ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (21,394)
  • American Institute of Physics (AIP)  (21,394)
  • Elsevier
  • Journal of Applied Physics  (21,394)
  • 805
  • 1
    Publication Date: 2015-08-11
    Description: Vertically aligned nanocomposite (VAN) (La 0.7 Sr 0.3 MnO 3 ) 1−x :(CeO 2 ) x (LSMO:CeO 2 ) thin films have been grown on SrTiO 3 (001) substrates by pulsed laser deposition. Tunable magnetoresistance properties as well as microstructures are demonstrated in these VAN films by modulating the film composition (x = 0, 0.3, 0.4, 0.45, 0.5, and 0.55). The sample of x = 0.3 shows a large low-field magnetoresistance (LFMR) in a high temperature range, i.e., over 10% at the range of 280 K to 320 K under 1 T and with a peak value of ∼13.5% at 310 K. In addition, a vast enhancement of LFMR in a low temperature range of 20–150 K with peak of ≈34.3% at 45 K for 1 T could be achieved with x = 0.5. The enhanced LFMR properties can be attributed to both the phase boundary induced spin fluctuation and the magnetic tunneling effect through vertical ferromagnetic/insulator/ferromagnetic structures. The observed enhanced LFMR performance, especially at high temperatures, as well as its simple growth method, offers a great potential for LSMO:CeO 2 nanocomposites to be used in spintronic devices in a large temperature range.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-11
    Description: We present a new generalized scaling relationship accounting for relaxation processes of both the real and the imaginary parts of the complex dielectric permittivity data in a wide temperature range of dielectric media. It has been successfully used for experimental data related to various dynamics in liquid crystalline phases of: 4-bromobenzylidene-4′-pentyloxyanilin, 4-bromobenzylidene-4′-hexyloxyaniline, 4′-butyl-4-(2-methylbutoxy) azoxybenzene, and 4-ethyl-4′-octylazoxybenzene. Moreover, the scaling was checked for the theoretical data of Dissado-Hill cluster model. A comparison with earlier scaling, proposed by Nagel and Dendzik, is given.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-11
    Description: Focusing of surface phonon-polaritons propagating toward the tip of a cone and the edge of a wedge is theoretically analyzed and compared. Based on Maxwell's equations, explicit expressions for the dispersion relations in each structure are determined and solved numerically for a propagation parameter driving the surface phonon-polariton energy density. For conical and wedge structures of SiO 2 , it is found that: (1) the cone (wedge) supports the polariton focusing only for aperture angles in the interval 18 ° – 68 ° ( 21 ° – 51 ° ), and within the range of excitation frequencies from 32.1 THz (31.5 THz) to 33.9 THz (33.9 THz). In this frequency interval, the real part of the SiO 2 permittivity is negative and the presence of polaritons is significant. (2) The polariton focusing efficiency of both the cone and wedge reaches its maximum values at the critical frequency f cr = 33.6  THz and at different aperture angles of about α opt = 45 ° and α opt = 30 ° , respectively. (3) When the polaritons travel from 100 nm to 5 nm toward the tip of the cone with this optimum angle, their Poynting vector increases by a factor of 12, which is about four times larger than the corresponding one provided by the wedge and indicates that the cone is more efficient than the wedge for the focusing of surface phonon-polaritons.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-11
    Description: Surface plasmons can squeeze light into a deep-subwavelength space and generate abundant hot electrons in the nearby metallic regions, enabling a new paradigm of photoconversion by the way of hot electron collection. Unlike the visible spectral range concerned in previous literatures, we focus on the communication band and design the infrared hot-electron photodetectors with plasmonic metal-insulator-metal configuration by using full-wave finite-element method. Titanium dioxide-silver Schottky interface is employed to boost the low-energy infrared photodetection. The photodetection sensitivity is strongly improved by enhancing the plasmonic excitation from a rationally engineered metallic grating, which enables a strong unidirectional photocurrent. With a five-step electrical simulation, the optimized device exhibits an unbiased responsivity of ∼0.1 mA/W and an ultra-narrow response band (FWHM = 4.66 meV), which promises to be a candidate as the compact photodetector operating in communication band.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-11
    Description: A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N 2 atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H 2 (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0  μ W/(cm K 2 ) that of the thin films treated with EB irradiation alone.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-11
    Description: In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al 2 O 3 were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al 2 O 3 pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-11
    Description: We report a novel method of determining the average Néel relaxation time and its temperature dependence by calculating derivatives of the measured time dependence of temperature for a frozen ferrofluid exposed to an alternating magnetic field. The ferrofluid, composed of dextran-coated Fe 3 O 4 nanoparticles (diameter 13.7 nm ± 4.7 nm), was synthesized via wet chemical precipitation and characterized by x-ray diffraction and transmission electron microscopy. An alternating magnetic field of constant amplitude ( H 0 = 20 kA/m) driven at frequencies of 171 kHz, 232 kHz, and 343 kHz was used to determine the temperature dependent magnetic energy absorption rate in the temperature range from 160 K to 210 K. We found that the specific absorption rate of the ferrofluid decreased monotonically with temperature over this range at the given frequencies. From these measured data, we determined the temperature dependence of the Néel relaxation time and estimate a room-temperature magnetocrystalline anisotropy constant of 40 kJ/m 3 , in agreement with previously published results.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-11
    Description: We demonstrate high precision controllability of the magnetization reversal nucleation process in [Co/Pd] 8 multilayer films consisting of two sets of bilayers with high and low perpendicular anisotropy, respectively. The anisotropy of the entire film is set by the degree of Co/Pd interfacial mixing during deposition which provides fine control of the anisotropy of an individual bilayer in the multilayer stack. The relative number of each type of bilayer is used to select the magnetisation reversal behavior such that changing one bilayer changes the properties of the entire multilayer through anisotropy averaging. A simple extension to the sputtering protocol would provide multilayer films with fully graded anisotropy, while maintaining a constant saturation magnetization opening new possibilities for the creation of highly engineered multilayer structures for spin torque devices and future magnetic recording media.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-12
    Description: The effect of filler aspect ratio on the electromagnetic properties of epoxy-amine resin reinforced with carbon nanofibers is here investigated. A heat treatment at 2500 °C of carbon nanofibers seems to increase their aspect ratio with respect to as-received ones most likely due to a lowering of structural defects and the improvement of the graphene layers within the dixie cup conformation. These morphological differences revealed by Raman's spectroscopy and scanning electron microscopy analyses may be responsible for the different electrical properties of the resulting composites. The DC characterization of the nanofilled material highlights an higher electrical conductivity and a lower electrical percolation threshold for the heat-treated carbon nanofibers based composites. In fact, the electrical conductivity is about 0.107 S/m and 1.36 × 10 −3  S/m for the nanocomposites reinforced with heat-treated and as received fibers, respectively, at 1 wt. % of nanofiller loading, while the electrical percolation threshold falls in the range [0.05–0.32]wt. % for the first nanocomposites and above 0.64 wt. % for the latter. Moreover, also a different frequency response is observed since the critical frequency, which is indicative of the transition from a resistive to a capacitive-type behaviour, shifts forward of about one decade at the same filler loading. The experimental results are supported by theoretical and simulation studies focused on the role of the filler aspect ratio on the electrical properties of the nanocomposites.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-12
    Description: Analyses of the local crystal and electronic structure in the vicinity of Fe 3+ centers in perovskite KMgF 3 crystal have been carried out in a comprehensive manner. A combination of density functional theory (DFT) and a semi-empirical superposition model (SPM) is used for a complete analysis of all Fe 3+ centers in this study for the first time. Some quantitative information has been derived from the DFT calculations on both the electronic structure and the local geometry around Fe 3+ centers. All of the trigonal (K-vacancy case, K-Li substitution case, and normal trigonal Fe 3+ center case), FeF 5 O cluster, and tetragonal (Mg-vacancy and Mg-Li substitution cases) centers have been taken into account based on the previously suggested experimental and theoretical inferences. The collaboration between the experimental data and the results of both DFT and SPM calculations provides us to understand most probable structural model for Fe 3+ centers in KMgF 3 .
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-08-13
    Description: Triple Langmuir Probe (TLP) is a widely used diagnostics for instantaneous measurement of electron temperature and density in low temperature laboratory plasmas as well as in edge region of fusion plasma devices. Presence of a moderately energetic flowing electron component, constituting only a small fraction of the bulk electrons, is also a generally observed scenario in plasma devices, where plasmas are produced by electron impact ionization of neutrals. A theoretical analysis of its effect on interpretation of the TLP data for bulk electron temperature measurement is presented here assuming electron velocity distribution is not deviating substantially from a Maxwellian. The study predicts conventional expression from standard TLP theory to give overestimated value of bulk electron temperature. Correction factor is significant and largely depends on population density, temperature, and energy of the fast component. Experimental verification of theoretical results is obtained in the magnetized plasma linear experimental device of Saha Institute of Nuclear Physics where plasma is produced by an electron cyclotron resonance method and known to have a fast flowing electron component.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-08-13
    Description: The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations had motivated many researchers to seek for novel renewable energy conversion methods. Thermoelectric direct conversion of thermal into electrical energies is such a method, in which common compositions include IV-VI semiconducting compounds (e.g., PbTe and SnTe) and their alloys. For approaching practical thermoelectric devices, the current research is focused on electronic optimization of off-stoichiometric p -type Pb x Sn 1− x Te alloys by tuning of Bi 2 Te 3 doping and/or SnTe alloying levels, while avoiding the less mechanically favorable Na dopant. It was shown that upon such doping/alloying, higher ZT s, compared to those of previously reported undoped Pb 0.5 Sn 0.5 Te alloy, were obtained at temperatures lower than 210–340 °C, depending of the exact doping/alloying level. It was demonstrated that upon optimal grading of the carrier concentration, a maximal thermoelectric efficiency enhancement of ∼38%, compared to that of an undoped material, is expected.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-08-14
    Description: Magnetic, dielectric, and ac conductivity as well as room temperature structural and Raman studies are performed on double perovskite Dy 2 NiMnO 6 . The crystal structure of the compound adopts monoclinic P2 1 /n space group, where alternate Mn and Ni distorted octahedral are arranged in anti-phase a − a − b + order in Glazer notation. Magnetization studies show two magnetic transitions around 100 K and 20 K which are related to the ordering of transition and rare earth cations moment, respectively. Temperature dependent dielectric permittivity shows Havriliak-Negami type thermally activated dielectric relaxation. The ac conductivity at different temperature is found to follow Jonscher power law behavior. Time-temperature scaling of the conductivity spectra reveals that the charge transport dynamics is independent of temperature. Intriguingly, an anomaly in the dielectric constant is observed close to the order of Dy moment which indicates intrinsic magnetoelectric coupling. The hybridization between Dy and Ni/Mn is suggested to be correlated with the magnetoelectric coupling.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-08-14
    Description: The stable configurations and electronic and magnetic properties of nonmetal atoms (H, N, P, O, S, F, and Cl) adsorbed ReS 2 monolayers have been investigated by first-principles calculations. It is found that H, O, S, F, and Cl prefer to occupy the peak sites of S atoms, while both N and P atoms favor the valley sites of S atoms. The ReS 2 sheet exhibits a good adsorption capability to nonmetal atoms. The reconstruction of the surface is pronounced in N- and P-adsorbed ReS 2 monolayers. In H-adsorbed case, the Fermi level is pulled into the conduction band, which results in the semiconductor-metal transition. The same magnetic moment of 1 μ B is found in the N-, P-, F-, and Cl-adsorbed ReS 2 monolayers, while the mechanisms of forming magnetic moment for N (P)- and F (Cl)-adsorbed cases are different. In addition, the spatial extensions of spin density in P-, F-, and Cl-adsorbed cases are larger than that in N-adsorbed case, which is more suitable to achieve long-range magnetic coupling interaction at low defect concentrations. Our results provide insight for achieving metal-free magnetism and a tunable band gap for various electronic and spintronic devices based on ReS 2 .
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-14
    Description: Three different chemical solutions are used to remove the possible contamination on GaN surface, while Ga 2 O 3 is still found at the surface. After thermal annealing at 710 °C in the ultrahigh vacuum (UHV) chamber and activated with Cs/O, all the GaN samples are successfully activated to the effective negative electron affinity (NEA) photocathodes. Among all samples, the GaN sample with the highest content of Ga 2 O 3 after chemical cleaning obtains the highest quantum efficiency. By analyzing the property of Ga 2 O 3 , the surface processing results, and electron affinity variations during Cs and Cs/O 2 deposition on GaN of other groups, it is suggested that before the adsorption of Cs, Ga 2 O 3 is not completely removed from GaN surface in our samples, which will combine with Cs and lead to a large decrease in electron affinity. Furthermore, the effective NEA is formed for GaN photocathode, along with the surface downward band bending. Based on this assumption, a new dipole model Ga 2 O 3 -Cs is suggested, and the experimental effects are explained and discussed.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-14
    Description: The phase transitions and ferroelectricity of LiNbO 3 and LiTaO 3 have been investigated theoretically from first principles. The phonon analyses and the molecular dynamics simulations revealed that the ferroelectric phase transition is not conventional displacive type but order-disorder type with strong correlation between cation displacements. According to the evaluated potential energy surfaces around the paraelectric structures, the large difference in ferroelectricity between the two oxides results from the little difference in short-range interionic interaction between Nb-O and Ta-O. As the results of the crystal orbital overlap population analyses, the different short-range interaction originates from the difference in covalency between Nb4 d -O2 p and Ta5 d -O2 p orbitals, particularly d xz - p x / d yz - p y orbitals ( π orbitals), from the electronic point of view.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-13
    Description: Carrier-type control of spin-glass (cluster spin-glass) is studied in order to engineer basic magnetic semiconductor elements using the memory functions of spin-glass. A key of carrier-polarity control in magnetite is the valence engineering between Fe(II) and Fe(III) that is achieved by Ti(IV) substitution. Single phases of (001)-oriented Fe 3− x Ti x O 4 thin films have been obtained on spinel MgAl 2 O 4 substrates by pulsed laser deposition. Thermoelectric power measurements reveal that Ti-rich films ( x  = 0.8) show p -type conduction, while Ti-poor films ( x  = 0.6–0.75) show n -type conduction. The systematic Fe(III) reduction to Fe(II) followed by Ti(IV) substitution in the octahedral sublattice is confirmed by the X-ray absorption spectra. All of the Fe 3− x Ti x O 4 films ( x  = 0.6–0.8) exhibit ferrimagnetism above room temperature. Next, the spin-glass behaviors of Ti-rich Fe 2.2 Ti 0.8 O 4 film are studied, since this magnetically diluted system is expected to exhibit the spin-glass behaviors. The DC magnetization and AC susceptibility measurements for the Ti-rich Fe 2.2 Ti 0.8 O 4 film reveal the presence of the spin glass phase. Thermal- and magnetic-field-history memory effects are observed and are attributed to the long time-decay nature of remanent magnetization. The detailed analysis of the time-dependent thermoremanent magnetization reveals the presence of the cluster spin glass state.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-15
    Description: Recent progress in electronic and electromagnetic topological insulators has led to the demonstration of one way propagation of electron and photon edge states and the possibility of immunity to backscattering by edge defects. Unfortunately, such topologically protected propagation of waves in the bulk of a material has not been observed. We show, in the case of sound/elastic waves, that bulk waves with unidirectional backscattering-immune topological states can be observed in a time-dependent elastic superlattice. The superlattice is realized via spatial and temporal modulation of the stiffness of an elastic material. Bulk elastic waves in this superlattice are supported by a manifold in momentum space with the topology of a single twist Möbius strip. Our results demonstrate the possibility of attaining one way transport and immunity to scattering of bulk elastic waves.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-08-15
    Description: Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-08-15
    Description: The crack initiation and growth mechanisms in an 2D graphene lattice structure are studied based on molecular dynamics simulations. Crack growth in an initial edge crack model in the arm-chair and the zig-zag lattice configurations of graphene are considered. Influence of the time steps on the post yielding behaviour of graphene is studied. Based on the results, a time step of 0.1 fs is recommended for consistent and accurate simulation of crack propagation. Effect of temperature on the crack propagation in graphene is also studied, considering adiabatic and isothermal conditions. Total energy and stress fields are analyzed. A systematic study of the bond stretching and bond reorientation phenomena is performed, which shows that the crack propagates after significant bond elongation and rotation in graphene. Variation of the crack speed with the change in crack length is estimated.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-07-30
    Description: Semiconductor fabrication often requires the deposition of hydrogenated silicon nitride (SiN x H y ) film using SiH 4 /NH 3 /N 2 /He capacitively coupled plasma (CCP) discharge. As analysis of the discharge geometry is essential to understanding CCP deposition, the effect of electrode spacing on the two-dimensional distributions of electrons, ions, and metastable and radical molecules was analyzed numerically using a fluid model. The simulation shows that the spatial variations in the ionization rates near the sheath become more obvious as the electrode spacing increases. In addition, as molecule-molecule gas-phase reactions are significantly affected by the local residence time, large electrode spacings are associated with significant volumetric losses for positive ions. Consequently, an increase of the electrode spacing leads axial density profiles of ions to change from bell shaped to double humped. However, NH 4 + persistently maintains a bell-shaped axial density profile regardless of the degree of electrode spacing. We set the mole fraction of NH 3 to only 1% of the total flow at the inlet, but NH 4 + is the most abundant positive ion at the large electrode spacings. As the gas flow can transport the radicals around the space between the electrodes, we found that radical density distribution shifts toward the grounded electrode. The shift becomes pronounced as the electrode spacing increases. Finally, to validate our model, we compared the calculated deposition rate profile with the experimental data obtained along the wafer radius. According to our numerical results, the SiN x H y deposition rate decreases by approximately 16% when the electrode spacing increases from 9 to 20 mm.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-07-30
    Description: We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots with serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-07-30
    Description: Previous studies on magnetic flux expulsion as a function of cooldown procedures for elliptical superconducting radio frequency (SRF) niobium cavities showed that when the cavity beam axis is placed parallel to the helium cooling flow and sufficiently large thermal gradients are achieved, all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper, we investigate flux trapping for the case of resonators positioned perpendicularly to the helium cooling flow, which is more representative of how SRF cavities are cooled in accelerators and for different directions of the applied magnetic field surrounding the resonator. We show that different field components have a different impact on the surface resistance, and several parameters have to be considered to fully understand the flux dynamics. A newly discovered phenomenon of concentration of flux lines at the cavity top leading to temperature rise at the cavity equator is presented.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-07-30
    Description: Detailed magnetically tunable ac electrical properties of x La 0.7 Sr 0.3 MnO 3 (LSMO)–(1 − x) ErMnO 3 (EMO) (x = 0.1, 0.3, and 0.5) multiferroic nanocomposites have been studied at 300 K in presence of varying magnetic field (H appl ), applied both in parallel and perpendicular configuration with respect to the measuring electric field. AC electrical properties have exhibited significant variation with H appl for all composites, whereas for parallel configuration of H appl such effect is very feeble for x = 0.3 composite. We have attributed this anisotropic behavior to the demagnetization effect in the sample. In contrast, for x = 0.1 and 0.5 composites, no such anisotropy effect is experimentally evidenced. Impedance and real part of impedance have been found to decrease with H appl at low frequency ( f ) region. We attribute this observation to the depinning of the magnetic domain walls from the grain boundaries pinning centers and thereby enhancing the spin dependent transport in the composite. For x = 0.3 composite, Nyquist plots have been fitted considering dominant contributions of LSMO and EMO grain boundaries and the interface region between them. However, for x = 0.1 composite, it corresponds to EMO grain boundaries and grain boundary interface region. The relaxation frequency ( f R ) is observed to shift at higher/lower f region in perpendicular/parallel configuration of H appl for x = 0.3 composite. This opposite variation of f R s with H appl for perpendicular and parallel configurations has been attributed to two competing factors of H appl induced enhancement of inductive part and H appl enhanced spin dependent transport causing fast relaxation processes in the sample. For x = 0.1 composite, in both configurations of H appl , f R s is shifting towards high f region, which has been discussed in terms of dominant role of spin dependent transport.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-05
    Description: The broadband quasi-phase matching (QPM) process in a uniaxial ferroelectric crystal Ca 0.28 Ba 0.72 Nb 2 O 6 (CBN-28) was demonstrated with the second-harmonic wavelength range from 450 nm to 650 nm, and the relationship between the symmetries of CBN-28 and the second-harmonic patterns was experimentally and theoretically investigated based on the random anti-parallel domains in the crystal and QPM conditions. The dependences of frequency-doubled patterns on the wavelength and anisotropy of the nonlinear crystal were also studied, and the frequency-doubled photons were found to be trapped on circles. By analyzing the light-matter interacting Hamiltonians, the trapping force for second-harmonic photons was found to be centripetal and tunable by the fundamental lasers, and the variation tendencies of the rotational velocity of second-harmonic generation photons could also be predicated. The results indicate that the CBN-28 ferroelectric crystal is a promising nonlinear optical material for the generation of broadband frequency-doubled waves, and the analysis on centripetal force based on the interaction Hamiltonians may provide a novel recognition for the investigation of QPM process to be further studied.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-08-05
    Description: MgO magnetic tunnel junction (MTJ) sensors with spin-valve-like sensing layers of Ir 22 Mn 78 (6)/Ni 80 Fe 20 ( t NiFe  = 20–70)/Ru (0.9)/Co 40 Fe 40 B 20 (3) (unit: nm) have been fabricated. A linear field dependence of magnetoresistance for these MTJ sensors was obtained by carrying out a two-step field annealing process. The sensitivity and linear field range can be tuned by varying the thickness of NiFe layer and annealing temperature, and a high sensitivity of 37%/mT has been achieved in the MTJ sensors with 70 nm NiFe at the optimum annealing temperature of 230 °C. Combining the spin-valve-like sensing structure and a soft magnetic NiFe layer, MTJ sensors with relatively wide field sensing range have been achieved and could be promising for showing high sensitivity magnetic field sensing applications.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-08-05
    Description: In this paper, we present the results of an experimental investigation on the magnetocaloric properties of hydrogenated La(Fe-Mn-Si) 13 -H with Mn substituting Fe to finely tune the transition temperature. We measured the specific heat under magnetic field c p ( H , T ) and the magnetic field induced isothermal entropy change Δ s ( H , T ) of a series of compounds by direct Peltier calorimetry. Results show that increasing Mn from 0.06 to 0.46 reduces the transition temperature from 339 K to 270 K whilst the total entropy change due to a 1.5 T field is depressed from 18.7 J kg −1  K −1 to 10.2 J kg −1  K −1 and the thermal hysteresis similarly is reduced from 1.5 K to zero. In the paper, we interpret the results in terms of a magnetic phase transition changing from the first to the second order with increasing Mn content, and we discuss the value of the results for magnetic cooling applications.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-08-05
    Description: We discuss an alternative acquisition scheme for edge illumination (EI) x-ray phase contrast imaging based on a continuous scan of the object and compare its performance to that of a previously used scheme, which involved scanning the object in discrete steps rather than continuously. By simulating signals for both continuous and discrete methods under realistic experimental conditions, the effect of the spatial sampling rate is analysed with respect to metrics such as image contrast and accuracy of the retrieved phase shift. Experimental results confirm the theoretical predictions. Despite being limited to a specific example, the results indicate that continuous schemes present advantageous features compared to discrete ones. Not only can they be used to speed up the acquisition but they also prove superior in terms of accurate phase retrieval. The theory and experimental results provided in this study will guide the design of future EI experiments through the implementation of optimized acquisition schemes and sampling rates.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-08-05
    Description: Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate were fabricated using chemical solution deposition. This family of materials exhibited moderate relative permittivities between 55 ± 2 and 145 ± 5 for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 ± 0.0001. Increases in the concentration of the tantalum end member increased the dielectric breakdown strength. For example, at 10 kHz, the room temperature breakdown strength of bismuth zinc niobate was 5.1 MV/cm, while that of bismuth zinc tantalate was 6.1 MV/cm. This combination of a high breakdown strength and a moderate permittivity led to a high discharged energy storage density for all film compositions. For example, at a measurement frequency of 10 kHz, bismuth zinc niobate exhibited a maximum recoverable energy storage density of 60.8 ± 2.0 J/cm 3 , while bismuth zinc tantalate exhibited a recoverable energy storage density of 60.7 ± 2.0 J/cm 3 . Intermediate compositions of bismuth zinc niobate tantalate offered higher energy storage densities; at 10 mol. % tantalum, the maximum recoverable energy storage density was ∼66.9 ± 2.4 J/cm 3 .
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-08-06
    Description: Nano-contact magnetoresistance (NCMR) spin-valves (SVs) using an AlO x nano-oxide-layer (NOL) have numerous nanocontacts in the thin AlO x oxide layer. The NCMR theoretically depends on the bulk scattering spin asymmetry ( β ) of the ferromagnetic material in the nanocontacts. To determine the relationship between NCMR and β , we investigated the dependence of NCMR on the composition of the ferromagnetic material Co 1−x Fe x . The samples were annealed at 270 °C and 380 °C to enhance the MR ratio. For both annealing temperatures, the magnetorsistance ratio in the low-resistance area product region at less than 1 Ω μ m 2 was maximized for Co 0.5 Fe 0.5 . To evaluate β exactly, we fabricated current-perpendicular-to-plane giant magnetoresistance SVs with Co 1−x Fe x /Cu/Co 1−x Fe x layers and used Valet and Fert's theory to solve the diffusion equation of the spin accumulation for a ferromagnetic layer/non-ferromagnetic layer of five layers with a finite diffusion length. The evaluated β for Co 1−x Fe x was also maximized for Co 0.5 Fe 0.5 . Additionally, to determine the difference between the experimental MR ratio of NCMR SVs and the theoretical MR ratio, we fabricated Co 0.5 Fe 0.5 with oxygen impurities and estimated the decrease in β with increasing oxygen impurity concentration. Our Co 0.5 Fe 0.5 nano-contacts fabricated using ion-assisted oxidation may contain oxygen impurities, and the oxygen impurities might cause a decrease in β and the MR ratio.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-08-06
    Description: Ferromagnetic antidot lattices are important systems for magnetic data storage and magnonic devices, and understanding their magnetization dynamics by varying their structural parameters is an important problems in magnetism. Here, we investigate the variation in spin wave spectrum in two-dimensional nanoscale Ni 80 Fe 20 antidot lattices with lattice symmetry. By varying the bias magnetic field values in a broadband ferromagnetic resonance spectrometer, we observed a stark variation in the spin wave spectrum with the variation of lattice symmetry. The simulated mode profiles showed further difference in the spatial nature of the modes between different lattices. While for square and rectangular lattices extended modes are observed in addition to standing spin wave modes, all modes in the hexagonal, honeycomb, and octagonal lattices are either localized or standing waves. In addition, the honeycomb and octagonal lattices showed two different types of modes confined within the honeycomb (octagonal) units and between two such consecutive units. Simulated internal magnetic fields confirm the origin of such a wide variation in the frequency and spatial nature of the spin wave modes. The tunability of spin waves with the variation of lattice symmetry is important for the design of future magnetic data storage and magnonic devices.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-08-06
    Description: The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-08-06
    Description: Strong oxides at high shock pressures have broad crossovers from elastic solids at ambient to failure by plastic deformation, to heterogeneous deformation to weak solids, to fluid-like solids that equilibrate thermally in a few ns, to melting and, at sufficiently high shock pressures and temperatures, to metallic fluid oxides. This sequence of crossovers in single-crystal cubic Gd 3 Ga 5 O 12 (Gd-Ga Garnet-GGG) has been diagnosed by fast emission spectroscopy using a 16-channel optical pyrometer in the spectral range 400–800 nm with bandwidths per channel of 10 nm, a writing time of ∼1000 ns and time resolution of 3 ns. Spectra were measured at shock pressures from 40 to 290 GPa (100 GPa = 1 Mbar) with corresponding gray-body temperatures from 3000 to 8000 K. Experimental lifetimes were a few 100 ns. Below 130 GPa, emission is heterogeneous and measured temperatures are indicative of melting temperatures in grain boundary regions rather than bulk temperatures. At 130 GPa and 2200 K, GGG equilibrates thermally and homogeneously in a thin opaque shock front. This crossover has a characteristic spectral signature in going from partially transmitting shock-heated material behind the shock front to an opaque shock front. Opacity is caused by optical scattering and absorption of light generated by fast compression. GGG melts at ∼5000 K in a two-phase region at shock pressures in the range 200 GPa to 217 GPa. Hugoniot equation-of-state data were measured by a Doppler Pin SystemDPS with ps time resolution and are generally consistent with previous data. Extrapolation of previous electrical conductivity measurements indicates that GGG becomes a poor metal at a shock pressure above ∼400 GPa. Because the shock impedance of GGG is higher than that of Al 2 O 3 used previously to make metallic fluid H (MFH), the use of GGG to make MFH will achieve higher pressures and lower temperatures than use of Al 2 O 3 . However, maximum dynamic pressures at which emission temperatures of fluid hydrogen made by shock reverberation between GGG anvils could be measured remains limited to ∼130 GPa, as for Al 2 O 3 anvils.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-08-06
    Description: We recently developed a feasible crystal chemistry strategy to stabilize the antiferroelectricity in NaNbO 3 through a chemical substitution to decrease the tolerance factor and increase the average electronegativity of the system [Shimizu et al ., Dalton Trans. 44 , 10763 (2015) and Guo et al ., J. Appl. Phys. 117 , 214103 (2015)]. Two novel lead-free antiferroelectric (AFE) solid solutions, (1- x )NaNbO 3 - x CaZrO 3 and (1- x )NaNbO 3 - x SrZrO 3 , have been found to exhibit the double polarization hysteresis typical of a reversible AFE ↔ ferroelectric (FE) phase transition. In this study, as demonstrated by (1- x )NaNbO 3 - x CaZrO 3 system, the influence of chemical modification and electrical poling on the AFE/FE phase stability was investigated, primarily focusing on the microstructural and crystallographic evolutions. Together with the macroscopic polarization hysteresis measurements, a well-demonstrated structure-property relationship was presented. It was found that the CaZrO 3 substitution into NaNbO 3 can effectively destabilize the FE Q phase and correspondingly lead to a spontaneous reverting to AFE P phase. In contrast to the reversible AFE ↔ FE phase transition, the domain morphology evolution exhibits irreversible nature with a growing process of the orientational domains after applying electric field. Moreover, a multiple-zone axes electron diffraction map of P and Q phases has been summarized and is believed to be an efficient diagram to determine the AFE/FE nature of the NaNbO 3 -based systems.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-08-06
    Description: The effect of post metal deposition annealing on the effective work function in metal/Al 2 O 3 /InGaAs gate stacks was investigated. The effective work functions of different metal gates (Al, Au, and Pt) were measured. Flat band voltage shifts for these and other metals studied suggest that their Fermi levels become pinned after the post-metallization vacuum annealing. Moreover, there is a difference between the measured effective work functions of Al and Pt, and the reported vacuum work function of these metals after annealing. We propose that this phenomenon is caused by charging of indium and gallium induced traps at the annealed metal/Al 2 O 3 interface.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-08-06
    Description: The introduction of a TiO 2 buffer layer significantly improved the temperature coefficient of resistance (TCR), a measure of the sharpness of the metal–insulator transition, for films of VO 2 grown on SiO 2 /Si (100) substrates at growth temperatures below 670 K. X-ray diffraction and Raman scattering measurements revealed that polycrystalline VO 2 films were formed on the TiO 2 -buffered substrates at low temperatures below 600 K, whereas amorphous films were formed at these temperatures on SiO 2 /Si (100) substrates without a TiO 2 buffer layer. Electron microscopy studies confirmed that the TiO 2 buffer layer enhanced the grain growth of VO 2 films at low growth temperatures. The VO 2 films grown at 600 K on TiO 2 -buffered substrates showed a large TCR of more than 80%/K as a result of the improved crystallinity and grain size of the VO 2 films. Our results provide an effective approach toward the integration of VO 2 -based devices onto Si platforms at process temperatures below 670 K.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-08-06
    Description: The helical edge states of two-dimensional topological insulators (TIs) experience appreciable quantum mechanical scattering in narrow channels when the width changes abruptly. The interference of the geometry scattering in narrow-wide-narrow waveguide structures is shown to give rise to the strong suppression of transmission when the incident energy is barely above the propagation threshold. Periodic resonant transmission takes place in this high reflection regime while the length of the wide section is varied. The resonance condition is governed by the transverse confinement in the wide section, where the form of quantization is manifested to differ for the two orthogonal directions. The confined energy levels in TI quantum dots are derived based on this observation. In addition, the off-diagonal spin-orbit term is found to produce an anomalous resonance state, which merges with the bottom ordinary resonance state to annihilate.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-08-08
    Description: Ultrathin layered films in new transistors architectures (FinFET and fully depleted SOI) require damage-free plasma etching techniques with unprecedented selectivity between materials. To assist the development of advanced processes, molecular dynamics simulations are performed to quantify modifications (plasma-induced damage, etch rate) of Si films after exposition to various Cl 2 plasma conditions, simulated by bombarding the substrate with both ion (Cl + , Cl 2 + ) and neutral (Cl, Cl 2 ) species. All simulations show the formation of a stable SiCl x reactive layer and a constant etch yield at steady state. The key plasma parameter to control the etching of ultrathin Si layers is the ion energy (E i ), which lowers significantly both the damaged layer thickness (from 1.8 nm at 100 eV to 0.8 nm at 5 eV when Γ = 100) and the etch yield when it is decreased. The neutral-to-ion flux ratio (Γ) is the second key parameter: its increase reduces the damaged layer thickness (from 1.8 nm for Γ = 100 to 1.1 nm for Γ = 1000 at 100 eV) while the etch rate grows. While maintaining Γ constant, the neutral dissociation rate and the ion composition do not influence significantly the etching process. Quantitatively, simulations suggest that plasmas with low ion energies ( 1000) should induce sub-nm thick reactive layers, confirming an interest in low-Te or pulsed plasmas (operating at low duty cycle) to achieve nanometric precision etching.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-08-08
    Description: We report on first-principles calculations of a Ni monolayer inserted at one interface in the epitaxial Fe/PbTiO 3 /Fe multiferroic heterostructure, focusing on the magnetoelectric coupling and the spin-dependent transport properties. The results of magnetoelectric coupling calculations reveal an attractive approach to realize cumulative magnetoelectric effects in the ferromagnetic/ferroelectric/ferromagnetic superlattices. The underlying physics is attributed to the combinations of several different magnetoelectric coupling mechanisms such as interface bonding, spin-dependent screening, and different types of magnetic interactions. We also demonstrate that inserting a Ni monolayer at one interface in the Fe/PbTiO 3 /Fe multiferroic tunnel junction is an efficient method to produce considerable tunneling electroresistance effect by modifying the tunnel potential barrier and the interfacial electronic structure. Furthermore, coexistence of tunneling magnetoresistance and tunneling electroresistance leads to the emergence of four distinct resistance states, which can be served as a multistate-storage device. The complicated influencing factors including bulk properties of the ferromagnetic electrodes, decay rates of the evanescent states in the tunnel barrier, and the specific interfacial electronic structure provide us promising opportunities to design novel multiferroic tunnel junctions with excellent performances.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-08-08
    Description: We report the synthesis and high thermoelectric properties of Zr 3 Ni 3 Sb 4 -Hf 3 Ni 3 Sb 4 solid solutions and Zr 3 Ni 3 Sb 4 -Zr 3 Pt 3 Sb 4 solid solutions. Ternary Zintl phases Zr 3 Ni 3 Sb 4 , Hf 3 Ni 3 Sb 4 , and Zr 3 Pt 3 Sb 4 are narrow-gap semiconductors (a bandgap E g ≃ 200   meV in the case of Zr 3 Ni 3 Sb 4 ) with low thermal conductivity (4.3 W/mK in the case of Zr 3 Ni 3 Sb 4 at 300 K). An electronic state calculation of these ternary Zintl phases indicates that the valence bands have a 6-valley or 12-valley structure, providing a high density-of-state effective mass, whereas the conduction bands have low effective mass, resulting in high mobility. Because of these electronic properties that enhance the β factor and the low thermal conductivity due to complex crystal structure and more alloying scattering, high ZT values were obtained for the p-type Zr 3 Ni 2.3 Pt 0.6 Co 0.1 Sb 4 ( ZT  = 0.65 at 760 K) and the n-type Zr 2 HfNi 2.7 Cu 0.3 Sb 4 ( ZT  = 0.56 at 670 K). We found that Pt-substitution improves the high-temperature thermoelectric performance above 600 K owing to band-gap widening and thermal conductivity reduction in alloying of the p-type Zr 3 (Ni,Pt) 2.9 Co 0.1 Sb 4 solid solutions. In the case of n-type (Zr,Hf) 3 Ni 2.7 Cu 0.3 Sb 4 solid solutions, we observed that Hf-substitution reduces κ ph without negatively affecting carrier mobility.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-08-08
    Description: During the deposition of polycrystalline thin films, often intrinsic compressive stresses develop, which reversibly change in tensile direction once the deposition process is interrupted. Up to date, the underlying mechanism of such reversible stress changes during growth interruptions have been controversially discussed, mainly because the correlations between the growth conditions, the developing film microstructure and the reversible stress change were still largely unclear. The present study has experimentally established the separate effects of the pre-interruption deposition rate and the average lateral film grain size on both the magnitude and the kinetics of the reversible tensile stress rise during polycrystalline film growth interruption. To this end, real-time in situ substrate-curvature measurements were performed during polycrystalline Ag growth and upon subsequent growth interruptions for well-defined and controlled adjusted microstructures. It is shown that the magnitude of the reversible tensile stress rise during growth interruption is predominantly governed by the grain-boundary density, while the rate of the tensile stress rise during growth interruption increases with increasing pre-interruption deposition rate and increasing (lateral) Ag grain size. These phenomena can be rationalized by taking deposition-rate and lateral-grain-size dependent surface morphological developments into account.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-08-18
    Description: A nonlinear thermodynamic formalism has been proposed to calculate the physical properties of the epitaxial SrTiO 3 films containing vertical nano-pillar array on Si-substrate. The out-of-plane stress induced by the mismatch between film and nano-pillars provides an effective way to tune the physical properties of ferroelectric SrTiO 3 films. Tensile out-of-plane stress raises the phase transition temperature and increases the out-of-plane polarization, but decreases the out-of-plane dielectric constant below Curie temperature, pyroelectric coefficient, and piezoelectric coefficient. These results showed that by properly controlling the out-of-plane stress, the out-of-plane stress induced paraelectric-ferroelectric phase transformation will appear near room temperature. Excellent dielectric, pyroelectric, piezoelectric properties of these SrTiO 3 films similar to PZT and other lead-based ferroelectrics can be expected.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-08-18
    Description: The electronic structures of short period m GaN/ n Ga y Al 1 − y N and m In y Ga 1 -y N/ n GaN superlattices grown along the wurtzite c axis have been calculated for different alloy compositions y and various small numbers m of well- and n of barrier-monolayers. The general trends in gap behavior can, to a large extent, be related to the strength of the internal electric field, E , in the GaN and InGaN quantum wells. In the GaN/GaAlN superlattices, E reaches 4 MV/cm, while in the InGaN/GaN superlattices, values as high as E  ≈ 6.5 MV/cm are found. The strong electric fields are caused by spontaneous and piezoelectric polarizations, the latter contribution dominating in InGaN/GaN superlattices. The influence of different arrangements of In atoms (indium clustering) on the band gap values in InGaN/GaN superlattices is examined.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-08-20
    Description: BiFeO 3 (BFO) films were fabricated on Pt/Ti/SiO 2 /Si and single crystalline LiNbO 3 (LN) substrates using metal organic decomposition method and annealed in N 2 /O 2 . Magnetizations of these films were systematically characterized. It is found that BFO films prepared on Pt/Ti/SiO 2 /Si substrates exhibit stronger saturation magnetization (M S ) than those prepared on LN substrates, and their magnetizations rely more on annealing atmosphere. We consider that both oxide feature of LN substrates and in-plane compressive stress introduced by LN reduce the Fe 2+ content in the top BFO films and further stabilize the films against post-treatment. This work provides a valuable guidance for fabricating high quality magnetic oxide films.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-08-20
    Description: The ferroelectric properties and crystal structure of doped HfO 2 thin films were investigated for different thicknesses, electrode materials, and annealing conditions. Metal-ferroelectric-metal capacitors containing Gd:HfO 2 showed no reduction of the polarization within the studied thickness range, in contrast to hafnia films with other dopants. A qualitative model describing the influence of basic process parameters on the crystal structure of HfO 2 was proposed. The influence of different structural parameters on the field cycling behavior was examined. This revealed the wake-up effect in doped HfO 2 to be dominated by interface induced effects, rather than a field induced phase transition. TaN electrodes were shown to considerably enhance the stabilization of the ferroelectric phase in HfO 2 compared to TiN electrodes, yielding a P r of up to 35  μ C/cm 2 . This effect was attributed to the interface oxidation of the electrodes during annealing, resulting in a different density of oxygen vacancies in the Gd:HfO 2 films. Ab initio simulations confirmed the influence of oxygen vacancies on the phase stability of ferroelectric HfO 2 .
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-08-20
    Description: Thymine (2-oxy-4-oxy-5 methyl pyrimidine) is one of the four nucleobases of deoxyribonucleic acid (DNA). In the DNA molecule, thymine binds to adenine via two hydrogen bonds, thus stabilizing the nucleic acid structure and is involved in pairing and replication. Here, we show that synthetic thymine microcrystals grown from the solution exhibit local piezoelectricity and apparent ferroelectricity, as evidenced by nanoscale electromechanical measurements via Piezoresponse Force Microscopy. Our experimental results demonstrate significant electromechanical activity and polarization switchability of thymine, thus opening a pathway for piezoelectric and ferroelectric-based applications of thymine and, perhaps, of other DNA nucleobase materials. The results are supported by molecular modeling of polarization switching under an external electric field.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-08-21
    Description: Origin of unexpected defect engineered room-temperature ferromagnetism observed in tin-doped indium oxide (ITO) nanostructures (Nanowires, Nano-combs) and nanocrystalline thin films fabricated by pulsed laser deposition has been investigated. It is found that the ITO nanostructures prepared under argon environment exhibit strongest ferromagnetic signature as compared to that nanocrystalline thin films grown at oxygen. The evidence of singly ionized oxygen vacancy ( V 0 + ) defects, obtained from various spectroscopic measurements, suggests that such V 0 + defects are mainly responsible for the intrinsic ferromagnetic ordering. The exchange interaction of the defects provides extensive opportunity to tune the room-temperature d 0 ferromagnetism and optical properties of ITOs.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-08-21
    Description: A study was conducted on the properties of molybdenum implanted with caesium as an approach to reduce the Cs consumption of negative hydrogen ion sources based on evaporated Cs. The depth profiles of the implanted Cs were simulated by SDTrimSP and experimentally determined by X-ray photoelectron spectroscopy depth profiling. In particular, one year after implantation, the depth profiles showed no signs of Cs diffusion into the molybdenum, suggesting long term stability of the implanted Cs atoms. The H − surface generation mechanisms on the implanted samples in hydrogen plasma were investigated, and the stability of the H − yield during four hours low power hydrogen plasma discharges was demonstrated. An estimation of the work function reduction (−0.8 eV) by the Cs implantation was performed, and a comparison of the relative negative ion yields between the implanted samples and highly oriented pyrolitic graphite showed that the Cs doped Mo negative ion yield was larger.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-08-21
    Description: A two-step glancing angle deposition method is developed to fabricate hierarchical metal nanostructures for surface enhanced Raman scattering (SERS). Nanotip arrays, which consist of a thin layer of silver on nickel nanoneedles, are deposited on silicon substrates by this method. Rhodamine 6G (R6G) is used to demonstrate the sensitivity of SERS at the near attomolar level. The scaling of Raman intensity with the concentration of R6G is related to the Langmuir-Freundlich isotherm.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-08-21
    Description: The change of the transmission spectra of fiber Bragg gratings written in the optical fibers, whose silica cores are doped with either germanium or nitrogen, is studied experimentally under the influence of gamma-radiation. The transmission spectra in the neighborhood of the resonance (Bragg) wavelengths were regularly recorded “ in-situ ” in the course of irradiation during 24 days. For this purpose, uncoated gratings were placed in a pool near the spent fuel rods of a nuclear reactor. The fibers with the gratings written in them were in immediate contact with water. The estimated total absorbed radiation dose of the fibers is approximately 5 MGy. Molecular hydrogen, which is produced by radiolysis of water and penetrates into the core of silica fiber, is found to interact with the defects of Ge-doped silica induced by gamma-radiation, thereby causing a strong impact on the parameters of the spectrum of the Bragg gratings. On the contrary, in the case of gratings inscribed in N-doped silica fibers, the hydrogen molecules interact with defects induced in the course of laser UV exposure during the grating writing only. The possible subsequent formation of additional defects in N-doped silica under the influence of gamma-radiation has no substantial impact on the transmission spectra of Bragg gratings, which remained stable. The obtained results suggest that a small amount of molecular hydrogen resided in the fiber core is the main source of radiation instability of Ge-doped fiber Bragg grating sensors in radiation environments. These hydrogen molecules can remain in the Bragg gratings, in particular, after the inscription process in the hydrogen-loaded fibers.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-08-21
    Description: We report on the design and experimental characterization of a surface-electrode multipole ion trap. Individual microscopic sugar particles are confined in the trap. The trajectories of driven particle motion are compared with a theoretical model, both to verify qualitative predictions of the model and to measure the charge-to-mass ratio of the confined particle. The generation of harmonics of the driving frequency is observed as a key signature of the nonlinear nature of the trap. We remark on possible applications of our traps, including to mass spectrometry.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-08-21
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-08-25
    Description: This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-08-25
    Description: We report on the observation of a radiation helicity sensitive photocurrent excited by terahertz (THz) radiation in dual-grating-gate (DGG) InAlAs/InGaAs/InAlAs/InP high electron mobility transistors (HEMT). For a circular polarization, the current measured between source and drain contacts changes its sign with the inversion of the radiation helicity. For elliptically polarized radiation, the total current is described by superposition of the Stokes parameters with different weights. Moreover, by variation of gate voltages applied to individual gratings, the photocurrent can be defined either by the Stokes parameter defining the radiation helicity or those for linear polarization. We show that artificial non-centrosymmetric microperiodic structures with a two-dimensional electron system excited by THz radiation exhibit a dc photocurrent caused by the combined action of a spatially periodic in-plane potential and spatially modulated light. The results provide a proof of principle for the application of DGG HEMT for all-electric detection of the radiation's polarization state.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-08-25
    Description: A combinatorial approach where doped bulk scintillator materials can be rapidly optimized for their properties through concurrent extrinsic doping/co-doping strategies is presented. The concept that makes use of design of experiment, rapid growth, and evaluation techniques, and multivariable regression analysis, has been successfully applied to the engineering of NaI performance, a historical but mediocre performer in scintillation detection. Using this approach, we identified a three-element doping/co-doping strategy that significantly improves the material performance. The composition was uncovered by simultaneously screening for a beneficial co-dopant ion among the alkaline earth metal family and by optimizing its concentration and that of Tl + and Eu 2+ ions. The composition with the best performance was identified as 0.1% mol Tl + , 0.1% mol Eu 2+ , and 0.2% mol Ca 2+ . This formulation shows enhancement of energy resolution and light output at 662 keV, from 6.3 to 4.9%, and from 44 000 to 52 000 ph/MeV, respectively. The method, in addition to improving NaI performance, provides a versatile framework for rapidly unveiling complex and concealed correlations between material composition and performance, and should be broadly applicable to optimization of other material properties.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-08-25
    Description: We study the effect of nanoscale precipitates on lattice thermal conduction in thermoelectric PbTe using a combination of ab-initio phonon calculations and molecular dynamics. We take into account the effects of mass difference and change in force constants, and find an enhanced influence of the latter with increased precipitate concentration. As a consequence, our inclusion of the change in force constants in the calculation affords a smaller predicted optimal nano-precipitate size that minimizes the thermal conductivity. These results suggest that the phonon scattering by nanoprecipitates in thermoelectric composites could be stronger than previously thought.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-08-20
    Description: The multiferroic solid solution of (1− x )[0.9BiFeO 3 –0.1DyFeO 3 ]– x PbTiO 3 with compositions around the morphotropic phase boundary has been synthesized in the form of ceramics and characterized by Piezoresponse Force Microscope (PFM) and Superconducting Quantum Interference Device. Both the original local polar domain structure and the domain evolution after poling have been studied by PFM. The PFM phase imaging has revealed some interesting details of poling and domain switching process: The out-of-plane phase image shows a uniform direction of polarization along the applied electric field, while the in-plane phase image indicates two kinds of domains with antiparallel polarizations. This kind of poled domain structure is explained based on the orientations of the polarization as permitted by the rhombohedral crystal symmetry in grains of different crystallographic orientations. The magnetic properties measured within the temperature range from 1.8 K to 300 K reveal an interesting sequence of magnetic transitions from a weakly ferromagnetic order (WFM 1 ) to an antiferromagnetic state (AFM), and then to another weak ferromagnetic phase (WFM 2 ), upon cooling. A preliminary magnetic phase diagram is proposed for BDF-34PT.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-08-20
    Description: A theory of an equilibrium shape of the domain formed in an electric field of a scanning force microscope (SFM) tip is proposed. We do not assume a priori that the domain has a fixed form. The shape of the domain is defined by the minimum of the free energy of the ferroelectric. This energy includes the energy of the depolarization field, the energy of the domain wall, and the energy of the interaction between the domain and the electric field of the SFM tip. The contributions of the apex and conical part of the tip are examined. Moreover, in the proposed approach, any narrow tip can be considered. The surface energy is determined on the basis of the Ginzburg-Landau-Devonshire theory and takes into account the curvature of the domain wall. The variation of the free energy with respect to the domain shape leads to an integro-differential equation, which must be solved numerically. Model results are illustrated for lithium tantalate ceramics.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-08-20
    Description: BiFeO 3 (BFO) is a classical multiferroic material with both ferroelectric and magnetic ordering at room temperature. Doping of this material with rare-earth oxides was found to be an efficient way to enhance the otherwise low piezoelectric response of unmodified BFO ceramics. In this work, we studied two types of bulk Sm-modified BFO ceramics with compositions close to the morphotropic phase boundary (MPB) prepared by different solid-state processing methods. In both samples, coexistence of polar R 3 c and antipolar P bam phases was detected by conventional X-ray diffraction (XRD); the non-polar P nma or P bnm phase also has potential to be present due to the compositional proximity to the polar-to-non-polar phase boundary. Two approaches to separate the phases based on the piezoresponse force microscopy measurements have been proposed. The obtained fractions of the polar and non-polar/anti-polar phases were close to those determined by quantitative XRD analysis. The results thus reveal a useful method for quantitative determination of the phase composition in multi-phase ceramic systems, including the technologically most important MPB systems.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-08-20
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-08-20
    Description: Lead-free piezoelectrics are becoming increasingly important in view of environmental problems of currently used lead-based perovskites such as lead zirconate titanate (PZT). One of the recent candidates for PZT replacement, solid solutions of BaZr 0.2 Ti 0.8 O 3 and Ba 0.7 Ca 0.3 TiO 3 , are investigated in this work by piezoresponse force microscopy. Coexistence of the tetragonal and rhombohedral phases in this material is observed, which probably gives rise to easy polarization switching due to multiple domain states. The period of observed domain lamella scales with the grain size obeying well-known square root dependence characteristic of BaTiO 3 ceramics. Domain switching and relaxation are investigated at the nanoscale as a function of the applied voltage and duration of the applied voltage pulses. The observed distortion of piezoresponse hysteresis loops near grain boundaries is attested to the increased concentration of defects. Nanoscale piezoelectric properties of these materials are discussed.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-08-20
    Description: This work is a theoretical study on third harmonic generation in the nonlinear propagation of an intense laser pulse through a periodic three-dimensional lattice of nanoparticles. Using a perturbative method, the nonlinear equations that describe the laser–nanoparticle interaction in the weakly relativistic regime are derived. Additionally, the nonlinear dispersion relation and the amplitude of the third harmonic are obtained. Finally, the effects of the nanoparticle radius and separation length, the distribution of the nanoparticle electron density, and the laser frequency upon the third harmonic efficiency are investigated. In addition to the expected resonance that occurs when the third harmonic resonates with the plasmon wave, another resonance appears when the nonlinear interaction of the fundamental mode with the third harmonic excites a longitudinal collective plasmon wave via the parametric Raman mechanism.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2015-08-20
    Description: The frequency-dependent amplitude and phase in piezoresponse force microscopy (PFM) measurements are shown to be a consequence of the Euler-Bernoulli (EB) dynamics of atomic force microscope (AFM) cantilever beams used to make the measurements. Changes in the cantilever mode shape as a function of changes in the boundary conditions determine the sensitivity of cantilevers to forces between the tip and the sample. Conventional PFM and AFM measurements are made with the motion of the cantilever measured at one optical beam detector (OBD) spot location. A single OBD spot location provides a limited picture of the total cantilever motion, and in fact, experimentally observed cantilever amplitude and phase are shown to be strongly dependent on the OBD spot position for many measurements. In this work, the commonly observed frequency dependence of PFM response is explained through experimental measurements and analytic theoretical EB modeling of the PFM response as a function of both frequency and OBD spot location on a periodically poled lithium niobate sample. One notable conclusion is that a common choice of OBD spot location—at or near the tip of the cantilever—is particularly vulnerable to frequency dependent amplitude and phase variations stemming from dynamics of the cantilever sensor rather than from the piezoresponse of the sample.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-08-20
    Description: We have measured the mean square amplitude of both in- and out-of-plane lattice vibrations for mono-layer graphene at temperatures ranging from ∼ 100 K to 1300 K. The amplitude of lattice vibrations was calculated from data extracted from selected area electron diffraction patterns recorded across a known temperature range with over 80 diffraction peaks measured per diffraction pattern. Using an analytical Debye model, we have also determined values for the maximum phonon wavelength that can be supported by a mono-layer graphene crystal and the magnitude of quantum mechanical zero point vibrations. For in-plane phonons, the quantum mechanical zero point contribution dominates the measured atomic displacement at room temperature, whereas for out-of-plane modes, thermally populated phonons must be considered. We find a value for the maximum phonon wavelength sampled that is several orders of magnitudes smaller than the physical crystallite size.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-08-20
    Description: Femtosecond laser ablation is used in applications which require low damage surface treatments, such as serial sectioning, spectroscopy, and micromachining. However, dislocations are generated by femtosecond laser-induced shockwaves and consequently have been studied in strontium titanate (STO) using transmission electron microscopy (TEM) and electron backscatter diffraction analysis. The laser ablated surfaces in STO exhibit dislocation structures that are indicative of those produced by uniaxial compressive loading. TEM analyses of dislocations present just below the ablated surface confirm the presence of ⟨ 110 ⟩ dislocations that are of approximately 35° mixed character. The penetration depth of the dislocations varied with grain orientation relative to the surface normal, with a maximum depth of 1.5  μ m. Based on the critical resolved shear stress of STO crystals, the approximate shockwave pressures experienced beneath the laser irradiated surface are reported.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-08-20
    Description: We present the results of investigations of planar domain patterns (isolated domains and domain gratings) fabricated by irradiation of the nonpolar Y-surface of LiNbO 3 crystals by an electron beam (EB) incident normally onto the surface. The EB recorded domains were investigated using atomic force microscopy, confocal second harmonic generation microscopy, and chemical etching as an auxiliary method. The dependence of the domain characteristics on irradiation conditions (acceleration voltage U, EB current I, and irradiation time t irr ) were determined. The length L d of both isolated domains and domain gratings along the polar axis Z grows linearly with t irr (at U, I = const) with no tending to saturation. The plots L d (t irr ) obtained for U = 10 and 15 kV are practically identical, whereas the values of L d for U = 5 kV are essentially lower. The domain thickness T d along the Y-direction, i.e., the depth of the switched layer grows with acceleration voltage U. These results are discussed in terms of space-charge fields formation arising under EB irradiation of insulators. The linearity of L d (t irr ) is accounted for by the frontal domain growth via the viscous friction law. The experimental dependence of T d on U supports the suggestion that the domain thickness is determined by the penetration depth R e of primary electrons, which in turn is governed by U. The difference in L d (t irr ) plots for different U is accounted for by different electron emission σ. Indirect evidences of a defect structure modification in a thin surface layer with respect to the crystal bulk are obtained.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-08-20
    Description: The Green's functions for a three-dimensional semi-infinite fully anisotropic piezoelectric material are derived using the plane wave theory method. The solution gives the complete set of electromechanical fields due to an arbitrarily oriented point force and a point electric charge applied to the boundary of the half-space. The solution constitutes generalization of Boussinesq's and Cerruti's problems of elastic isotropy for the anisotropic piezoelectric materials. On the example of piezoceramics PZT-6B, the present results are compared with the previously obtained solution for the special case of transversely isotropic piezoelectric solid subjected to the same boundary condition.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-08-20
    Description: Magnetic rotational spectroscopy (MRS) with magnetic nanoprobes is a powerful method for in-situ characterization of minute amounts of complex fluids. In MRS, a uniformly rotating magnetic field rotates magnetic micro- or nano-probes in the liquid and one analyzes the features of the probe rotation to extract rheological parameters of liquids. Magnetic properties of nanoprobes must be well characterized and understood to make results reliable and reproducible. Ni and Co nanorods synthesized by electrochemical template synthesis in alumina membranes are discussed in applications to MRS. We employ alternating gradient field magnetometry, X-ray diffraction, and magnetic force microscopy to evaluate and compare properties of these nanorods and study their performance as the MRS probes. It is shown that nickel nanorods do not seem to violate any assumptions of the MRS rigid dipole theory, while cobalt nanorods do.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-08-20
    Description: Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. Gaining an understanding of the role of these processes as well as development of predictive capabilities for design of better performing batteries requires synergy between theory, modeling, and simulation, and fundamental experimental work to support the models. This paper presents the overview of the work performed by the authors aligned with both experimental and computational efforts. In this paper, we describe a new, open source computational environment for battery simulations with an initial focus on lithium-ion systems but designed to support a variety of model types and formulations. This system has been used to create a three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. This paper also provides an overview of the experimental techniques to obtain crucial validation data to benchmark the simulations at various scales for performance as well as abuse. We detail some initial validation using characterization experiments such as infrared and neutron imaging and micro-Raman mapping. In addition, we identify opportunities for future integration of theory, modeling, and experiments.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-08-20
    Description: Transport properties of Li + mobile ions in fresh and aged LiMn 2 O 4 battery cathodes were studied at the nanoscale via electrochemical strain microscopy (ESM), time spectroscopy, and voltage spectroscopy mapping. Both Vegard and plausible non-Vegard contributions to the ESM signal were identified in electrochemical hysteresis loops obtained on fresh and aged samples. In the fresh cathodes, the Vegard contribution dominates the signal, while in the aged samples different shape of hysteresis loops indicates an additional plausible non-Vegard contribution. Non-uniform spatial distribution of the electrochemical loop opening in LiMn 2 O 4 particles studied in the aged samples indicates stronger variation of the Li diffusion coefficient at the microscale as compared to the fresh specimens. Time spectroscopy measurements revealed a suppression of the local Li diffusivity in aged samples. The mechanisms of the cathode aging are discussed in the context of observed nanoscale ESM response.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-08-21
    Description: Based on the phonon Boltzmann transport equation under the relaxation time approximation, analytical expressions for the temperature profiles of both the steady state and modulated heat conduction inside a thin film deposited on a substrate are derived and analyzed. It is shown that these components of the temperature depend strongly on the ratio between the film thickness and the average phonon mean free path (MFP), and they exhibit the diffusive behavior as predicted by the Fourier's law of heat conduction when this ratio is much larger than unity. In contrast, in the ballistic regime when this ratio is comparable to or smaller than unity, the steady-state temperature tends to be independent of position, while the amplitude and the phase of the modulated temperature appear to be lower than those determined by the Fourier's law. Furthermore, we derive an invariant of heat conduction and a simple formula for the cross-plane thermal conductivity of dielectric thin films, which could be a useful guide for understanding and optimizing the thermal performance of the layered systems. This work represents the Boltzmann transport equation-based extension of the Rosencwaig and Gersho work [J. Appl. Phys. 47 , 64 (1976)], which is based on the Fourier's law and has widely been used as the theoretical framework for the development of photoacoustic and photothermal techniques. This work might shed some light on developing a theoretical basis for the determination of the phonon MFP and relaxation time using ultrafast laser-based transient heating techniques.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-08-21
    Description: We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe 2 O 4 ) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B 0  = 204 GPa) is considerably larger than the value previously reported for bulk CoFe 2 O 4 (B 0  = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B 0  = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-08-21
    Description: In this paper, the magnetoelectric coupling and ferroelectric ordering of the orthorhombic Dy 1- x Ho x MnO 3 ( x  = 0 and 0.1) are studied from the magnetodielectric response of the polycrystalline samples. The dielectric study on the DyMnO 3 reveals ferroelectric transition at 18 K along with an addition transition at 12 K. We suggest that the transition at 12 K could have originated from the polarization flop rather than being the rare earth magnetic ordering. The magnetodielectric study reveals a magnetoelectric coupling strength of 10%, which is stronger by two orders of magnitude in comparison to the hexagonal manganites. Surprisingly, the Ho 3+ substitution in DyMnO 3 suppresses the magnetoelectric coupling strength via the suppression of the spiral magnetic ordering. In addition, it also reduces the antiferromagnetic ordering and ferroelectric ordering temperatures. Overall, the studies show that the rare earth plays an important role in the magnetoelectric coupling strength through the modulation of spiral magnetic structure.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-08-21
    Description: The characteristics of slow light in the microfiber double-knot resonator with a parallel structure are investigated both theoretically and experimentally. It is predicted that a wide bandwidth of about 20 GHz and flat-top group delay of about 70 ps can be generated in this resonator by changing the coupling coefficient. In the experiment, such a resonator was fabricated and the slow-light effect was demonstrated. As a result, when a pulse with a bandwidth of 3.35 GHz (equivalent to the temporal width of 299 ps) was launched into the resonator, a large group delay, whose average value was about 69.4 ps with a flat-top wavelength bandwidth of about 190 pm, was achieved.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-08-21
    Description: The mechanical properties, electronic structure and thermodynamic properties of the Mo 2 XB 2 and MoX 2 B 4 (X = Fe, Co, Ni) ternary borides were calculated by first-principles methods. The elastic constants show that these ternary borides are mechanically stable. Formation enthalpy of Mo 2 XB 2 and MoX 2 B 4 (X = Fe, Co, Ni) ternary borides are at the range of −118.09 kJ/mol to −40.14 kJ/mol. The electronic structures and chemical bonding characteristics are analyzed by the density of states. Mo 2 FeB 2 has the largest shear and Young's modulus because of its strong chemical bonding, and the values are 204.3 GPa and 500.3 GPa, respectively. MoCo 2 B 4 shows the lowest degree of anisotropy due to the lack of strong direction in the bonding. The Debye temperature of MoFe 2 B 4 is the largest among the six phases, which means that MoFe 2 B 4 possesses the best thermal conductivity. Enthalpy shows an approximately linear function of the temperature above 300 K. The entropy of these compounds increase rapidly when the temperature is below 450 K. The Gibbs free energy decreases with the increase in temperature. MoCo 2 B 4 has the lowest Gibbs free energy, which indicates the strongest formation ability in Mo 2 XB 2 and MoX 2 B 4 (X = Fe, Co, Ni) ternary borides.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-08-21
    Description: An effect of enhanced trapping of deuterium in tungsten at high flux was discovered. It was shown analytically and confirmed experimentally that the deuterium trapping in a presence of high density of defects in tungsten (W) depends on the ion energy and ion flux. Newly developed analytical model explains experimentally observed discrepancy of deuterium trapping at radiation-induced defects in tungsten at different ion fluxes that significantly improves a prediction of hydrogen isotope accumulation in different plasma devices, including ITER and DEMO. The developed model can be used for many system of hydrogen in a metal in both normal and extreme environments (high fluxes, elevated temperatures, neutron irradiation, etc.). This new model allows, for the first time, to validate density function theory (DFT) predictions of multiple occupation of a defect with deuterium against experimental data that bridge the gap in length and time scale between DFT calculations and experiments. By comparing first-principle calculations based on DFT and semi-empirical “adsorption model,” it was proved that the mechanism of hydrogen isotope trapping in a vacancy cluster is similar to a chemisorption on a surface. Binding energies of deuterium with different types of defects in W were defined. Moreover, the surface barrier of deuterium to be chemisorbed on a clean W surface was found to be less than 1 eV and kinetics of deuterium release is limited by de-trapping from defects rather than to be limited by surface effects.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-08-22
    Description: Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-08-22
    Description: The HoVO 3 orthovanadate undergoes a large negative and conventional magnetocaloric effects around 4 K and 15 K, respectively. The partly overlapping of the magnetic transition at 15 K and the structural transition occurring at 40 K, as well as the large magnetization, give rise to a giant refrigerant capacity without hysteresis loss. For a magnetic field variation of 7 T, the refrigerant capacity is evaluated to be 620 J/kg, which is larger than that for any known RMnO 3 manganite. These results should inspire and open new ways for the improvement of magnetocaloric properties of ABO 3 type-oxides.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-08-22
    Description: We present the results of first-principles study for the electronic structure and optical absorption spectrum of the alkaline-earth metal oxide BaO. The quasiparticle band structure is evaluated within the Hedin's GW approximation [Phys. Rev. 139 , A796 (1965)]. Thereafter, the electron-hole interaction is taken into consideration and the Bethe-Salpeter equation for the electron-hole two-particle Green function is solved. The calculated quasiparticle band gap of BaO is 4.1 eV, which is in good agreement with the experimental result. The calculated optical absorption spectrum of BaO is also in agreement with the experimental data. In particular, the calculated excitation energy for the lowest exciton peak in the optical absorption spectrum of BaO reproduces very well the corresponding experimental result.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-08-22
    Description: The present work is based on the photovoltaic properties of multilayered structure of Bismuth ferrite (BFO) and Barium titanate (BTO) thin films prepared by pulsed laser deposition technique on platinum coated silicon substrate. The multilayered structure possesses enhanced ferroelectric properties and shows a remarkable increase in photocurrent (from 1.56 × 10 −7  A to 6.96 × 10 −5  A) upon illumination with laser light of wavelength 405 nm at an intensity of 160 mW/cm 2 . The values of short circuit photocurrent and open circuit voltage were found to be 0.3184 mA/cm 2 and −1.25 V, respectively, with a light-to-electricity conversion efficiency of 0.067%. A relatively high efficiency calculated at 405 nm for the developed multilayered BFO/BTO structure highlights its practical application in ferroelectric photovoltaics.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-08-22
    Description: Energy conversion and momentum coupling using nano-second 1- μ m-wavelength pulse laser irradiation on an aluminum target were measured in air and nitrogen gas atmospheres over a wide range of laser pulse energies from sub-J to sub-kJ. From the expansion rate of the shock wave, the blast-wave energy conversion efficiency, η bw , was deduced as 0.59 ± 0.02 in the air atmosphere at an ambient pressure from 30 to 101 kPa for a constant laser fluence at 115 J/cm 2 . Moreover, the momentum coupling of a circular disk target was formulated uniquely as a function of the dimensionless shock-wave radius and the ratio of the laser spot radius to the disk radius, while η bw could be approximated as constant for the laser fluence from 4.7 to 4.1 kJ/cm 2 , and the ambient pressure from 0.1 to 101 kPa.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-08-25
    Description: A bright green photoluminescence (PL) from 4 S 3∕2 → 4 I 15∕2 emission band in Er 3+ :YVO 4 single crystal has been observed with the excitation of an argon laser at 488.0 nm. More than two orders of PL enhancement have been obtained under the effect of magnetic fields, and the enhancement factor f reaches 170 when the applied magnetic field is 7.7 T under the sample temperature of 4.2 K. Unusually, the PL enhancements only happen at some certain magnetic fields ( B c s), and a decrease of sample temperature will lead to the increase of f and decrease of B c . The results confirm that this PL enhancement originates from the resonance excitation of the electron transitions induced by the cross of the laser energy and the absorption energy modulated by both the magnetic field and temperature. This special PL enhancement in Er 3+ :YVO 4 single crystal can be applied in the calibration of pulsed high magnetic field, detection of material fine energy structures, and modulation of magneto-optical devices.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-08-12
    Description: The effective workfunction of Al doped ZnO films (AZO) increased from 4.1 eV to 5.55 eV after surface modification with nanoscale molybdenum sub-oxides (MoO x ). Hole only devices with anodes consisting of 3 nm of MoO x on AZO exhibited a lower turn-on voltage (1.5 vs 1.8 V), and larger charge injection (190 vs 118 mA/cm 2 ) at the reference voltage, compared to indium tin oxide (ITO). AZO devices with 10 nm of MoO x exhibited the highest workfunction but performed poorly compared to devices with 3 nm of MoO x , or standard ITO. Ultraviolet photoelectron, X-ray photoelectron, and optical spectroscopies indicate that the 3 nm MoO x films are more reduced and farther away from MoO 3 stoichiometry than their 10 nm equivalents. The vacancies associated with non-stoichiometry result in donor-like gap states which we assign to partially occupied Mo 4d levels. We propose that Fowler-Nordheim tunneling from these levels is responsible for the reduction in threshold voltage measured in devices with 3 nm of MoO x . A schematic band diagram is proposed. The thicker MoO x layers are more stoichiometric and resistive, and the voltage drop across these layers dominates their electrical performance, leading to an increase in threshold voltage. The results indicate that AZO with MoO x layers of optimal thickness may be potential candidates for anode use in organic light emitting diodes.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2015-08-13
    Description: Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO 2 . In this work, we have introduced a columnar structure instead of the thick layer of porous TiO 2 used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ∼1 μ m 2 and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2015-08-13
    Description: Plasma actuators used for active flow control are widely studied because they could replace mechanical actuators. Industrial applications of these plasma actuators sometimes require a large surface plasma sheet in view of increasing the interaction region between the discharge and the incoming flow. Instead of using a typical two-electrode nanosecond pulsed dielectric barrier discharge for which the interaction region is limited to about 20 mm, this study proposes to characterize a nanosecond sliding discharge based on a three-electrode geometry in order to increase the extension length up to the electrode gap. This sliding discharge is compared to the typical nanosecond dielectric barrier discharge by means of electrical, optical, and mechanical diagnostics. Electrical characterization reveals that the deposited energy can be widely increased. Time-resolved Intensified Charge Coupled Device (iCCD) images of the discharge development over the dielectric surface highlight that the intensity and the propagation velocity of streamers are strongly affected by the DC voltage applied at the third electrode. Finally, qualitative and quantitative characterizations of the pressure wave due to the surrounding gas heating are proposed by means of Schlieren visualizations and high frequency pressure measurements, respectively.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2015-08-13
    Description: The dispersion state or degree of agglomeration of graphene is known to have a significant influence on the percolation threshold and electrical conductivity of graphene-based polymer nanocomposites. In addition, an imperfectly conducting interface and tunneling-assisted interfacial conductivity can also affect the overall conductivity. In this paper, a continuum theory is developed that considers all these factors. We first present a two-scale composite model consisting of graphene-rich regions serving as the agglomerates and a graphene-poor region as the matrix. We then introduce the effective-medium theory to determine the percolation threshold and electrical conductivity of the agglomerate and the composite. To account for the effect of imperfect interfaces, a thin layer of interphase with low conductivity is introduced to build a thinly coated graphene, while to account for the contribution of electron hopping from one graphene to another, Cauchy's statistical function which can reflect the increased tunneling activity near the percolation threshold is introduced. It is shown that the percolation threshold of the nanocomposite is controlled by two dispersion parameters, a and b , and the aspect ratio of agglomerates, α R . It is also shown that the overall conductivity of the nanocomposite mainly depends on the intrinsic conductivity of graphene and polymer matrix, the intrinsic interfacial resistivity, and the tunneling-assisted hopping process. We highlight the conceived theory by demonstrating that a set of recently measured data on the percolation threshold and electrical conductivity of graphene/polystyrene nanocomposites can be well captured by it.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-07-30
    Description: We investigate the use of AgSn alloys as the spacer layer in current-perpendicular-to-the-plane magnetoresistance devices. Alloying with Sn increases resistivity but results in a reasonably long (〉10 nm) spin-diffusion length, so large magnetoresistance can be achieved with thin AgSn spacers. Compared to Ag thin films, AgSn forms smaller grain sizes, reduced roughness, and exhibits less interdiffusion upon annealing, resulting in decreased interlayer magnetic coupling in exchange biased spin-valves. AgSn also shows improved corrosion resistance compared to Ag, which is advantageous for nanofabrication, including magnetic recording head sensors. Combining a AgSn spacer with Co-based Heusler alloy ferromagnet in an exchange biased, polycrystalline trilayer thinner than 12 nm results in magnetoresistance values up to 15% at room temperature.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-08-04
    Description: Theoretical conditions to excite self-oscillation in a spin torque oscillator consisting of a perpendicularly magnetized free layer and an in-plane magnetized pinned layer are investigated by analytically solving the Landau-Lifshitz-Gilbert equation. The analytical relation between the current and oscillation frequency is derived. It is found that a large amplitude oscillation can be excited by applying a small field pointing to the direction anti-parallel to the magnetization of the pinned layer. The validity of the analytical results is confirmed by comparing with numerical simulation, showing good agreement especially in a low current region.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-08-04
    Description: For GaP-on-Si(100) heteroepitaxy, currently considered as a model system for monolithic integration of III–V semiconductors on Si(100), the surface steps of Si(100) have a major impact on the quality of the GaP film. Monoatomic steps cause antiphase domains in GaP with detrimental electronic properties. A viable route is to grow the III–V epilayer on single-domain Si(100) with biatomic steps, but preferably not at the expense of reduced terrace widths introduced by miscut substrates. We have performed in situ investigations of the influence of Ga deposition on the kinetics of surface steps and terraces of Si(100) at substrate temperatures above 600 °C by low-energy electron microscopy. Starting from nearly equally distributed T A and T B terraces of a two-domain Si(100) surface, submonolayer deposition of Ga results in a transformation into a surface dominated by T A terraces and biatomic D A steps. This transformation is reversible, and Si(100) with monoatomic steps is recovered upon termination of the Ga flux. Under conditions of higher coverages (but still below 0.25 monolayer), we observe restructuring into a surface with T B dominance, similar to the findings of Hara et al. [J. Appl. Phys. 98 , 083515 (2005)]. The occurrence and mutual transformations of surface structures with different terrace and step structures in a narrow range of temperatures and Ga deposition rates is discussed.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-08-04
    Description: Frequency-dependent permeability tensor for unsaturated polycrystalline ferrites is derived through an effective medium approximation that combines both domain-wall motion and rotation of domains in a single consistent scattering framework. Thus derived permeability tensor is averaged on a distribution function of the free energy that encodes paramagnetic states for anhysteretic loops. The initial permeability is computed, and frequency spectra are given by varying macroscopic remanent field.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-08-04
    Description: We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-08-04
    Description: Doping mechanisms of Mn in GaAs nanowires (NWs) that have been grown self-catalytically at 600 °C by molecular beam epitaxy (MBE) are investigated using advanced electron microscopy techniques and atom probe tomography. Mn is found to be incorporated primarily in the form of non-magnetic tetragonal Ga 0.82 Mn 0.18 nanocrystals in Ga catalyst droplets at the ends of the NWs, while trace amounts of Mn (22 ± 4 at. ppm) are also distributed randomly in the NW bodies without forming clusters or precipitates. The nanocrystals are likely to form after switching off the reaction in the MBE chamber, since they are partially embedded in neck regions of the NWs. The Ga 0.82 Mn 0.18 nanocrystals and the low Mn concentration in the NW bodies are insufficient to induce a ferromagnetic phase transition, suggesting that it is difficult to have high Mn contents in GaAs even in 1-D NW growth via the vapor-liquid-solid process.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-08-04
    Description: The current-perpendicular-to-plane giant magnetoresistance (MR) devices with full-Heulser Co 2 MnAl (CMA) electrodes and a Ag spacer have been simulated to investigate the relationship between the transport properties and the structural disordering of electrodes by performing first-principles electronic structure and ballistic transport calculations. The CMA electrode has nearly negligible interfacial roughness in both L 2 1 and B 2-types. The transmission coefficient is found strongly dependent on the structures of the trilayers for different structural CMA electrodes. High majority-spin electron conductance in the magnetization parallel configuration turns up in the entire -plane and the MR ratio reaches as high as over 90% for the B 2-based CMA/Ag/CMA magnetic trilayers. In contrast, the L 2 1 -based one has ∼60% MR ratio resulting from much lower bulk spin-asymmetry coefficient ( β ), which might be caused by the vibrational spin-polarization in each atomic layer adjacent to the interfaces in the corresponding model. The patterns of indicates that B 2-based CMA/Ag/CMA magnetic trilayers are promising giant magnetoresistance junctions with high performance. T σ ( E , k → / / ) k → T σ ( E , k → / / )
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-08-04
    Description: The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-08-04
    Description: This paper provides a detailed description explaining how to calculate the relation between the silicon Raman frequency and local stress or strain in the silicon, applied to stress measurements in microelectronics. This relation is well known for measurements from the (100) surface of silicon. However, it is often used in the wrong way, neglecting non-zero stress tensor elements. Especially, in current 3D microelectronics technology, where the stress caused by through Si vias or micro-bumps is of large importance, the vertical stress component, which highly affects the measured Raman frequency shift, is often erroneously neglected. In addition, the equations for the (100) surface are also often used incorrectly for cross-sectional measurements from a (110) surface. In this paper, different ways to calculate the relation between Raman frequency and triaxial stress, and the related Raman peak intensities, are discussed in detail.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-08-04
    Description: HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensive microstructural damage resulting from the temperature cycle and solid-state phase transition.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-08-05
    Description: A magnetization study of a La 2 Co 7 single crystal has obtained the following anisotropy constants: K 1  = 1.4 MJ/m 3 and K 2  = 0.02 MJ/m 3 (at room temperature). The corresponding anisotropy field is 6.7 T; an earlier report of a much higher value (17 T) has not been confirmed. A significant (10%) magnetization anisotropy has been observed. Density-functional calculations are in qualitative agreement with the new data.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-08-05
    Description: We propose a new approach for energy conversion from a dc electric field to tunable terahertz emission based on hybrid semiconductors by combining two-dimensional (2D) crystalline layers and a thick conducting material with possible applications for chemical analysis, security scanning, medical (single-molecule) imaging, and telecommunications. The hybrid nano-structure may consist of a single or pair of sheets of graphene, silicene, or a 2D electron gas. When an electric current is passed through a 2D layer, we discover that two low-energy plasmon branches exhibit a characteristic loop in their dispersion before they merge into an unstable region beyond a critical wave vector q c . This finite q c gives rise to a wavenumber cutoff in the emission dispersion of the surface plasmon induced instability and emission of radiation (spiler). However, there is no instability for a single driven layer far from the conductor, and the instability of an isolated pair of 2D layers occurs without a wavenumber cutoff. The wavenumber cutoff is found to depend on the conductor electron density, layer separation, distances of layers from the conductor surface, and the driving-current strength.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-08-05
    Description: Multicaloric stacks consisting of a magnetocaloric film on a piezoelectric substrate promise improved caloric properties as the transition temperature can be controlled by both magnetic and electric fields. We present epitaxially grown magnetocaloric Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg 1/3 Nb 2/3 ) 0.72 Ti 0.28 O 3 substrates. Structure and microstructure of two samples, being in the austenitic and martensitic state at room temperature, are investigated by X-ray diffraction in two- and four-circle geometry and by atomic force microscopy. In addition, high temperature magnetometry was performed on the latter sample. The combination of these methods allows separating the influence of epitaxial growth and martensitic transformation. A preferential alignment of twin boundaries is observed already in the as-deposited state, which indicates the presence of prestress, without applying an electric field to the substrate. A temperature-magnetic field phase diagram is presented, which demonstrates the inverse magnetocaloric effect of the epitaxial Ni-Mn-Ga-Co film.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-08-08
    Description: We explore the intrinsic feature of electrocaloric effect (ECE) accompanied by ferroelectric (FE)-paraelectric (PE) transition for displacive-type organic ferroelectrics using Green's function theory. It is demonstrated that decreasing elastic constant K or increasing spin-lattice coupling λ can enhance the ECE, as well as polarization P and transition temperature T C . Indeed, one expects that the optimal operating temperature for solid-state refrigeration is around room temperature, at which the ECE achieves its maximum. As T C is tuned to ∼310 K, it presents larger ECE response and remanent polarization with lower coercive field for smaller K value, suggesting that well flexible displacive-type organic ferroelectrics are excellent candidates both for electric cooling and data storage in the design of nonvolatile FE random-access memories. Furthermore, in an electric field, it provides a bridge between a Widom line that denotes FE-PE crossover above T C and a metaelectric transition line below T C that demonstrates an FE switching behavior with an antiparallel field.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...