ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6,305)
  • Wiley  (6,305)
  • American Chemical Society
  • Nature Publishing Group
  • Journal of Geophysical Research JGR - Space Physics  (5,656)
  • 7531
  • 1
    Publication Date: 2015-08-11
    Description: This study focuses on the 15 May 2005 geomagnetic superstorm, and aims to investigate the global variation of positive and negative storm phases and their development. Observations are provided by a series of global total electron content (TEC) maps, and multi-instrument line plots. Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe) simulations are also employed. Results reveal some sunward streaming plumes of storm-enhanced density (SED) over Asia and a well-developed mid-latitude trough over North America forming isolated positive and negative storms respectively. The simultaneous development of positive and negative storms over North America is also shown. Then, some enhanced auroral ionizations maintained by strong equatorward neutral winds appeared in the depleted night-time ionosphere. Meanwhile, the northern night-time polar region became significantly depleted as the SED plume plasma could not progress further than the dayside cusp. Oppositely, a polar tongue of ionization (TOI) developed in the daytime southern polar region. According to CTIP simulations, solar heating locally maximized (minimized) over the southern (northern) magnetic pole. Furthermore, strong upward surges of molecular rich air created O/N 2 decreases both in the auroral zone and in the trough region while some SED related downward surges produced O/N 2 increases. From these results we conclude for the time period studied that 1) composition changes contributed to the formation of positive and negative storms, 2) strengthening polar convection and increasing solar heating of the polar cap supported polar TOI development, and 3) a weaker polar convection and minimized solar heating of the polar cap aided the depletion of polar plasma.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-09
    Description: We develop a new analytical model of the Alfvén wing that is generated by the interaction between a planetary moon's ionosphere and its magnetospheric environment. While preceding analytical approaches assumed the obstacle's height-integrated ionospheric conductivities to be spatially constant, the model presented here can take into account a continuous conductance profile that follows a power law. The electric potential in the interaction region, determining the electromagnetic fields of the Alfvén wing, can then be calculated from an Euler-type differential equation. In this way, the model allows to include a realistic representation of the “suspension bridge”-like conductance profile expected for the moon's ionosphere. The major drawback of this approach is its restriction to interaction scenarios where the ionospheric Pedersen conductance is large compared to the Hall conductance and thus, the Alfvénic perturbations are approximately symmetric between the planet-facing and the planet-averted hemispheres of the moon. The model is applied to the hemisphere coupling effect observed at Enceladus, i.e., to the surface currents and the associated magnetic discontinuities that arise from a north-south asymmetry of the obstacle to the plasma flow. We show that the occurrence of this effect is very robust against changes in the conductance profile of Enceladus' plume and we derive upper limits for the strength of the magnetic field jumps generated by the hemisphere coupling effect. During all eleven reported detections of the hemisphere coupling currents at Enceladus, the observed magnetic field jumps were clearly weaker than the proposed limits. Our findings are also relevant for future in-situ studies of putative plumes at the Jovian moon Europa.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-08
    Description: Ground magnetic measurements provide a unique database in understanding space weather. The continuous geomagnetic records from Colaba-Alibag observatories in India contain historically longest and continuous observations from 1847 to present date. Some of the super intense geomagnetic storms occurred prior to 1900 have been revisited and investigated in order to understand the probable interplanetary conditions associated with intense storms. Following the Burton et al . [1975], an empirical relationship is derived for estimation of interplanetary electric field (IEFy) from the variations of Dst index and ΔH at Colaba-Alibag observatories. The estimated IEFy values using Dst and ΔH ABG variations agree well with the observed IEFy, calculated using ACE (Advanced Composition Explorer) satellite observations for intense geomagnetic storms in solar cycle 23. This study will provide the uniqueness of each event and provide important insights into possible interplanetary conditions for intense geomagnetic storms and probable frequency of their occurrence.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-08
    Description: We report sub-packet structures found in electromagnetic ion cyclotron (EMIC) rising tone emissions observed by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) probles. We investigate three typical cases in detail. The first case shows a continuous single rising tone with obvious four sub-packets, and the second case is characterized by a patchy emission with multiple sub-packets triggered in a broadband frequency. The third case looks like a smooth rising tone without any obvious sub-packet in the FFT spectrum, while its amplitude contains small peaks with increasing frequencies. The degree of polarization of each sub-packet is generally higher than 0.8 with a left-handed polarization, and the wave direction of the sub-packets is typically field-aligned. We show that the time evolution of the observed frequency and amplitude can be reproduced consistently by nonlinear growth theory. We also compare the observed time span of each sub-packet structure with the theoretical trapping time for second-order cyclotron resonance. They are consistent, indicating that an individual sub-packet is generated through a nonlinear wave growth process which excites an element in accordance with the theoretically predicted optimum amplitude.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-08
    Description: Lunar mini-magnetosphere formed by the interaction between the solar wind and a local crustal field often has a scale size comparable to the ion inertia length, in which the Hall effect is very important. In this paper, the general characteristics of lunar mini-magnetosphere are investigated by three-dimensional Hall MHD simulations. It is found that the solar wind ions can penetrate across the magnetopause to reduce the density depletion and cause the merging of the shock and magnetopause, but the electrons are still blocked at the boundary. Besides, asymmetric convection occurs, resulting in the magnetic field piles up on one side while the plasma gathers on the other side. The size of the mini-magnetosphere is determined by both the solar zenith angle and the magnetosonic Mach number, while the Hall effect is determined by the ratio of the pressure balance distance to the ion inertia length. When the ratio gets small, the shock may disappear. Finally, we present a global Hall MHD simulation for comparison with the observation from Chang'E-2 satellite on Oct 11, 2010 and confirm that Chang'E-2 flew across compression regions of two separate mini-magnetospheres.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-08
    Description: Accurate evaluation of the physical processes during the substorm growth phase, including formation of field-aligned currents (FACs), isotropization by current sheet scattering, instabilities, and ionosphere-magnetosphere connection relies on knowing the realistic 3 dimensional (3D) magnetic field configuration, which cannot be reliably provided by current available empirical models. We have established a 3D substorm growth phase magnetic field model, which is uniquely constructed from empirical plasma sheet pressures under the constraint of force balance. We investigated the evolution of model pressure and magnetic field responding to increasing energy loading, and their configurations under different solar wind dynamic pressure (P SW ) and sunspot number. Our model reproduces the typical growth phase evolution signatures: plasma pressure increases, magnetic field lines become more stretched, current sheet becomes thinner, and the Region-2 FACs are enhanced. The model magnetic fields agree quantitatively well with observed fields. The magnetic field is substantially more stretched under higher P SW while the dependence on sunspot number is non-linear and less substantial. By applying our modeling to a substorm event, we found that (1) the equatorward movement of proton aurora during the growth phase is mainly due to continuous stretching of magnetic field lines, (2) the ballooning instability is more favorable during late growth phase around midnight tail where there is a localized plasma beta peak, and (3) the equatorial mapping of the breakup auroral arc is at X ~ –14 R E near midnight, coinciding with the location of the maximum growth rate for the ballooning instability.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-21
    Description: We investigate localized magnetosheath and solar wind density enhancements, associated with clear magnetic field changes, and therefore referred to as magnetosheath/solar wind plasmoids, respectively. Using Cluster data, we show that there are two distinct populations of magnetosheath plasmoids, one associated with a decrease of magnetic field strength (diamagnetic plasmoids), and one with an increased magnetic field strength (paramagnetic plasmoids). The diamagnetic magnetosheath plasmoids have scale sizes of the order of 1–10 R E , while the paramagnetic ones are an order of magnitude smaller. The diamagnetic plasmoids are not associated with any change in the magnetosheath plasma flow velocity, and they are classified as embedded plasmoids in the terminology of Karlsson et al. (2012). The paramagnetic plasmoids may either be embedded or associated with increases in flow velocity (fast plasmoids). A search for plasmoids in the pristine solar wind resulted in identification of62 diamagnetic plasmoids with very similar properties to the magnetosheath diamagnetic plasmoids, making it probable that the solar wind is the source of these structures. No paramagnetic plasmoids are found in the pristine solar wind, indicating that these are instead created at the bow shock or in the magnetosheath. We discuss the relation of the plasmoids to the phenomenon of magnetosheath jets, with which they have many properties in common, and suggest that the paramagnetic plasmoids can be regarded as a subset of these, or a closely related phenomenon. We also discuss how the results from this study relate to theories addressing the formation of magnetosheath jets.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-21
    Description: We present an empirical model of the high-latitude air density at 450 km, derived from accelerometer measurements by CHAMP and GRACE satellites during 2002–2006, which we call HANDY ( H igh-latitude A tmospheric N eutral D ensit Y ). HANDY consists of a quiet model and disturbance model. The quiet model represents the background thermospheric density for “zero geomagnetic activity” conditions. The disturbance model represents the response of the thermospheric density to solar wind forcing at high latitudes. The solar wind inputs used are the following: (1) solar wind electric field E SW , (2) interplanetary magnetic field (IMF) clock angle C SW , and (3) solar wind dynamic pressure P SW . Both quiet and disturbance models are constructed on the basis of spherical harmonic function fitting to the data. Magnetic coordinates are used for the disturbance model, while geographical coordinates are used for the quiet model. HANDY reproduces main features of the solar wind influence on the high-latitude thermospheric density, such as the IMF B y effect that produces a hemispheric asymmetry in the density distribution.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-21
    Description: Using the OMNI data for period 1976–2000 we investigate the temporal profiles of 20 plasma and field parameters in the disturbed large-scale types of solar wind (SW): CIR, ICME (both MC and Ejecta) and Sheath as well as the interplanetary shock (IS). To take into account the different durations of SW types we use the double superposed epoch analysis (DSEA) method: re-scaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide. As the analyzed SW types can interact with each other and change parameters as a result of such interaction, we investigate separately 8 sequences of SW types: (1) CIR, (2) IS/CIR, (3) Ejecta, (4) Sheath/Ejecta, (5) IS/Sheath/Ejecta, (6) MC, (7) Sheath/MC, and (8) IS/Sheath/MC. The main conclusion is that the behavior of parameters in Sheath and in CIR are very similar both qualitatively and quantitatively. Both the high-speed stream (HSS) and the fast ICME play a role of pistons which push the plasma located ahead them. The increase of speed in HSS and ICME leads at first to formation of compression regions (CIR and Sheath, respectively), and then to IS. The occurrence of compression regions and IS increases the probability of growth of magnetospheric activity.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-21
    Description: Using fully kinetic simulations, we study the x-line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single x-line, that has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the x-line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through the corresponding 2D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit is consistent with the orientation shift of the most unstable linear tearing mode in a electron-scale current sheet.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...