 1–31 March 2009, when a heavy pollution event (13–19 March) occurred. The results showed that the model captured the spatial and temporal meteorological conditions and aerosol optical characteristics during the heavy pollution days. Aerosols induced cooling at the surface and warming in the middle troposphere due to their radiative effects, and resulted in a more stable PBL over the IGP. Aerosol-induced 2-m relative humidity (RH) was increased. The stable PBL likely led to the surface PM 2.5 concentration increase of up to 21 μg m −3 (15 %) over the IGP. For the TP, the atmospheric profile did not drastically change due to fewer radiative effects of aerosols in the PBL compared with those over the IGP. The aerosol-induced RH decreased due to cloud albedo and cloud lifetime effect, and led to a reduction in surface PM 2.5 concentration of up to 17 μg m −3 (13 %). These results suggest a negative and positive feedback over the TP and IGP, respectively, between aerosol concentrations and changes of aerosol-induced meteorological conditions. Similar positive feedbacks have been observed in other heavily polluted regions (e.g., the North China Plain). The results have implications for the study of air pollution on weather and environment over the TP and IGP.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-05-10
    Description: The Indian summer monsoon (ISM) simulated over the 1989–2009 period with a new 0.75° ocean–atmosphere coupled tropical-channel model extending from 45°S to 45°N is presented. The model biases are comparable to those commonly found in coupled global climate models (CGCMs): the Findlater jet is too weak, precipitations are underestimated over India while they are overestimated over the southwestern Indian Ocean, South-East Asia and the Maritime Continent. The ISM onset is delayed by several weeks, an error which is also very common in current CGCMs. We show that land surface temperature errors are a major source of the ISM low-level circulation and rainfall biases in our model: a cold bias over the Middle-East (ME) region weakens the Findlater jet while a warm bias over India strengthens the monsoon circulation over the southern Bay of Bengal. A surface radiative heat budget analysis reveals that the cold bias is due to an overestimated albedo in this desertic ME region. Two new simulations using a satellite-observed land albedo show a significant and robust improvement in terms of ISM circulation and precipitation. Furthermore, the ISM onset is shifted back by 1 month and becomes in phase with observations. Finally, a supplementary set of simulations at 0.25°-resolution confirms the robustness of our results and shows an additional reduction of the warm and dry bias over India. These findings highlight the strong sensitivity of the simulated ISM rainfall and its onset timing to the surface land heating pattern and amplitude, especially in the ME region. It also illustrates the key-role of land surface processes and horizontal resolution for improving the ISM representation, and more generally the monsoons, in current CGCMs.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-05-10
    Description: A warming hiatus is a period of relatively little change in global mean surface air temperatures (SAT). Many studies have attributed the current warming hiatus to internal climate variability (ICV). But there is less work on discussion of the dynamics about how these ICV modes influence cooling over land in the Northern Hemisphere (NH). Here we demonstrate the warming hiatus was more significant over the continental NH. We explored the dynamics of the warming hiatus from a global perspective and investigated the mechanisms of the reversing from accelerated warming to hiatus, and how ICV modes influence SAT change throughout the NH land. It was found that these ICV modes and Arctic amplification can excite a decadal modulated oscillation (DMO), which enhances or suppresses the long-term trend on decadal to multi-decadal timescales. When the DMO is in an upward (warming) phase, it contributes to an accelerated warming trend, as in last 20 years of twentieth-century. It appears that there is a downward swing in the DMO occurring at present, which has balanced or reduced the radiative forced warming and resulted in the recent global warming hiatus. The DMO modulates the SAT, in particular, the SAT of boreal cold months, through changes in the asymmetric meridional and zonal thermal forcing (MTF and ZTF). The MTF represents the meridional temperature gradients between the mid- and high-latitudes, and the ZTF represents the asymmetry in temperatures between the extratropical large-scale warm and cold zones in the zonal direction. Via the different performance of combined MTF and ZTF, we found that the DMO’s modulation effect on SAT was strongest when both weaker (stronger) MTF and stronger (weaker) ZTF occurred simultaneously. And the current hiatus is a result of a downward DMO combined with a weaker MTF and stronger ZTF, which stimulate both a weaker polar vortex and westerly winds, along with the amplified planetary waves, thereby facilitating southward invasion of cold Arctic-air and promoting the blocking formation. The results conclude that the DMO can not only be used to interpret the current warming hiatus, it also suggests that global warming will accelerate again when it swings upward.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-05-11
    Description: Climate models show a broad diversity in the simulations of the Atlantic meridional overturning circulation (AMOC) with its leading modes of variability having different amplitudes, periods and driving mechanisms. Theoretical considerations and computations using ocean GCMs suggest that on interdecadal timescales this variability can be controlled by an internal weakly-damped oceanic mode associated with westward propagation of large-scale density anomalies in the North Atlantic Ocean. These anomalies are dominated by temperature with some compensation from salinity. The quadrature phases of this mode include the strengthening of the AMOC, followed a quarter-period later by the development of a broad warm temperature anomaly in the northern Atlantic extending to about 1000 m, then followed by the weakening of the AMOC, and then the upper-ocean cooling. Here, we investigate whether this mode is present in the simulations of Coupled Model Intercomparison Project 5 (CMIP5). Out of the 25 models investigated, we find that more than half of the models exhibit variability consistent with this mode. Some of the relevant modal features includes statistically significant spectral peaks in the band between 15 and 35 years, the westward propagation of density anomalies in the \(40^{\circ }\) N– \(60^{\circ }\) N latitudinal band, which sets the period of the mode, the existence of the distinct quadrature phases of the AMOC variability, and the predominant effect of temperature on density anomalies.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-05-11
    Description: The Southern Ocean plays a pivotal role in climate change by exchanging heat and carbon, and provides the primary window for the global deep ocean to communicate with the atmosphere. There has been a widespread focus on explaining atmospheric CO 2 changes in terms of changes in wind forcing in the Southern Ocean. Here, we develop a dynamically-motivated metric, the residual upwelling, that measures the primary effect of Southern Ocean dynamics on atmospheric CO 2 on centennial to millennial timescales by determining the communication with the deep ocean. The metric encapsulates the combined, net effect of winds and air–sea buoyancy forcing on both the upper and lower overturning cells, which have been invoked as explaining atmospheric CO 2 changes for the present day and glacial-interglacial changes. The skill of the metric is assessed by employing suites of idealized ocean model experiments, including parameterized and explicitly simulated eddies, with online biogeochemistry and integrated for 10,000 years to equilibrium. Increased residual upwelling drives elevated atmospheric CO 2 at a rate of typically 1–1.5 parts per million/10 6  m 3  s −1 by enhancing the communication between the atmosphere and deep ocean. This metric can be used to interpret the long-term effect of Southern Ocean dynamics on the natural carbon cycle and atmospheric CO 2 , alongside other metrics, such as involving the proportion of preformed nutrients and the extent of sea ice cover.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-05-11
    Description: Climate change projections are commonly based on multi-model ensembles of climate simulations. In this paper we consider the choice of bias models in Bayesian multimodel predictions. Buser et al. (Clim Res 44(2–3):227–241, 2010a ) introduced a hybrid bias model which combines commonly used constant bias and constant relation bias assumptions. The hybrid model includes a weighting parameter which balances these bias models. In this study, we use a cross-validation approach to study which bias model or bias parameter leads to, in a specific sense, optimal climate change projections. The analysis is carried out for summer and winter season means of 2 m-temperatures spatially averaged over the IPCC SREX regions, using 19 model runs from the CMIP5 data set. The cross-validation approach is applied to calculate optimal bias parameters (in the specific sense) for projecting the temperature change from the control period (1961–2005) to the scenario period (2046–2090). The results are compared to the results of the Buser et al. (Clim Res 44(2–3):227–241, 2010a ) method which includes the bias parameter as one of the unknown parameters to be estimated from the data.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-05-13
    Description: The region of Valencia in Spain has historically been affected by heavy precipitation events (HPEs). These HPEs are known to be modulated by the sea surface temperature (SST) of the Balearic Sea. Using an atmosphere-ocean regional climate model, we show that more than 70 % of the HPEs in the region of Valencia present a SST cooling larger than the monthly trend in the Northwestern Mediterranean before the HPEs. This is linked to the breaking of a Rossby wave preceding the HPEs: a ridge-trough pattern at mid-levels centered over western France associated with a low-level depression in the Gulf of Genoa precedes the generation of a cut-off low over southern Spain with a surface depression over the Alboran Sea in the lee of the Atlas. This latter situation is favourable to the advection of warm and moist air towards the Mediterranean Spanish coast, possibly leading to HPEs. The depression in the Gulf of Genoa generates intense northerly (Mistral) to northwesterly (Tramontane/Cierzo) winds. In most cases, these intense winds trigger entrainment at the bottom of the oceanic mixed layer which is a mechanism explaining part of the SST cooling in most cases. Our study suggests that the SST cooling due to this strong wind regime then persists until the HPEs and reduces the precipitation intensity.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-07-13
    Description: Changes in the characteristics of Southern Hemisphere (SH) storms, in all seasons, during the second half of the twentieth century, have been related to changes in the annual cycle of SH baroclinic instability. In particular, significant negative trends in baroclinic instability, as measured by the Phillips Criterion, have been found in the region of the climatological storm tracks; a zonal band of significant positive trends occur further poleward. Corresponding to this decrease/increase in baroclinic instability there is a decrease/increase in the growth rate of storm formation at these latitudes over this period, and in some cases a preference for storm formation further poleward than normal. Based on model output from a multi-model ensemble (MME) of coupled atmosphere–ocean general circulation models, it is shown that these trends are the result of external radiative forcing, including anthropogenic greenhouse gases, ozone, aerosols and land-use change. The MME is used in an analysis of variance method to separate the internal (natural) variability in the Phillips Criterion from influences associated with anomalous external radiative forcing. In all seasons, the leading externally forced mode has a significant trend and a loading pattern highly correlated with the pattern of trends in the Phillips Criterion. The covariance between the externally forced component of SH rainfall and the leading external mode strongly resembles the MME pattern of SH rainfall trends. A comparison between similar analyses of MME simulations using the second half of the twenty-first century of the Representative Concentration Pathways (RCP) RCP8.5 and RCP4.5 scenarios show that trends in the Phillips Criterion and rainfall are projected to continue and intensify under increasing anthropogenic greenhouse gas concentrations.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-07-15
    Description: The projected warming of surface air temperature at the global and regional scale by the end of the century is directly related to emissions and Earth’s climate sensitivity. Projections are typically produced using an ensemble of climate models such as CMIP5, however the range of climate sensitivity in models doesn’t cover the entire range considered plausible by expert judgment. Of particular interest from a risk-management perspective is the lower impact outcome associated with low climate sensitivity and the low-probability, high-impact outcomes associated with the top of the range. Here we scale climate model output to the limits of expert judgment of climate sensitivity to explore these limits. This scaling indicates an expanded range of projected change for each emissions pathway, including a much higher upper bound for both the globe and Australia. We find the possibility of exceeding a warming of 2 °C since pre-industrial is projected under high emissions for every model even scaled to the lowest estimate of sensitivity, and is possible under low emissions under most estimates of sensitivity. Although these are not quantitative projections, the results may be useful to inform thinking about the limits to change until the sensitivity can be more reliably constrained, or this expanded range of possibilities can be explored in a more formal way. When viewing climate projections, accounting for these low-probability but high-impact outcomes in a risk management approach can complement the focus on the likely range of projections. They can also highlight the scale of the potential reduction in range of projections, should tight constraints on climate sensitivity be established by future research.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-07-21
    Description: In contrast to a global retreating trend, glaciers in the Karakoram showed stability and/or mass gaining during the past decades. This “Karakoram Anomaly” has been assumed to result from an out-of-phase temperature trend compared to hemispheric scales. However, the short instrumental observations from the Karakoram valley bottoms do not support a quantitative assessment of long-term temperature trends in this high mountain area. Here, we presented a new April–July temperature reconstruction from the Karakoram region in northern Pakistan based on a high elevation (~3600 m a.s.l.) tree-ring chronology covering the past 438 years (AD 1575–2012). The reconstruction passes all statistical calibration and validation tests and represents 49 % of the temperature variance recorded over the 1955–2012 instrumental period. It shows a substantial warming accounting to about 1.12 °C since the mid-twentieth century, and 1.94 °C since the mid-nineteenth century, and agrees well with the Northern Hemisphere temperature reconstructions. These findings provide evidence that the Karakoram temperatures are in-phase, rather than out-of-phase, compared to hemispheric scales since the AD 1575. The synchronous temperature trends imply that the anomalous glacier behavior reported from the Karakoram may need further explanations beyond basic regional thermal anomaly.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-07-24
    Description: The present study contrasts interannual variations in the intensity of boreal summer 10–20-day and 30–60-day intraseasonal oscillations (ISOs) over the tropical western North Pacific and their factors. A pronounced difference is found in the relationship of the two ISOs to El Niño-Southern Oscillation. The 10–20-day ISO intensity is enhanced during El Niño developing summer, whereas the 30–60-day ISO intensity is enhanced during La Niña decaying summer. The above different relationship is interpreted as follows. The equatorial central and eastern Pacific SST anomalies modify vertical wind shear, lower-level moisture, and vertical motion in a southeast-northwest oriented band from the equatorial western Pacific to the tropical western North Pacific where the 10–20-day ISOs originate and propagate. These background field changes modulate the amplitude of 10–20-day ISOs. Preceding equatorial central and eastern Pacific SST anomalies induce SST anomalies in the North Indian Ocean in summer, which in turn modify vertical wind shear and vertical motion over the tropical western North Pacific. The modified background fields influence the amplitude of the 30–60-day ISOs when they reach the tropical western North Pacific from the equatorial region. A feedback of ISO intensity on local SST change is identified in the tropical western North Pacific likely due to a net effect of ISOs on surface heat flux anomalies. This feedback is more prominent from the 10–20-day than the 30–60-day ISO intensity change.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-07-27
    Description: The impact of volcanic eruptions on large-scale atmospheric circulation patterns has been well studied, but very little effort has been made on relating the response of Pacific North American (PNA) pattern to strong volcanic eruptions. Here we investigate the response of winter PNA to the largest volcanic eruptions using three different reanalysis datasets. We demonstrate a significant positive PNA circulation response to strong volcanic forcing in the first winter following the eruptions. This circulation pattern is associated with enhanced southwesterly winds advecting warm air from the tropical/subtropical Pacific into northwestern North America and leads to a significant warming in the region. However, no significant PNA signal is found for the second post-eruption winter. The PNA responses to volcanic forcing depend partly upon the modulation of the El Niño Southern Oscillation (ENSO) events. When the ENSO influence is linearly removed, this positive PNA signal is still robust during the first post-eruption winter, albeit with slightly decreased magnitude and significance. Our findings provide new evidence for volcanic forcing of the Pacific and North American climates. The results presented here may contribute to deconvolving modern and past continental-scale climate changes over North America.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...