ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3,251)
  • 2010-2014  (3,251)
  • International Journal of Photoenergy  (746)
  • 84236
  • 8745
  • Energy, Environment Protection, Nuclear Power Engineering  (3,251)
  • 1
    Publication Date: 2014-03-01
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-11
    Description: We used a one-dimensional simulation program Solar Cell Capacitance Simulator in 1 Dimension (SCAPS-1D) to investigate Copper-Indium-Gallium-Diselenide- (CIGS-) based solar cells properties. Starting with a conventional ZnO-B/i-ZnO/CdS/CIGS structure, we simulated the parameters of current-voltage characteristics and showed how the absorber layer thickness, hole density, and band gap influence the short-circuit current density (), open-circuit voltage (), fill factor (FF), and efficiency of solar cell. Our simulation results showed that all electrical parameters are greatly affected by the absorber thickness (w) below 1000 nm, due to the increase of back-contact recombination and very poor absorption. Increasing hole density (p) or absorber band gap () improves and leads to high efficiency, which equals value of 16.1% when p = 1016 cm−3 and  eV. In order to reduce back-contact recombination, the effect of a very thin layer with high band gap inserted near the back contact and acting as electrons reflector, the so-called back-electron reflector (EBR), has been investigated. The performances of the solar cells are significantly improved, when ultrathin absorbers (w 〈 500 nm) are used; the corresponding gain of due to the EBR is 3 mA/cm2. Our results are in good agreement with those reported in the literature from experiments.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-11
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-12
    Description: Changes of antioxidant properties of -lipoic acid (LA) after UV irradiation were studied. LA is the typical drug used in diabetic neuropathy. Quenching of free radicals is an important factor of therapy by using this substance. -Lipoic acid is exposed to UV irradiation during the storage. The aim of our studies was to examine the effect of UV irradiation on the interactions of LA with free radicals. The -lipoic acid was irradiated by UVA 315–400 nm light during 10 to 110 minutes by intervals of 10 minutes. The electron paramagnetic resonance spectroscopy was used as the experimental technique. The antioxidant properties of LA were spectroscopically confirmed. The strong effect of UV irradiation on interactions of -lipoic acid with free radicals was observed. It was pointed out that interactions of LA with free radicals decrease after its exposition on UV. The interactions of LA with free radicals were higher after the sample irradiation during 10 minutes than for the samples irradiated longer (20–110 minutes). The results are important for problems connected with photomedicine; they pointed out that -lipoic acid should not be stored on UV exposition. Application of electron paramagnetic resonance spectroscopy to characterize interactions of pharmacological substance with free radicals was confirmed.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-12
    Description: Copper antimony sulfide (CAS) is a relatively new class of sustainable absorber material, utilizing cost effective and abundant elements. Band gap engineered, modified CAS thin films were synthesized using electrodeposition and elevated temperature sulfurization approach. A testing analog of copper zinc antimony sulfide (CZAS) film-electrolyte interface was created in order to evaluate photoelectrochemical performance of the thin film of absorber materials. Eu3+/Eu2+ redox couple was selected for this purpose, based on its relative band offset with copper antimony sulfide. It was observed that zinc has a significant effect on CAS film properties. An enhanced photocurrent was observed for CAS film, modified with zinc addition. A detailed investigation has been carried out by changing stoichiometry, and corresponding surface and optical characterization results have been evaluated. A summary of favorable processing parameters of the films showing enhanced photoelectrochemical response is presented.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-12
    Description: In CdS/CdTe solar cells, chemical interdiffusion at the interface gives rise to the formation of an interlayer of the ternary compound . In this work, we evaluate the effects of this interlayer in CdS/CdTe photovoltaic cells in order to improve theoretical results describing experimental - (capacitance versus voltage) characteristics. We extended our previous theoretical methodology developed on the basis of three cardinal equations (Castillo-Alvarado et al., 2010). The present results provide a better fit to experimental data obtained from CdS/CdTe solar cells grown in our laboratory by the chemical bath deposition (for CdS film) and the close-spaced vapor transport (for CdTe film) techniques.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-12
    Description: In a silicon wafer-based photovoltaic (PV) module, significant power is lost due to current transport through the ribbons interconnecting neighbour cells. Using halved cells in PV modules is an effective method to reduce the resistive power loss which has already been applied by some major PV manufacturers (Mitsubishi, BP Solar) in their commercial available PV modules. As a consequence, quantitative analysis of PV modules using halved cells is needed. In this paper we investigate theoretically and experimentally the difference between modules made with halved and full-size solar cells. Theoretically, we find an improvement in fill factor of 1.8% absolute and output power of 90 mW for the halved cell minimodule. Experimentally, we find an improvement in fill factor of 1.3% absolute and output power of 60 mW for the halved cell module. Also, we investigate theoretically how this effect confers to the case of large-size modules. It is found that the performance increment of halved cell PV modules is even higher for high-efficiency solar cells. After that, the resistive loss of large-size modules with different interconnection schemes is analysed. Finally, factors influencing the performance and cost of industrial halved cell PV modules are discussed.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-12
    Description: In three-phase photovoltaic (PV) system, three-phase filter inductors are important part for the output electrical power quality. The comparison analyses of three-phase discrete filter inductors and two kinds of three-phase integrated filter inductors in three-phase PV inverter are proposed. Firstly, the three-phase PV inverter operation with discrete filter inductors is analyzed, and the design of discrete filter inductors is given; then operation of the three-phase PV inverter with three-phase integrated five-limb magnetic core filter inductors is analyzed, the design of integrated filter inductors with five-limb magnetic core is given, then the operation of three-phase PV inverter with three-phase integrated three-limb magnetic core filter inductors is analyzed, and the design of integrated filter inductors with three limbs magnetic core is given. The conclusion of comparison between three-phase discrete filter inductors and two kinds of three-phase integrated filter inductors is done; it means that the three-phase discrete filter inductors can achieve better output electrical power quality with lower power density and three-phase integrated filter inductors can achieve higher power density with lower output electrical power quality. Finally, the experiment results are given to compare the volume and filter effect of three kinds of filter inductors in three-phase PV inverter.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-13
    Description: Composite silicon dioxide-titanium dioxide (SiO2-TiO2) films are deposited on a large area of 15.6 × 15.6 cm2 textured multicrystalline silicon solar cells to increase the incident light trapped within the device. For further improvement of the antireflective coatings (ARCs) quality, dimethylformamide (DMF) solution is added to the original SiO2-TiO2 solutions. DMF solution solves the cracking problem, thus effectively decreasing reflectance as well as surface recombination. The ARCs prepared by sol-gel process and plasma-enhanced chemical vapor deposition (PECVD) on multicrystalline silicon substrate are compared. The average efficiency of the devices with improved sol-gel ARCs is 16.3%, only 0.5% lower than that of devices with PECVD ARCs (16.8%). However, from equipment depreciation point of view (the expiration date of equipment is generally considered as 5 years), the running cost (USD/watt) of sol-gel technique is 80% lower than that of PECVD method for the first five years and 66% lower than that of PECVD method from the start of the sixth year. This result proves that sol-gel-deposited ARCs process has potential applications in manufacturing low-cost, large-area solar cells.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-20
    Description: n-type ZnO:Cu photoanodes were fabricated by simple spray pyrolysis deposition technique. Influence of low concentration (range ~10−4–10−1%) of Cu doping in hexagonal ZnO lattice on its photoelectrochemical performance has been investigated. The doped photoanodes displayed 7-time enhanced conversion efficiencies with respect to their undoped counterpart, as estimated from the photocurrents generated under simulated solar radiation. This is the highest enhancement in the solar conversion efficiency reported so far for the Cu-doped ZnO. This performance is attributed to the red shift in the band gap of the Cu-doped films and is in accordance with the incident-photon-current-conversion efficiency (IPCE) measurements. Electrochemical studies reveal an n-type nature of these photoanodes. Thus, the study indicates a high potential of doped ZnO films for solar energy applications, in purview of the development of simple nanostructuring methodologies.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-10-01
    Description: This paper represents a novel modeling technique of PV module with a fuzzy logic based MPPT algorithm and boost converter in Simulink environment. The prime contributions of this work are simplification of PV modeling technique and implementation of fuzzy based MPPT system to track maximum power efficiently. The main highlighted points of this paper are to demonstrate the precise control of the duty cycle with respect to various atmospheric conditions, illustration of PV characteristic curves, and operation analysis of the converter. The proposed system has been applied for three different PV modules SOLKAR 36 W, BP MSX 60 W, and KC85T 87 W. Finally the resultant data has been compared with the theoretical prediction and company specified value to ensure the validity of the system.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-10-03
    Description: A chitosan binder-based TiO2 photoelectrode is used in dye-sensitized solar cells (DSSCs). Field-emission scanning electron microscope (FE-SEM) images revealed that the grain size, thickness, and distribution of TiO2 films are affected by the chitosan content. With addition of 2.0 wt% chitosan to the TiO2 film (D2), the surface pore size became the smallest, and the pores were fairly evenly distributed. The electron transit time, electron recombination lifetime, diffusion coefficient, and diffusion length were analyzed by IMVS and IMPS. The best DSSC, with 2.0 wt% chitosan addition to the TiO2 film, had a shorter electron transit time, longer electron recombination lifetime, and larger diffusion coefficient and diffusion length than the other samples. The results of 2.0 wt% chitosan-added TiO2 DSSCs are an electron transit time of  s, electron recombination lifetime of  s, diffusion coefficient of  cm2 s−1, diffusion length of 14.81 μm, and a solar conversion efficiency of 4.18%.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-10-03
    Description: Nitrogen modified zinc sulfide photocatalysts were successfully prepared and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), and surface area analysis. Thermal decomposition of the semisolid was carried out under nitrogen conditions at 500°C for 2 hours, and a series of nitrogen-doped ZnS photocatalysts were produced by controlling inflow flow rate of nitrogen at 15–140 mL/min. Optical characterizations of the synthesized N-doping ZnS substantially show the shifted photoabsorption properties from ultraviolet (UV) region to visible light. The band gaps of nitrogen-doped ZnS composite catalysts were calculated to be in the range of 2.58~2.74 eV from the absorptions edge position. The 15N/ZnS catalyst shows the highest photocatalytic activity, which results in 75.7% degradation of Orange II dye in 5 hrs by visible light irradiation, compared with pristine ZnS and higher percentage N-doping ZnS photocatalysts.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-12
    Description: We report results of combined experimental and theoretical studies of black tea waste extract (BTE) as a potential sensitizer for TiO2-dye-sensitized solar cells (DSSCs). UV-vis absorption data revealed that BTE contains theaflavin. DSSC sensitized with pigment complexes of BTE showed a photon-energy conversion efficiency of %, while a significant increase (%) is observed when pH of the pigment solution was lowered. The HOMO and LUMO energy levels were calculated using experimental data of UV-vis absorption and cyclic voltammetry. These calculations revealed a reduction of the band gap by 0.17 eV and more negativity of HOMO level of acidified pigment, compared to that of original pigment. Combined effect of these developments caused the enhanced efficiency of DSSC. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) computational calculations were carried out to study the four theaflavin analogues which are responsible for the dark colour of BTE. According to the calculations, two theaflavin analogues, theaflavin and theaflavin digallate, are the most probable sensitizers in this dye-sensitized solar cell system.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-09-13
    Description: Piecewise linear parabolic trough collector (PLPTC) is designed and developed to concentrate solar radiation on monocrystalline silicon based photovoltaic module. A theoretical model is used to perform electrical energy and exergy analysis of low-concentration photovoltaic (LCPV) system working under actual test conditions (ATC). The exergy efficiency of LCPV system is in the range from 5.1% to 4.82% with increasing rate of input exergy rate from 30.81 W to 96.12 W, when concentration ratio changes from 1.85 to 5.17 Sun. Short-circuit current shows increasing trend with increasing input exergy rate of ≈0.011 A/W. Power conversion efficiency decreases from 7.07 to 5.66%, and open-circuit voltage decreases from 9.86 to 8.24 V with temperature coefficient of voltage  V/K under ATC. The results confirm that the commercially available silicon solar PV module performs satisfactorily under low concentration.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-09-18
    Description: Effects on the optical, electrical, and photocatalytic properties of undoped CuS thin films nanodisks vacuum annealed at different temperatures were investigated. The chemical bath prepared CuS thin films were obtained at 40°C on glass substrates. The grain size of  nm was computed directly from high-resolution transmission electron microscopy (HRTEM) images. The electrical properties were measured by means of both Hall effect at room temperature and dark resistivity as a function of the absolute temperature 100–330 K. The activation energy values were calculated as 0.007, 0.013, and 0.013 eV for 100, 150, and 200°C, respectively. The energy band gap of the films varied in the range of 1.98 up to 2.34 eV. The photocatalytic activity of the CuS thin film was evaluated by employing the degradation of aqueous methylene blue solution in the presence of hydrogen peroxide. The CuS sample thin film annealed in vacuum at 150°C exhibited the highest photocatalytic activity in presence of hydrogen peroxide.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-20
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-09-30
    Description: This work presented the successful fabrication of dye-sensitized solar cell using polyaniline base (EB), multiwalled carbon nanotubes (MWCNTs), organic dye (rhodamine B or riboflavin), zinc oxide (ZnO), and indium tin oxide (ITO). The electrical properties of the resultant devices were investigated by measuring the current density voltage (-), capacitance voltage (-), and impedance measurements under both dark and illuminated conditions. The photovoltaic cell characteristics, that is, open circuit voltage (), short circuit current density (), and energy conversion efficiency (), were evaluated under illumination and were found to be 0.48 mA/cm2, 400 mV, and 0.224%, respectively, for ITO/EB-MWCNTs/ZnO-rhodamine B/ITO heterostructure. Using impedance spectra, it was found that the series resistances of this type of solar cell are 62 and 60 Ω under darkness and illumination, respectively.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-06-10
    Description: This study used natural dyes as sensitizers of dye-sensitized solar cells (DSSCs) to replace expensive chemical synthetic dyes. We prepared two natural dyes, chlorophyll dye and anthocyanin dye, by extracting them from wormwood and purple cabbage, respectively. Moreover, we mixed the prepared chlorophyll dye and anthocyanin dye at 5 different volume ratios to form cocktail dyes. For preparation of photoelectrode, P25 TiO2 nanoparticles were used to prepare paste, which was coated on fluorine-doped tin oxide (FTO) conductive glass by the spin coating method at different spin coating speeds in order to form TiO2 thin films with different thicknesses. The DSSC prepared by the cocktail dye achieves photoelectric conversion efficiency (η) of 1.95%, open-circuit voltage () of 0.765 V, and short-circuit current density () of 5.83 mA/cm2. Moreover, the prepared DSSC sensitized solely by chlorophyll extract of wormwood achieved a photoelectric conversion efficiency (η) of 0.9%, whereas the DSSC sensitized solely by anthocyanin extract of purple cabbage achieved a photoelectric conversion efficiency of 1.47%, achieving the longest lifetime of electrons amongst these three dyes.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-03-22
    Description: In this work, the nanostructured anatase mesoporous membranes were prepared for water ultrafiltration (UF) process with photocatalytic and physical separation capabilities. A macroporous substrate was synthesized from α-Al2O3, then a colloidal titania sol was used for the preparation of the intermediate layer. Also, the membrane top layer was synthesized by deposition and calcination of titania polymeric sol on the intermediate layer. The characterization was performed by DLS, TG-DTA, XRD, BET, FESEM, TEM, and AFM techniques. Also, the filtration experiments were carried out based on separation of methyl orange from aqueous solution by a membrane setup with a dead-end filtration cell. Photocatalytic activity of the membranes was evaluated by methyl orange photodegradation using UV-visible spectrophotometer. The mean particle size of the colloidal and polymeric sols was 14 and 1.5 nm, respectively. The anatase membranes exhibited homogeneity, with the surface area of 32.8 m2/g, the mean pore size of 8.17 nm, and the crystallite size of 9.6 nm. The methyl orange removal efficiency by the mesoporous membrane based on physical separation was determined to be 52% that was improved up to 83% by a coupling photocatalytic technique. Thus, the UF membrane showed a high potential due to its multifunctional capability for water purification applications.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-04-01
    Description: A compound of ZnO with 3 wt% Ga2O3 (ZnO : Ga2O3 = 97 : 3 in wt%, GZO) was sintered at C as a target. The GZO thin films were deposited on glass using a radio frequency magnetron sputtering system at C by changing the deposition power from 50 W to 150 W. The effects of deposition power on the crystallization size, lattice constant (c), resistivity, carrier concentration, carrier mobility, and optical transmission rate of the GZO thin films were studied. The blue shift in the transmission spectrum of the GZO thin films was found to change with the variations of the carrier concentration because of the Burstein-Moss shifting effect. The variations in the optical band gap () value of the GZO thin films were evaluated from the plots of , revealing that the measured value decreased with increasing deposition power. As compared with the results deposited at room temperature by Gong et al., (2010) the C deposited GZO thin films had apparent blue shift in the transmission spectrum and larger value. For the deposited GZO thin films, both the carrier concentration and mobility linearly decreased and the resistivity linearly increased with increasing deposition power. The prepared GZO thin films were also used as transparent electrodes to fabricate the amorphous silicon thin-film solar cells, and their properties were also measured.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-09-06
    Description: Concentration solar arrays require greater solar tracking precision than conventional photovoltaic arrays. This paper presents a high precision low cost dual axis sun tracking system based on image processing for concentration photovoltaic applications. An imaging device is designed according to the principle of pinhole imaging, making sun rays to be received on a screen through pinhole and to be a sun spot. The location of the spot is used to adjust the orientation of the solar panel. A fuzzy logic controller is developed to achieve this goal. A prototype was built, and experimental results have proven the good performance of the proposed system and low error of tracking. The operation of this system is independent of geographical location, initial calibration, and periodical regulations.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-09-09
    Description: New strategies to reduce the environmental and economic costs of pesticides use are currently under study. Microencapsulation has been used as a versatile tool for the production of controlled release agricultural formulations. In this study, the photochemical degradation of the herbicides MCPA and mecoprop has been investigated in different aqueous media such as ultrapure and river water under simulated solar irradiation. To explore the possibility of introducing cyclodextrins in the herbicide formulations, the photodegradation study of the inclusion complexes of MCPA and mecoprop with (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) was also performed. The half-lives of MCPA and mecoprop inclusion complexes were increased approximately by a factor of three related to the free molecules. Additionally, it has been shown that the photodegradation of MCPA and mecoprop is influenced by their structural features. The additional methyl group existing in mecoprop molecular structure has a positive influence on the stabilization of the radical intermediate formed in the first stage of photodegradation of both herbicides. The results found indicated that MCPA and mecoprop form inclusion complexes with HP-β-CD showing higher photostability compared to free herbicides indicating that HP-β-CD may serve as ingredient in these herbicide formulations.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-09-10
    Description: The need to reduce energy consumptions and to optimize the processes of energy production has pushed the technology towards the implementation of hybrid systems for combined production of electric and thermal energies. In particular, recent researches look with interest at the installation of hybrid system PV/T. To improve the energy performance of these systems, it is necessary to know the operating temperature of the photovoltaic modules. The determination of the operating temperature is a key parameter for the assessment of the actual performance of photovoltaic panels. In the literature, it is possible to find different correlations that evaluate the referring to standard test conditions and/or applying some theoretical simplifications/assumptions. Nevertheless, the application of these different correlations, for the same conditions, does not lead to unequivocal results. In this work an alternative method, based on the employment of artificial neural networks (ANNs), was proposed to predict the operating temperature of a PV module. This methodology does not require any simplification or physical assumptions. In the paper is described the ANN that obtained the best performance: a multilayer perception network. The results have been compared with experimental monitored data and with some of the most cited empirical correlations proposed by different authors.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-09-10
    Description: Influences of hydrogen content in intrinsic hydrogenated amorphous silicon (i-a-Si:H) on performances of heterojunction (HJ) solar cells are investigated. The simulation result shows that in the range of 0–18% of the i-layer hydrogen content, solar cells with higher i-layer hydrogen content can have higher degree of dangling bond passivation on single crystalline silicon (c-Si) surface. In addition, the experimental result shows that HJ solar cells with a low hydrogen content have a poor a-Si:H/c-Si interface. The deteriorate interface is assumed to be attributed to (i) voids created by insufficiently passivated c-Si surface dangling bonds, (ii) voids formed by SiH2 clusters, and (iii) Si particles caused by gas phase particle formation in silane plasma. The proposed assumption is well supported and explained from the plasma point of view using optical emission spectroscopy.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-09-19
    Description: Chitosan (CS) anchored copper oxide (CuO) hybrid material was prepared by chemical precipitation method. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the formation of CS-CuO hybrid. Transmission electron microscopy (TEM) analysis showed the immobilization of CuO nanoparticles on the surface of CS. The hybrid was also characterized by thermogravimetric analysis (TGA) and zeta potential. The hybrid exhibited high photocatalytic activity as evident from the degradation of methylene blue (MB) dye. The result revealed substantial degradation of the MB dye (84%) under UV-light illumination. The antibacterial activity of hybrid against Escherichia coli was examined by colony forming units. It was proved that the CS encapsulated CuO hybrid exhibited excellent antibacterial activity.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-09-19
    Description: Starting from the results regarding a nonvacuum technique to fabricate CIGS thin films for solar cells by means of single-step electrodeposition, we focus on the methodological problems of modeling at cell structure and photovoltaic module levels. As a matter of fact, electrodeposition is known as a practical alternative to costly vacuum-based technologies for semiconductor processing in the photovoltaic device sector, but it can lead to quite different structural and electrical properties. For this reason, a greater effort is required to ensure that the perspectives of the electrical engineer and the material scientist are given an opportunity for a closer comparison and a common language. Derived parameters from ongoing experiments have been used for simulation with the different approaches, in order to develop a set of tools which can be used to put together modeling both at single cell structure and complete module levels.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-09-26
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-09-27
    Description: MoS2/CdS photocatalyst was fabricated by a hydrothermal method for H2 production under visible light. This method used low toxic thiourea as a sulfur source and was carried out at 200°C. Thus, it was better than the traditional methods, which are based on an annealing process at relatively high temperature (above 400°C) using toxic H2S as reducing agent. Scanning electron microscopy and transmission electron microscopy images showed that the morphologies of MoS2/CdS samples were feather shaped and MoS2 layer was on the surface of CdS. The X-ray photoelectron spectroscopy testified that the sample was composed of stoichiometric MoS2 and CdS. The UV-vis diffuse reflectance spectra displayed that the loading of MoS2 can enhance the optical absorption of MoS2/CdS. The photocatalytic activity of MoS2/CdS was evaluated by producing hydrogen. The hydrogen production rate on MoS2/CdS reached 192 μmol·h−1. This performance was stable during three repeated photocatalytic processes.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-09-27
    Description: Novel graphitic carbon nitride (g-C3N4) coated TiO2 nanocomposites were prepared by a facile and cost-effective solid-state method by thermal treatment of the mixture of urea and commercial TiO2. Because the C3N4 was dispersed and coated on the TiO2 nanoparticles, the as-prepared g-C3N4/TiO2 nanocomposites showed enhanced absorption and photocatalytic properties in visible light region. The as-prepared g-C3N4 coated TiO2 nanocomposites under 450°C exhibited efficient visible light photocatalytic activity for degradation of aqueous MB due to the increased visible light absorption and enhanced MB adsorption. The g-C3N4 coated TiO2 nanocomposites would have wide applications in both environmental remediation and solar energy conversion.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-12-15
    Description: The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-11-07
    Description: Near infrared radiation (NIR) has been used to enable the sintering of TiO2 films on fluorine-doped tin oxide (FTO) glass in 12.5 s. The 9 µm thick TiO2 films were constructed into working electrodes for dye-sensitized solar cells (DSCs) achieving similar photovoltaic performance to TiO2 films prepared by heating for 30 min in a convection oven. The ability of the FTO glass to heat upon 12.5 s exposure of NIR radiation was measured using an IR camera and demonstrated a peak temperature of 680°C; glass without the 600 nm FTO layer reached 350°C under identical conditions. In a typical DSC heating step, a TiO2 based paste is heated until the polymeric binder is removed leaving a mesoporous film. The weight loss associated with this step, as measured using thermogravimetric analysis, has been used to assess the efficacy of the FTO glass to heat sufficiently. Heat induced interparticle connectivity in the TiO2 film has also been assessed using optoelectronic transient measurements that can identify electron lifetime through the TiO2 film. An NIR treated device produced in 12.5 seconds shows comparable binder removal, electron lifetime, and efficiency to a device manufactured over 30 minutes in a conventional oven.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-11-07
    Description: Band gap engineering provides an opportunity to not only provide higher overall conversion efficiencies of the reference AM1.5 spectra but also customize PV device design for specific geographic locations and microenvironments based on atmospheric conditions characteristic to that particular location. Indium gallium nitride and other PV materials offer the opportunity for limited bandgap engineering to match spectra. The effects of atmospheric conditions such as aerosols, cloud cover, water vapor, and air mass have been shown to cause variations in spectral radiance that alters PV system performance due to both overrating and underrating. Designing PV devices optimized for spectral radiance of a particular region can result in improved PV system performance. This paper presents a new method for designing geographically optimized PV cells with using a numerical model for bandgap optimization. The geographic microclimate spectrally resolved solar flux for twelve representative atmospheric conditions for the incident radiation angle (zenith angle) of 48.1° and fixed array angle of 40° is used to iteratively optimize the band gap for tandem, triple, and quad-layer of InGaN-based multijunction cells. The results of this method are illustrated for the case study of solar farms in the New York region and discussed.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-11-08
    Description: Global land acquisitions, often dubbed ‘land grabbing’ are increasingly becoming drivers of land change. We use the tools of network science to describe the connectivity of the global acquisition system. We find that 126 countries participate in this form of global land trade. Importers are concentrated in the Global North, the emerging economies of Asia, and the Middle East, while exporters are confined to the Global South and Eastern Europe. A small handful of countries account for the majority of land acquisitions (particularly China, the UK, and the US), the cumulative distribution of which is best described by a power law. We also find that countries with many land trading partners play a disproportionately central role in providing connectivity across the network with the shortest trading path between any two countries traversing either China, the US, or the UK over a third of the time. The land acquisition network is characterized by very few trading cliques and therefore ...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-12-16
    Description: Possible future changes of clustering and return periods (RPs) of European storm series with high potential losses are quantified. Historical storm series are identified using 40 winters of reanalysis. Time series of top events (1, 2 or 5 year return levels (RLs)) are used to assess RPs of storm series both empirically and theoretically. Additionally, 800 winters of general circulation model simulations for present (1960–2000) and future (2060–2100) climate conditions are investigated. Clustering is identified for most countries, and estimated RPs are similar for reanalysis and present day simulations. Future changes of RPs are estimated for fixed RLs and fixed loss index thresholds. For the former, shorter RPs are found for Western Europe, but changes are small and spatially heterogeneous. For the latter, which combines the effects of clustering and event ranking shifts, shorter RPs are found everywhere except for Mediterranean countries. These changes are generally not statisti...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-12-16
    Description: The 2012 drought in Northeast Brazil was the harshest in decades, with potentially significant impacts on the vegetation of the unique semi-arid caatinga biome and on local livelihoods. Here, we use a coupled climate–vegetation model (CCM3-IBIS) to: (1) investigate the role of the Pacific and Atlantic oceans in the 2012 drought, and; (2) evaluate the response of the caatinga vegetation to the 2012 climate extreme. Our results indicate that anomalous sea surface temperatures (SSTs) in the Atlantic Ocean were the primary factor forcing the 2012 drought, with Pacific Ocean SST having a larger role in sustaining typical climatic conditions in the region. The drought strongly influenced net primary production in the caatinga, causing a reduction in annual net ecosystem exchange indicating a reduction in amount of CO 2 released to the atmosphere.
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-12-16
    Description: Peatlands in Amazonian Peru are known to store large quantities of carbon, but there is high uncertainty in the spatial extent and total carbon stocks of these ecosystems. Here, we use a multi-sensor (Landsat, ALOS PALSAR and SRTM) remote sensing approach, together with field data including 24 forest census plots and 218 peat thickness measurements, to map the distribution of peatland vegetation types and calculate the combined above- and below-ground carbon stock of peatland ecosystems in the Pastaza-Marañon foreland basin in Peru. We find that peatlands cover 35 600 ± 2133 km 2 and contain 3.14 (0.44–8.15) Pg C. Variation in peat thickness and bulk density are the most important sources of uncertainty in these values. One particular ecosystem type, peatland pole forest, is found to be the most carbon-dense ecosystem yet identified in Amazonia (1391 ± 710 Mg C ha −1 ). The novel approach of combining optical and radar remote sensing with above- and below-groun...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-12-09
    Description: A number of commercially available art protection products have been compared and assessed for their suitability as UV blocking filters in the application of “visible light” photocatalytic research. Many groups claiming visible light photocatalytic success employ filters to block out stray UV radiation in order to justify that their photocatalysts are indeed visible light photocatalysts and not UV light photocatalysts. These filters come in varying degrees of ability and price and many authors fail to correctly characterise their filters in individual papers. The use of effective filters to prevent both false positive and false negative results is important to maintain scientific rigor and create accurate understanding of the subject. The optimum UV filter would have the highest UV blocking properties (
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-05-27
    Description: Author(s): Gregory P Asner Affiliation(s): Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-12-19
    Description: We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 [http://dx.doi.org/10.1002/2013GL058684] 736–741 ) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-12-19
    Description: Despite a large body of legislation, high nutrient loads are still emitted in European inland waters. In the present study we evaluate a set of alternative scenarios aiming at reducing nitrogen and phosphorus emissions from anthropogenic activities to all European Seas. In particular, we tested the full implementation of the European Urban Waste Water Directive, which controls emissions from point source. In addition, we associated the full implementation of this Directive with a ban of phosphorus-based laundry detergents. Then we tested two human diet scenarios and their impacts on nutrient emissions. We also developed a scenario based on an optimal use of organic manure. The impacts of all our scenarios were evaluated using a statistical model of nitrogen and phosphorus fate (GREEN) linked to an agro-economic model (CAPRI). We show that the ban of phosphorus-based laundry detergents coupled with the full implementation of the Urban Waste Water Directive is the most effective ap...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-12-19
    Description: Description unavailable
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-12-19
    Description: In the Alberta oil sands region, insufficient knowledge of pre-disturbance reference conditions has undermined the ability of the Regional Aquatics Monitoring Program (RAMP) to detect pollution of the Athabasca River, because sampling began three decades after the industry started and the river naturally erodes oil-bearing strata. Here, we apply a novel approach to characterize pre-industrial reference metal concentrations in river sediment downstream of Alberta oil sands development by analyzing metal concentrations in sediments deposited in floodplain lakes of the Athabasca Delta during 1700–1916, when they were strongly influenced by Athabasca River floodwaters. We compared results to metal concentrations in surficial bottom sediments sampled by RAMP (2010–2013) at downstream sites of the Athabasca River and distributaries. When normalized to lithium content, concentrations of vanadium (a metal of concern in the oil sands region) and other priority pollutants (Be, Cd, Cr, Cu, ...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-12-19
    Description: Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO 2 ) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically available radiation influence these processes, is still poorly understood. Implementing six remotely sensed data sets spanning nine years (2003–2011), with reported field and flux tower data, we show that southern equatorial Amazon forests exhibit a distinctive seasonal signal. Seasonal timing of water availability, canopy biomass growth and net leaf flush are asynchronous in regions with short dry seasons and become more synchronous across a west-to-east longitudinal moisture gradient of increasing dry season. Forest cover is responsive to seasonal disparities in both water and solar radiation availability, temporally adjust...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-12-19
    Description: Estimates of global thunderstorm activity have been made predominately by direct measurements of lightning discharges around the globe, either by optical measurements from satellites, or using ground-based radio antennas. In this paper we propose a new methodology in which thunderstorm clusters are constructed based on the lightning strokes detected by the World Wide Lightning Location Network (WWLLN) in the very low frequency range. We find that even with low lightning detection efficiency on a global scale, the spatial and temporal distribution of global thunderstorm cells is well reproduced. This is validated by comparing the global diurnal variations of the thunderstorm cells, and the currents produced by these storms, with the well-known Carnegie Curve, which represents the mean diurnal variability of the global atmospheric electric circuit, driven by thunderstorm activity. While the Carnegie Curve agrees well with our diurnal thunderstorm cluster variations, there is little...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-12-19
    Description: Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However,...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-12-19
    Description: Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-12-09
    Description: Unprecedented wet conditions are reported in the 2014 summer (December–March) in South-western Amazon, with rainfall about 100% above normal. Discharge in the Madeira River (the main southern Amazon tributary) has been 74% higher than normal (58 000 m 3 s −1 ) at Porto Velho and 380% (25 000 m 3 s −1 ) at Rurrenabaque, at the exit of the Andes in summer, while levels of the Rio Negro at Manaus were 29.47 m in June 2014, corresponding to the fifth highest record during the 113 years record of the Rio Negro. While previous floods in Amazonia have been related to La Niña and/or warmer than normal tropical South Atlantic, the 2014 rainfall and flood anomalies are associated with warm condition in the western Pacific-Indian Ocean and with an exceptionally warm Subtropical South Atlantic. Our results suggest that the tropical and subtropical South Atlantic SST gradient is a main driver for moisture transport from the Atlantic toward south-western A...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-12-09
    Description: Correcting biases in atmospheric variables prior to impact studies or dynamical downscaling can lead to new biases as dynamical consistency between the ‘corrected’ fields is not maintained. Use of these bias corrected fields for subsequent impact studies and dynamical downscaling provides input conditions that do not appropriately represent intervariable relationships in atmospheric fields. Here we investigate the consequences of the lack of dynamical consistency in bias correction using a measure of model consistency—the potential vorticity (PV). This paper presents an assessment of the biases present in PV using two alternative correction techniques—an approach where bias correction is performed individually on each atmospheric variable, thereby ignoring the physical relationships that exists between the multiple variables that are corrected, and a second approach where bias correction is performed directly on the PV field, thereby keeping the system dynamically coherent throug...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-12-09
    Description: Very large-fires (VLFs) have widespread impacts on ecosystems, air quality, fire suppression resources, and in many regions account for a majority of total area burned. Empirical generalized linear models of the largest fires (〉5000 ha) across the contiguous United States (US) were developed at ∼60 km spatial and weekly temporal resolutions using solely atmospheric predictors. Climate−fire relationships on interannual timescales were evident, with wetter conditions than normal in the previous growing season enhancing VLFs probability in rangeland systems and with concurrent long-term drought enhancing VLFs probability in forested systems. Information at sub-seasonal timescales further refined these relationships, with short-term fire weather being a significant predictor in rangelands and fire danger indices linked to dead fuel moisture being a significant predictor in forested lands. Models demonstrated agreement in capturing the observed spatial and temporal variability incl...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-12-09
    Description: The IPCC Guidelines propose 3 Tier levels for greenhouse gas monitoring within the forest land category with a hierarchical order in terms of accuracy, data requirements and complexity. Due to missing data and/or capacities, many developing countries, potentially interested in the reducing emissions from deforestation and forest degradation scheme, have to rely on Tier 1 default values with highest uncertainties. A possible way to increase the credibility of uncertain estimates is to apply a conservative approach, for which standard statistical information is needed. However, such information is currently not available for the IPCC values. In our study we combine a recent global forest mask, an ecological zoning map and the pan-tropical AGB datasets of Saatchi and Baccini to derive mean forest AGB values per ecological zone and continent as well as their corresponding confidence intervals. Such analysis can be considered transparent as the datasets/methodologies are well document...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-12-09
    Description: In permafrost soils, ‘excess ice’, also referred to as ground ice, exists in amounts exceeding soil porosity in forms such as ice lenses and wedges. Here, we incorporate a simple representation of excess ice in the Community Land Model (CLM4.5) to investigate how excess ice affects projected permafrost thaw and associated hydrologic responses. We initialize spatially explicit excess ice obtained from the Circum-Arctic Map of Permafrost and Ground-Ice Conditions. The excess ice in the model acts to slightly reduce projected soil warming by about 0.35 °C by 2100 in a high greenhouse gas emissions scenario. The presence of excess ice slows permafrost thaw at a given location with about a 10 year delay in permafrost thaw at 3 m depth at most high excess ice locations. The soil moisture response to excess ice melt is transient and depends largely on the timing of thaw with wetter/saturated soil moisture conditions persisting slightly longer due to delayed post-thaw drainage. Based on ...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-12-09
    Description: There is increasing concern about water constraints limiting oil and gas production using hydraulic fracturing (HF) in shale plays, particularly in semiarid regions and during droughts. Here we evaluate HF vulnerability by comparing HF water demand with supply in the semiarid Texas Eagle Ford play, the largest shale oil producer globally. Current HF water demand (18 billion gallons, bgal; 68 billion liters, bL in 2013) equates to ∼16% of total water consumption in the play area. Projected HF water demand of ∼330 bgal with ∼62 000 additional wells over the next 20 years equates to ∼10% of historic groundwater depletion from regional irrigation. Estimated potential freshwater supplies include ∼1000 bgal over 20 yr from recharge and ∼10 000 bgal from aquifer storage, with land-owner lease agreements often stipulating purchase of freshwater. However, pumpage has resulted in excessive drawdown locally with estimated declines of ∼100–200 ft in ∼6% of the western play area since HF bega...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-11-29
    Description: A nitrogen (N) budget for Denmark has been developed for the years 1990 to 2010, describing the inputs and outputs at the national scale and the internal flows between relevant sectors of the economy. Satisfactorily closing the N budgets for some sectors of the economy was not possible, due to missing or contradictory information. The budgets were nevertheless considered sufficiently reliable to quantify the major flows. Agriculture was responsible for the majority of inputs, though fisheries and energy generation also made significant contributions. Agriculture was the main source of N input to the aquatic environment, whereas agriculture, energy generation and transport all contributed to emissions of reactive N gases to the atmosphere. Significant reductions in inputs of reactive N have been achieved during the 20 years, mainly by restricting the use of N for crop production and improving livestock feeding. This reduction has helped reduce nitrate leaching by about half. Measu...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-12-01
    Description: Disordered intermolecular interaction carbon nitride precursor prepared by water-assisted grinding of dicyandiamide was used for synthesis of g-C3N4. The final sample possesses much looser structure and provides a broadening optical window for effective light harvesting and charge separation efficiency, which exhibits significantly improved H2 evolution by photocatalytic water splitting. The bottom-up mechanochemistry method opens new vistas towards the potential applications of weak interactions in the photocatalysis field and may also stimulate novel ideas completely different from traditional ones for the design and optimization of photocatalysts.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-12-03
    Description: The 30-year normalized-difference vegetation index (NDVI) time series from AVHRR/MODIS satellite sensors was used in this study to assess the regional vegetation dynamic changes in the Tao River Basin, which cuts across the Eastern Tibetan Plateau (ETP) and the Southwestern Loess Plateau (SLP). First, principal component and correlation analyses were carried out to determine the key climatic variables driving ecological change in the region. Then, regression models were tested to correlate NDVI with the selected climatic variables to determine their predictive power. Finally, Sen’s slope method was used to determine how terrestrial vegetation has responded to regional climate change in the region. The results indicated an average winter season NDVI value of 0.14 in the ETP but only 0.04 in the SLP. Primarily driven by increasing temperature, vegetation growth has generally been enhanced since 1981; spring NDVI increased by 0.03 every 10 years in the ETP and 0.02 in the SLP. Furth...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-12-03
    Description: Ammonia emissions from livestock production can have negative impacts on nearby protected sites and ecosystems that are sensitive to eutrophication and acidification. Trees are effective scavengers of both gaseous and particulate pollutants from the atmosphere making tree belts potentially effective landscape features to support strategies aiming to reduce ammonia impacts. This research used the MODDAS-THETIS a coupled turbulence and deposition turbulence model, to examine the relationships between tree canopy structure and ammonia capture for three source types—animal housing, slurry lagoon, and livestock under a tree canopy. By altering the canopy length, leaf area index, leaf area density, and height of the canopy in the model the capture efficiencies varied substantially. A maximum of 27% of the emitted ammonia was captured by tree canopy for the animal housing source, for the slurry lagoon the maximum was 19%, while the livestock under trees attained a maximum of 60% recaptu...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-12-03
    Description: It is known that carbon dioxide emissions cause the Earth to warm, but no previous study has focused on examining how long it takes to reach maximum warming following a particular CO 2 emission. Using conjoined results of carbon-cycle and physical-climate model intercomparison projects (Taylor et al 2012, Joos et al 2013), we find the median time between an emission and maximum warming is 10.1 years, with a 90% probability range of 6.6–30.7 years. We evaluate uncertainties in timing and amount of warming, partitioning them into three contributing factors: carbon cycle, climate sensitivity and ocean thermal inertia. If uncertainty in any one factor is reduced to zero without reducing uncertainty in the other factors, the majority of overall uncertainty remains. Thus, narrowing uncertainty in century-scale warming depends on narrowing uncertainty in all contributing factors. Our results indicate that benefit from avoided climate damage from avoided CO 2
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-05-10
    Description: Author(s): Deniz Karman Affiliation(s): Department of Civil and Environmental Engineering, Carleton University, Ottawa, Canada
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2012-02-24
    Description: Novel photocatalysts M2YbSbO7 (M=In, Gd, Y) were synthesized by solid state reaction method for the first time. A comparative study on the structural and photocatalytic properties of M2YbSbO7 M2YbSbO7 (M=In, Gd, Y) was reported. The results showed that In2YbSbO7, Gd2YbSbO7, and Y2YbSbO7 crystallized with the pyrochlore-type structure, cubic crystal system and space group Fd3m. For the photocatalytic water splitting reaction, H2 or O2 evolution was observed from pure water with In2YbSbO7, Gd2YbSbO7, or Y2YbSbO7 as the photocatalyst under visible light irradiation. (wavelength>420 nm). Moreover, under visible light irradiation (λ>420 nm), H2 and O2 were also evolved by using In2YbSbO7, Gd2YbSbO7, or Y2YbSbO7 as catalyst from CH3OH/H2O and AgNO3/H2O solutions respectively. The In2YbSbO7 photocatalyst showed the highest activity compared with Gd2YbSbO7 or Y2YbSbO7. At the same time, The Y2YbSbO7 photocatalyst showed higher activity compared with Gd2YbSbO7. The photocatalytic activities were further improved under visible light irradiation with In2YbSbO7, Gd2YbSbO7, or Y2YbSbO7 being loaded by Pt, NiO, or RuO2. The effect of Pt was better than that of NiO or RuO2 for improving the photocatalytic activity of In2YbSbO7, Gd2YbSbO7, or Y2YbSbO7.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2012-03-13
    Description: ZnO nanostructures are synthesized by low-temperature methods, and they possess polycrystalline hexagonal wurtzite structure with preferential c-axial growth. Morphological study by SEM shows the presence of ~30 nm sized spherical-shaped ZnO nanoparticle, the branched flower-like ZnO composed of many nanorods (length: 1.2 to 4.2 μm and diameter: 0.3 to 0.4 μm), and ~50 nm diameter of individual ZnO nanorods. Reduction in photoemission intensity of nanorods infers the decrease in electron-hole recombination rate, which offers better photovoltaic performance. The dye-sensitized solar cell (DSSC) based on ZnO nanorods sensitized with Eosin yellowish dye exhibits a maximum optimal energy conversion efficiency of 0.163% compared to that of nanoparticles and nanoflowers, due to better dye loading and direct conduction pathway for electron transport.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2012-12-25
    Description: Novel photoinitiator systems working under visible radiation were studied. The photoredox pair constructed with dye derivatives of 12H-quinoxalino-[2,3-b][1,4]-benzothiazine (1–3) and 2,4,6-tris(trichloromethyl)-1,3,5-triazine (Tz) were found to be effective initiators for free radical polymerization of trimethylolpropane triacrylate (TMPTA) using VIS light. Photosensitization occurred through electron transfer, which was confirmed by the observation of a radical cation of the studied dyes. The 1•+ was also characterized in cryogenic matrices (mixture of CH2Cl2 and ionic liquid: 1-butyl-3-methylimidazolium hexafluorophosphate ( −)) and its reactivity was investigated by means of pulse radiolysis in solution at room temperature. In a halogenated solvent and in a mixture of CH2Cl2 and  −, the radical cation 1•+ underwent deprotonation to form a neutral radical 1•, which was stable in the second time scale. During photolysis of the 1/Tz photoredox pair in 1-methyl-2-pyrrolidone and monomer, the formation of a neutral radical 1• was not observed.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-01-02
    Description: Cu2ZnSnS4 (CZTS) has attracted much attention recently as an absorber layer material in a heterojunction solar cell. Using the first-principles method, we calculate the band offsets for the CdS/CZTS heterojunction. The valence band offset is 1.2 eV for the (001) CdS/CZTS heterointerface and 1.0 eV for the (010) heterointerface, when CZTS is considered to crystallize in the kesterite structure. When CZTS is considered to crystallize in the stannite structure,  eV for the (001) heterointerface and  eV for the (010) heterointerface. In any case, the conduction band minimum of CZTS is higher than that of CdS, and the conduction band offset is in a range between 0.1 and 0.4 eV.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-02-21
    Description: Treatment of dye effluents resulting from the industrial scale dyeing of cotton, polyacrylic fibres, leather, and flax fabrics by photocatalytic methods was investigated. Photocatalytic processes were initiated by UV-a light ( 366 nm) and were conducted in the presence of TiO2, TiO2/FeCl3, or FeCl3 as photocatalysts. It was found that the photocatalytic process carried out with TiO2 and TiO2/FeCl3 was the most effective method for decolorization of textile dyeing effluents and degradation of dyes, except for effluents containing very high concentrations of stable azo dyes. During the photocatalytic degradation of anionic dyes, a mixture of TiO2/FeCl3 was more effective, while in the case of cationic dyes, more suitable seems to be TiO2 alone.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-02-21
    Description: This work projects photoluminescence (PL) as an alternative technique to estimate the order of resistivity of zinc oxide (ZnO) thin films. ZnO thin films, deposited using chemical spray pyrolysis (CSP) by varying the deposition parameters like solvent, spray rate, pH of precursor, and so forth, have been used for this study. Variation in the deposition conditions has tremendous impact on the luminescence properties as well as resistivity. Two emissions could be recorded for all samples—the near band edge emission (NBE) at 380 nm and the deep level emission (DLE) at ~500 nm which are competing in nature. It is observed that the ratio of intensities of DLE to NBE (/) can be reduced by controlling oxygen incorporation in the sample. - measurements indicate that restricting oxygen incorporation reduces resistivity considerably. Variation of / and resistivity for samples prepared under different deposition conditions is similar in nature. / was always less than resistivity by an order for all samples. Thus from PL measurements alone, the order of resistivity of the samples can be estimated.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-02-21
    Description: Highly efficient phosphorescent organic light-emitting devices (PhOLEDs) had been fabricated by using a novel iridium complex, bis[2-(,-di-tert-butylbiphenyl-4-yl)benzothiazolato-N,]iridium(III) (acetylacetonate) [(tbpbt)2Ir(acac)], as the emitter. With a wide doping ratio ranging from 15 wt% to 25 wt%, the PhOLEDs maintained a comparable high performance, indicating concentration-insensitive property of the (tbpbt)2Ir(acac). On the basis of the unique characteristic of concentration insensitivity, the application of this phosphor was explored by fabricating white organic light-emitting devices (WOLEDs) with altered doping ratio, indicating that trap effect of (tbpbt)2Ir(acac) could effectively tailor WOLEDs spectra. Typically, a high-power efficiency, current efficiency, and external quantum efficiency of 30.0 lm/W, 38.8 cd/A, 18.1%, were achieved by 20 wt% doped WOLEDs.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-02-21
    Description: Self-organized TiO2 nanotubes (TNTs) with average inner diameter of 109 nm, wall thickness of 15 nm, and tube length of 7–10 μm were loaded with nickel oxide (NiO) nanoparticles via incipient wet impregnation method. The molar concentration of Ni(NO3)2·6H2O aqueous solution varied in a range of 0.5 M–2.5 M. The samples were characterized for crystalline phase, morphology, topography, chemical composition, Raman shift, and UV-Vis diffusion reflection properties. The finding shows that the loading of NiO did not influence the morphology, structure, and crystalline phase of TNTs but it exhibited significant effect on crystallite size and optical absorption properties. Further, the solar-energy-driven the photocatalytic activity of NiO/TNTs and pure TNTs was evaluated by degrading methylene blue (MB). The results confirm that photocatalytic efficiency of NiO/TNTs is higher than that of TNTs.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-02-21
    Description: The aim of the present study is to enhance photocatalytic performance of ZnO semiconductor by comodification with doping of nonmetal ions and coupling with another semiconductor. Therefore, we synthesized the N-doped ZnO/ZnS photocatalysts via a simple heat-treatment approach using L-cysteine as N and S source in this work. Anthraquinone dye (reactive brilliant blue KNR) is employed as the model contaminants to evaluate the photocatalytic activity of as-synthesized samples under sunlight illumination. The N-doped ZnO/ZnS synthesized by this method shows better photocatalytic activity as compared to that of pure ZnO. The enhanced photocatalytic activity of the N-doped ZnO/ZnS composites may be related to the existence of N doping, ZnS/ZnO heterostructure, and covered abundant carbon species on the photocatalyst surface, which causing high absorption efficiency of light, efficient separation of electron-hole pairs, and quick surface reaction in doped ZnO.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-02-21
    Description: We have systematically studied the photocatalytic mechanisms of nitrogen doping in anatase TiO2 using first-principles calculations based on density functional theory, employing Hubbard U (8.47 eV) on-site correction. The impurity formation energy, charge density, and electronic structure properties of TiO2 supercells containing substitutional nitrogen, interstitial nitrogen, or oxygen vacancies were evaluated to clarify the mechanisms under visible light. According to the formation energy, a substitutional N atom is better formed than an interstitial N atom, and the formation of an oxygen vacancy in N-doped TiO2 is easier than that in pure TiO2. The calculated results have shown that a significant band gap narrowing may only occur in heavy nitrogen doping. With light nitrogen doping, the photocatalysis under visible light relies on N-isolated impurity states. Oxygen vacancies existence in N-doped TiO2 can improve the photocatalysis in visible light because of a band gap narrowing and n-type donor states. These findings provide a reasonable explanation of the mechanisms of visible light photocatalysis in N-doped TiO2.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-02-22
    Description: Cu2O is considered to be promising as an absorber layer material of solar cells, but its band gap (about 2.1 eV) is larger than the optimum one (about 1.5 eV). CuO has a smaller band gap of about 1.35 eV. Therefore, we attempted to oxidize Cu2O using H2O2 to increase oxygen ratio and decrease band gap. Cu2O thin films were deposited on indium-tin-oxide-coated glass from an aqueous solution containing CuSO4, lactic acid, and KOH by the galvanostatic electrochemical deposition at 40°C with current density of −1 mA/cm2. Then, the as-prepared copper oxide thin film was dipped in H2O2 (30%) at fixed temperature to oxidize for some time. By the H2O2 treatment at room temperature, the oxygen content was increased, and the band gap was decreased.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-02-25
    Description: This study applied the microwave/sol-gel method to prepare nitrogen-doped TiO2 (N-TiO2). The N-TiO2 was immobilized in glass balls to form N-TiO2/glass beads and applied to degrade Bisphenol A (BPA) under visible-light and sunlight irradiation. The characteristics of the prepared photocatalysts were analyzed by X-ray diffraction (XRD), UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Experimental results demonstrate that the percentage of anatase increased as the amount of N in N-TiO2 increased. Compared with the undoped TiO2 (420 nm), spectra show that the absorption edge shifted to a longer wavelength (445 nm) after N doping. The XPS characterization confirms the substitution of crystal lattice O to N species in N-TiO2, forming Ti–O–N and N–Ti–O. With an increased N/Ti ratio, photodegradation efficiency increased and then decreased; moreover, the optimal amount for N doping was determined as an N/Ti mole ratio of 0.08 (0.1 NT). The efficiency of 0.1 NT in doing BPA photodegradation was greater than that of Degussa P25. After reaction for 61 min, the mineralization percentage of 0.1 NT under visible-light irradiation reached 41%. Photocatalyst efficiency decreased as the number of repeats increased in the visible-light/N-TiO2 system; however, these systems were stable during reaction.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-03-07
    Description: We introduced a simple fabrication method of porous hematite films with tunable thickness in an aqueous solution containing FeCl3 as the single precursor. We demonstrated that the optimized thickness was necessary for high performance photoelectrochemical water splitting, by balancing photon absorption and charge carrier transport. The highest photocurrent of ca. 0.15 mA cm−2 at 1.0 V versus Ag/AgCl was achieved on the 300 nm thick porous hematite film as photoanode, with IPCE at 370 nm and 0.65 V versus Ag/AgCl to be 9.0%. This simple method allows the facile fabrication of hematite films with porous nanostructure for enabling high photon harvesting efficiency and maximized interfacial charge transfer. These porous hematite films fabricated by this simple solution-based method could be easily modified by metal doping for further enhanced photoelectrochemical activity for water splitting.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-03-07
    Description: This study employed a cerebellar model articulation controller (CMAC) neural network to conduct fault diagnoses on photovoltaic power generation systems. We composed a module array using 9 series and 2 parallel connections of SHARP NT-R5E3E 175 W photovoltaic modules. In addition, we used data that were outputted under various fault conditions as the training samples for the CMAC and used this model to conduct the module array fault diagnosis after completing the training. The results of the training process and simulations indicate that the method proposed in this study requires fewer number of training times compared to other methods. In addition to significantly increasing the accuracy rate of the fault diagnosis, this model features a short training duration because the training process only tunes the weights of the exited memory addresses. Therefore, the fault diagnosis is rapid, and the detection tolerance of the diagnosis system is enhanced.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-03-07
    Description: Cu(InGa)Se2 (CIGS) thin film absorbers are prepared using sputtering and selenization processes. The CuGa/In precursors are selenized during rapid thermal annealing (RTA), by the deposition of a Se layer on them. This work investigates the effect of the Cu content in precursors on the structural and electrical properties of the absorber. Using X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, and Hall effect measurement, it is found that the CIGS thin films produced exhibit facetted grains and a single chalcopyrite phase with a preferred orientation along the (1 1 2) plane. A Cu-poor precursor with a Cu/() ratio of 0.75 demonstrates a higher resistance, due to an increase in the grain boundary scattering and a reduced carrier lifetime. A Cu-rich precursor with a Cu/() ratio of 1.15 exhibits an inappropriate second phase () in the absorber. However, the precursor with a Cu/() ratio of 0.95 exhibits larger grains and lower resistance, which is suitable for its application to solar cells. The deposition of this precursor on Mo-coated soda lime glass substrate and further RTA causes the formation of a MoSe2 layer at the interface of the Mo and CIGS.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-03-07
    Description: Antimicrobial paints were based on the aqueous acrylic dispersion and various nanoparticles of zinc oxide and titanium dioxide. Antimicrobial ability and photoactivity were assumed in these paints. It was possible to observe the photoactivity thanks to change of organic dyes due to oxidative-reductive reaction. The best photocatalytic effect showed the coating containing the mixture of the first type of TiO2 and nano-ZnO despite the fact that the first type of TiO2 was not better in the photocatalytic test than the other types of TiO2. The agar dilution method was used to test antimicrobial ability. The Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were chosen as test bacteria and Penicillium chrysogenum and Aspergillus niger as test molds. The antimicrobial effect of coatings with the mixture of the first type of TiO2 and nano-ZnO was the best of all the tested samples.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-03-07
    Description: Effective control of oxygen impurity in multicrystalline silicon is required for the production of a high-quality crystal. The basic principle and some techniques for reducing oxygen impurity in multicrystalline silicon during the unidirectional solidification process are described in this paper. The oxygen impurity in multicrystalline silicon mainly originates from the silica crucible. To effectively reduce the oxygen impurity, it is essential to reduce the oxygen generation and enhance oxygen evaporation. For reduction of oxygen generation, it is necessary to prevent or weaken any chemical reaction with the crucible, and for the enhancement of oxygen evaporation, it is necessary to control convection direction of the melt and strengthen gas flow above the melt. Global numerical simulation, which includes heat transfer in global furnace, argon gas convection inside furnace, and impurity transport in both melt and gas regions, has been implemented to validate the above methods.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-03-07
    Description: Today, after more than 70 years of continued progress on silicon technology, about 85% of cumulative installed photovolatic (PV) modules are based on crystalline silicon (c-Si). PV devices based on silicon are the most common solar cells currently being produced, and it is mainly due to silicon technology that the PV has grown by 40% per year over the last decade. An additional step in the silicon solar cell development is ongoing, and it is related to a further efficiency improvement through defect control, device optimization, surface modification, and nanotechnology approaches. This paper attempts to briefly review the most important advances and current technologies used to produce crystalline silicon solar devices and in the meantime the most challenging and promising strategies acting to increase the efficiency to cost/ratio of silicon solar cells. Eventually, the impact and the potentiality of using a nanotechnology approach in a silicon-based solar cell are also described.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-03-07
    Description: This experiment is to study an absorption refrigerator driven by solar cells. Hand-held or carried in vehicle can be powered by solar energy in places without power. In the evenings or rainy days, it is powered by storage battery, and it can be directly powered by alternating current (AC) power supply if available, and the storage battery can be charged full as a backup supply. The proposed system was tested by the alternation of solar irradiance 550 to 700 W/m2 as solar energy and 500ml ambient temperature water as cooling load. After 160 minutes, the proposal refrigerator can maintain the temperature at 5–8°C, and the coefficient of performance (COP) of NH3-H2O absorption refrigeration system is about 0.25. Therefore, this system can be expected to be used in remote areas for refrigeration of food and beverages in outdoor activities in remote and desert areas or long-distance road transportation of food or low temperature refrigeration of vaccine to avoid the deterioration of the food or the vaccines.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-03-07
    Description: CuInSe2 (CIS) thin films are successfully prepared by electron beam evaporation. Pure Cu, In, and Se powders were mixed and ground in a grinder and made into a pellet. The pallets were deposited via electron beam evaporation on FTO substrates and were varied by varying the annealing temperatures, at room temperature, 250°C, 300°C, and 350°C. Samples were analysed by X-ray diffractometry (XRD) for crystallinity and field-emission scanning electron microscopy (FESEM) for grain size and thickness. I-V measurements were used to measure the efficiency of the CuInSe2/ZnS solar cells. XRD results show that the crystallinity of the films improved as the temperature was increased. The temperature dependence of crystallinity indicates polycrystalline behaviour in the CuInSe2 films with (1 1 1), (2 2 0)/(2 0 4), and (3 1 2)/(1 1 6) planes at 27°, 45°, and 53°, respectively. FESEM images show the homogeneity of the CuInSe2 formed. I-V measurements indicated that higher annealing temperatures increase the efficiency of CuInSe2 solar cells from approximately 0.99% for the as-deposited films to 1.12% for the annealed films. Hence, we can conclude that the overall cell performance is strongly dependent on the annealing temperature.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-03-07
    Description: Aluminum oxide films were deposited on crystalline silicon substrates by reactive RF magnetron sputtering. The influences of the deposition parameters on the surface passivation, surface damage, optical properties, and composition of the films have been investigated. It is found that proper sputtering power and uniform magnetic field reduced the surface damage from the high-energy ion bombardment to the silicon wafers during the process and consequently decreased the interface trap density, resulting in the good surface passivation; relatively high refractive index of aluminum oxide film is benefic to improve the surface passivation. The negative-charged aluminum oxide film was then successfully prepared. The surface passivation performance was further improved after postannealing by formation of an SiOx interfacial layer. It is demonstrated that the reactive sputtering is an effective technique of fabricating aluminum oxide surface passivation film for low-cost high-efficiency crystalline silicon solar cells.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-03-07
    Description: The top five solar cell supply countries in the world in sequential order are China, Taiwan, the United States of America, Japan, and Germany. The capacity of Taiwanese solar cell production is ranked top two in the globe. The competitive advantage of the Taiwanese electronics firms has facilitated the rapid developments to its solar photovoltaic industry. The Taiwanese solar photovoltaic industry possesses a large size and a complete value chain of upstream, midstream, and downstream sectors. In this study, I analyzed the trends and developments of the solar photovoltaic industry in Taiwan and in the globe. And I also investigated the positioning and competitive advantage of Taiwanese firms in the value chain of the global solar photovoltaic industry. I found that Taiwanese firms continue to have an important and indispensable role in the global solar photovoltaic industry by either differentiation or cost advantage.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-03-07
    Description: In this study we propose a suitable method for the solar-activated controlled release of volatile compounds from polymeric microcapsules bonded with photocatalytic nanoparticles. These reservoirs can find applications, for example, in the controlled release of insecticides, repellents, or fragrances, amongst other substances. The surfaces of the microcapsules have been functionalized with TiO2 nanoparticles. Upon ultraviolet irradiation, redox mechanisms are initiated on the semiconductor surface resulting in the dissociation of the polymer chains of the capsule wall and, finally, volatilization of the encapsulated compounds. The quantification of the output release has been performed by gas chromatography analysis coupled with mass spectroscopy.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-03-07
    Description: To investigate the effect of PdS as a cocatalyst for photocatalytic hydrogen evolution, nanostructured PdS/CdS were prepared by an in situ coprecipitation and hydrothermal method, respectively. The as-prepared photocatalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible absorption spectra, and photoluminescence spectra (PL). With PdS highly dispersed in the CdS nanostructures, the photoactivity was evaluated by hydrogen evolution from aqueous solution containing Na2S/Na2SO3 as sacrificial reagents under visible light irradiation. When the concentration of PdS was 1% by weight, PdS/CdS, prepared by the in situ coprecipitation, showed the highest photocatalytic activity, while that prepared by hydrothermal method showed the most stability for hydrogen evolution. The effect of highly dispersed PdS on the photoactivity was discussed.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-03-07
    Description: Solar aided coal-fired power plants utilize various types of solar thermal energy for coupling coal-fired power plants by using the characteristics of various thermal needs of the plants. In this way, the costly thermal storage system and power generating system will be unnecessary while the intermittent and unsteady way of power generation will be avoided. Moreover, the large-scale utilization of solar thermal power and the energy-saving aim of power plants will be realized. The contribution evaluating system of solar thermal power needs to be explored. This paper deals with the evaluation method of solar contribution based on the second law of thermodynamics and the principle of thermoeconomics with a case of 600 MW solar aided coal-fired power plant. In this study, the feasibility of the method has been carried out. The contribution of this paper is not only to determine the proportion of solar energy in overall electric power, but also to assign the individual cost components involving solar energy. Therefore, this study will supply the theoretical reference for the future research of evaluation methods and new energy resource subsidy.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-03-07
    Description: The progressive growing of single-phase photovoltaic (PV) systems makes the Distribution System Operators (DSOs) update or revise the existing grid codes in order to guarantee the availability, quality, and reliability of the electrical system. It is expected that the future PV systems connected to the low-voltage grid will be more active with functionalities of low-voltage ride-through (LVRT) and the grid support capability, which is not the case today. In this paper, the operation principle is demonstrated for a single-phase grid-connected PV system in a low-voltage ride-through operation in order to map future challenges. The system is verified by simulations and experiments. Test results show that the proposed power control method is effective and the single-phase PV inverters connected to low-voltage networks are ready to provide grid support and ride-through voltage fault capability with a satisfactory performance based on the grid requirements for three-phase renewable energy systems.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-03-07
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-03-07
    Description: In this work we investigate the Ag nanoparticle doping of TiOx used as an intermediate layer between subcells of a tandem organic photovoltaic. We use a model polymer cell structure of P3HT:TiOx:PEDOT:P3HT to observe charge-trapping effects as a function of nanoparticle content in the TiOx, as determined by the shape of the dark and illuminated current voltage curves of the devices. There is a direct correlation between the amount of Ag nanoparticles in the TiOx, and interfacial charge buildup, and charge trapping being completely mitigated at around 0.2% mol. This suggests that such doping schemes might provide a simple approach to the creation and use of TiOx layers for tandem cells.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-03-07
    Description: The requirements of providing electric energy through the wind-forced generator to the heat pump for water cooling and hot water heating grow significantly by now. This study proposes a new technique to directly adopt the wind force to drive heat pump systems, which can effectively reduce the energy conversion losses during the processes of wind force energy converting to electric energy and electric energy converting to kinetic energy. The operation of heat pump system transfers between chiller and heat that are controlled by a four-way valve. The theoretical efficiency of the traditional method, whose heat pump is directly forced by wind, is 42.19%. The experimental results indicated average value for cool water producing efficiency of 54.38% in the outdoor temperature of 35°C and the indoor temperature of 25°C and the hot water producing efficiency of 52.25% in the outdoor temperature and the indoor temperature both of 10°C. We proposed a method which can improve the efficiency over 10% in both cooling and heating.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2012-10-12
    Description: One inherent advantage of thin-film technology is the possibility of using monolithic integration for series interconnection of individual cells within large-area modules. Polycrystalline silicon thin-film solar cells do not rely on transparent conducting oxide layers as the high sheet conductivity of the emitter and BSF layers enables the lateral flow of current from the film to the metal contacts. This paper presents a new method for the fabrication of e-beam evaporated polycrystalline thin-film photovoltaic minimodules on glass. The method involves electrically isolating minicells, by laser scribing, and then forming an isolation layer on each laser scribe. The main advantage of this metallisation is to have a single aluminium evaporation step for the formation of finger and busbar features, as well as for series interconnection.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2012-10-25
    Description: Light emitting diodes (LEDs) have many positive features, such as long life, low power consumption, and high luminous efficacy. Consequently, they are very attractive for use in many applications. Also, the use of LEDs ensures energy savings. Power LEDs have increasingly been used for general lighting via multichip module technology. The output of power LEDs should be controlled to obtain life and illuminance values in catalog. In this study, the effects of different dimming methods are investigated for single-and multichip LEDs. To achieve this aim, pulse width modulation (PWM) and current variation (CV) dimming methods are applied to single and multichip power LEDs during ten stages of dimming. A current-regulated DC source is used for current variation (CV) dimming, and a driver designed by the researcher is used for pulse width modulation (PWM) dimming. Moreover, all of the applications are made for active and passive cooling. Finally, the results are compared.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2012-04-09
    Description: N-type microcrystalline silicon oxide thin films (n-μc-SiOx:H) have been deposited by VHF-PECVD (40 MHz) with reactant gas mixtures of CO2/SiH4 and H2. N-μc-SiOx thin films exhibiting low refractive index value (n600 nm~2), and medium/high conductivity (≧10-9 S/cm) are suitable to be used as an “n-type reflector” in micromorph tandem solar cells. Transmission electron microscopy (TEM) results show that microstructures of n-μc-SiOx:H thin films contain nanocrystalline Si particles, which are randomly embedded in the a-SiOx matrix. This specific microstructure provides n-μc-SiOx:H thin films excellent optoelectronic properties; therefore, n-μc-SiOx:H thin films are appropriate candidates for “n-type reflector” structures in Si tandem solar cells.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2012-04-09
    Description: With current technology, UV filters are essential to ensure long-term dye-sensitized solar cell (DSC) stability. Blocking photons, however, will have an obvious effect on device performance and upon its incident photon-to-current conversion efficiency (IPCE). Filters have been applied to DSC devices with a range of cut-off wavelengths in order to assess how different levels of filtering affect the performance and IPCE of devices made with three different dyes, namely N719, Z907, and N749. It is shown that dyes that extend their IPCE further into the NIR region suffer lesser relative efficiency losses due to UV filtering than dyes with narrower action spectra. Furthermore, the results are encouraging to those working towards the industrialisation of DSC technology. From the results presented it can be estimated that filtering at a level intended to prevent direct band gap excitation of the TiO2 semiconductor should cause a relative drop in cell efficiency of no more than 10% in forward illuminated devices and no more than 2% in reverse illuminated devices.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-02-08
    Description: Self-organized TiO2 nanotubes (TNTs) with average inner diameter of 109 nm, wall thickness of 15 nm, and tube length of 7–10 μm were loaded with nickel oxide (NiO) nanoparticles via incipient wet impregnation method. The molar concentration of Ni(NO3)2·6H2O aqueous solution varied in a range of 0.5 M–2.5 M. The samples were characterized for crystalline phase, morphology, topography, chemical composition, Raman shift, and UV-Vis diffusion reflection properties. The finding shows that the loading of NiO did not influence the morphology, structure, and crystalline phase of TNTs but it exhibited significant effect on crystallite size and optical absorption properties. Further, the solar-energy-driven the photocatalytic activity of NiO/TNTs and pure TNTs was evaluated by degrading methylene blue (MB). The results confirm that photocatalytic efficiency of NiO/TNTs is higher than that of TNTs.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-02-18
    Description: We have systematically studied the photocatalytic mechanisms of nitrogen doping in anatase TiO2 using first-principles calculations based on density functional theory, employing Hubbard U (8.47 eV) on-site correction. The impurity formation energy, charge density, and electronic structure properties of TiO2 supercells containing substitutional nitrogen, interstitial nitrogen, or oxygen vacancies were evaluated to clarify the mechanisms under visible light. According to the formation energy, a substitutional N atom is better formed than an interstitial N atom, and the formation of an oxygen vacancy in N-doped TiO2 is easier than that in pure TiO2. The calculated results have shown that a significant band gap narrowing may only occur in heavy nitrogen doping. With light nitrogen doping, the photocatalysis under visible light relies on N-isolated impurity states. Oxygen vacancies existence in N-doped TiO2 can improve the photocatalysis in visible light because of a band gap narrowing and n-type donor states. These findings provide a reasonable explanation of the mechanisms of visible light photocatalysis in N-doped TiO2.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-02-20
    Description: Highly efficient phosphorescent organic light-emitting devices (PhOLEDs) had been fabricated by using a novel iridium complex, bis[2-(,-di-tert-butylbiphenyl-4-yl)benzothiazolato-N,]iridium(III) (acetylacetonate) [(tbpbt)2Ir(acac)], as the emitter. With a wide doping ratio ranging from 15 wt% to 25 wt%, the PhOLEDs maintained a comparable high performance, indicating concentration-insensitive property of the (tbpbt)2Ir(acac). On the basis of the unique characteristic of concentration insensitivity, the application of this phosphor was explored by fabricating white organic light-emitting devices (WOLEDs) with altered doping ratio, indicating that trap effect of (tbpbt)2Ir(acac) could effectively tailor WOLEDs spectra. Typically, a high-power efficiency, current efficiency, and external quantum efficiency of 30.0 lm/W, 38.8 cd/A, 18.1%, were achieved by 20 wt% doped WOLEDs.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-02-20
    Description: This work projects photoluminescence (PL) as an alternative technique to estimate the order of resistivity of zinc oxide (ZnO) thin films. ZnO thin films, deposited using chemical spray pyrolysis (CSP) by varying the deposition parameters like solvent, spray rate, pH of precursor, and so forth, have been used for this study. Variation in the deposition conditions has tremendous impact on the luminescence properties as well as resistivity. Two emissions could be recorded for all samples—the near band edge emission (NBE) at 380 nm and the deep level emission (DLE) at ~500 nm which are competing in nature. It is observed that the ratio of intensities of DLE to NBE (/) can be reduced by controlling oxygen incorporation in the sample. - measurements indicate that restricting oxygen incorporation reduces resistivity considerably. Variation of / and resistivity for samples prepared under different deposition conditions is similar in nature. / was always less than resistivity by an order for all samples. Thus from PL measurements alone, the order of resistivity of the samples can be estimated.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-02-04
    Description: The aim of the present study is to enhance photocatalytic performance of ZnO semiconductor by comodification with doping of nonmetal ions and coupling with another semiconductor. Therefore, we synthesized the N-doped ZnO/ZnS photocatalysts via a simple heat-treatment approach using L-cysteine as N and S source in this work. Anthraquinone dye (reactive brilliant blue KNR) is employed as the model contaminants to evaluate the photocatalytic activity of as-synthesized samples under sunlight illumination. The N-doped ZnO/ZnS synthesized by this method shows better photocatalytic activity as compared to that of pure ZnO. The enhanced photocatalytic activity of the N-doped ZnO/ZnS composites may be related to the existence of N doping, ZnS/ZnO heterostructure, and covered abundant carbon species on the photocatalyst surface, which causing high absorption efficiency of light, efficient separation of electron-hole pairs, and quick surface reaction in doped ZnO.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2012-08-28
    Description: A review of our work on two- and-three component photoinitiator systems is presented. The emphasis is in on visible light polymerization in aqueous media. The systems discussed comprise a synthetic dye as sensitizer and an onium salt as coinitiator, or a dye-amine-onium salt with the amine as coinitiator and the onium salt as an enhancer of the polymerization efficiency. The effect of the composition of the system on the photopolymerization kinetics was analyzed. To this end, the photophysics and photochemistry of the dye under polymerization conditions was explored by means of stationary and time-resolved spectroscopic methods. Different dyes and onium salts were investigated. The action mechanism of the different photoinitiators systems is discussed.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2012-08-29
    Description: The aim of this paper is to investigate the properties and photocatalytic activity of nanostructured TiO2 layers. The glancing angle deposition method with DC sputtering at low temperature was applied for deposition of the layers with various columnar structures. The thin-film structure and surface morphology were analyzed by XRD, SEM, and AFM analyses. The photocatalytic activity of the films was determined by the rate constant of the decomposition of the Acid Orange 7. In dependence on the glancing angle deposition parameters, three types of columnar structures were obtained. The films feature anatase/rutile and/or amorphous structures depending on the film architecture and deposition method. All the films give the evidence of the photocatalytic activity, even those without proved anatase or rutile structure presence. The impact of columnar boundary in perspective of the photocatalytic activity of nanostructured TiO2 layers was discussed as the possible factor supporting the photocatalytic activity.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-08-23
    Description: The passivation process is of significant importance to produce high-efficiency black silicon solar cell due to its unique microstructure. The black silicon has been produced by plasma immersion ion implantation (PIII) process. And the Silicon nitride films were deposited by inline plasma-enhanced chemical vapor deposition (PECVD) to be used as the passivation layer for black silicon solar cell. The microstructure and physical properties of silicon nitride films were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), spectroscopic ellipsometry, and the microwave photoconductance decay (μ-PCD) method. With optimizing the PECVD parameters, the conversion efficiency of black silicon solar cell can reach as high as 16.25%.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...