ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4,821)
  • 2015-2019  (2,874)
  • 1940-1944  (1,947)
  • Journal of the Franklin Institute  (825)
  • 3441
  • Mathematics  (4,821)
Collection
  • Articles  (4,821)
Publisher
Years
Year
Topic
  • 1
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 10 July 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of the Franklin Institute〈/p〉 〈p〉Author(s): Yaonan Shan, Kun She, Shouming Zhong, Jun Cheng, Wenyong Wang, Can Zhao〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉This paper investigates the passivity of Markovian jump discrete-time systems (MJDTSs) with channel fading via event-triggered state feedback control. First, the concerned MJDTSs contain infinitely distributed delays and switching rules with partially known transition probability (TP) information. Next, the fading channel, as an unreliable channel, is introduced into MJDTSs to better reflect the engineering practice in networked environment. Due to the present of channel fading, a series of random variables satisfying some certain probability density functions (PDFs) will be obstacles in the process of proof. Then, an event-triggered controller is designed for MJDTSs with channel fading and incomplete transition probability (ITP) for the first time. Thanks to this event-triggered mechanism, the state feedback control could greatly reduce energy consumption during transmission. Subsequently, under the above controller, we obtain some novel sufficient criteria in the form of linear matrix inequalities (LMIs) to ensure the passivity of closed-loop system. Finally, some simulation results are provided to demonstrate the feasibility and effectiveness of the proposed theoretical method.〈/p〉〈/div〉
    Print ISSN: 0093-7029
    Electronic ISSN: 1879-2693
    Topics: Mathematics , Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 10 July 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of the Franklin Institute〈/p〉 〈p〉Author(s): Ahmed Bendib, Aissa Chouder, Kamel Kara, Abdelhammid Kherbachi, Said Barkat, Walid Issa〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉In a microgrid (MG) topology, the secondary control is introduced to compensate for the voltage amplitude and frequency deviations, mainly caused by the inherent characteristics of the droop control strategy. This paper proposes an accurate approach to derive small signal models of the frequency and amplitude voltage at the point of common coupling (PCC) of a single-phase MG by analyzing the dynamics of the second-order generalized integrator-based frequency-locked loop (SOGI-FLL). The frequency estimate model is then introduced in the frequency restoration control loop, while the derived model of the amplitude estimate is introduced for the voltage restoration loop. Based on the obtained models, the MG stability analysis and proposed controllers’ parameters tuning are carried out. Also, this study includes the modeling and design of the synchronization control loop that enables a seamless transition from island mode to grid-connected mode operation. Simulation and practical experiments of a hierarchical control scheme, including traditional droop control and the proposed secondary control for two single-phase parallel inverters, are implemented to confirm the effectiveness and the robustness of the proposal under different operating conditions. The obtained results validate the proposed modeling approach to provide the expected transient response and disturbance rejection in the MG.〈/p〉〈/div〉
    Print ISSN: 0093-7029
    Electronic ISSN: 1879-2693
    Topics: Mathematics , Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 4 July 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of the Franklin Institute〈/p〉 〈p〉Author(s): Xi Wang, Shukai Li, Tao Tang〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉With the objective to promote the efficiency of heavy haul transportation, this paper investigates the efficiently intermittent cruise control problem for heavy haul trains. Based on the concept of periodically intermittent control, the closed-loop form of the error dynamic state-space model for heavy haul trains is given considering uncertain parameters, which is different from existing heavy haul train control methods in that the control forces are only provided in part of the running period. To facilitate the controller design, a set of linear matrix inequalities (LMIs) are presented as the sufficient conditions for the existence of the periodically intermittent controller, which guarantees both the speed tracking error and the relative coupler displacements are exponentially stable at the equilibrium state. Simulation results indicate that the proposed control scheme can significantly improve the control efficiency without sacrificing too much on speed tracking performance.〈/p〉〈/div〉
    Print ISSN: 0093-7029
    Electronic ISSN: 1879-2693
    Topics: Mathematics , Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 4 July 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of the Franklin Institute〈/p〉 〈p〉Author(s): Xin Hu, Chi Huang, Jianquan Lu, Jinde Cao〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉This paper studies the stabilization problem of Boolean control networks with stochastic impulses, where stochastic impulses model is described as a series of possible regulatory models with corresponding probabilities. The stochastic impulses model makes the research more realistic. The global stabilization problem is trying to drive all states to reach the predefined target with probability 1. A necessary and sufficient condition is presented to judge whether a given system is globally stabilizable. Meanwhile, an algorithm is proposed to stabilize the given system by designing a state feedback controller and different impulses strategies. As an extension, these results are applied to analyze the global stabilization to a fixed state of probability Boolean control networks with stochastic impulses. Finally, two examples are given to demonstrate the effectiveness of the obtained results.〈/p〉〈/div〉
    Print ISSN: 0093-7029
    Electronic ISSN: 1879-2693
    Topics: Mathematics , Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 29 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of the Franklin Institute〈/p〉 〈p〉Author(s): Quanxin Zhu, S. Vimal Kumar, R. Raja, Fathalla Rihan〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉This paper addresses the issue of reliable feedback control of an uncertain aircraft flight control systems with disturbances via non-fragile sampled-data control approach. In particular, the parameter uncertainties are assumed to be randomly occurring which is described by the Bernoulli distributed sequences. By constructing a suitable Lyapunov-Krasovskii functional together with Wirtinger-based inequality, a new set of sufficient conditions in terms of linear matrix inequalities is obtained to ensure the asymptotic stability and extended dissipativity of the aircraft flight control systems not only when all actuators are operational, but also in case of some actuator failures. Finally, simulation results are conducted to validate the effectiveness of the proposed control design technique.〈/p〉〈/div〉
    Print ISSN: 0093-7029
    Electronic ISSN: 1879-2693
    Topics: Mathematics , Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 21 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of the Franklin Institute〈/p〉 〈p〉Author(s): Cheng Tan, Zhongchang Liu, Wing Shing Wong〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉This paper investigates the formation control of interconnected second-order systems. Each agent is assumed to be capable of measuring its own absolute velocity and the relative positions with respect to its neighboring agents, whereas the target formation is described by absolute positions of all agents in a global coordinate. For such formation control problems, no distributed control policy was reported in existing literature. This paper focuses on the string connection structure of the agents and proposes a distributed control policy that takes the form of purely state feedback without incorporating any feed-forward component. The closed-loop system equation is characterized by an oscillation matrix whose entries are the feedback controller gains. Formation control is accomplished by formulating the agents’ target positions as feedback controller gains. Moreover, it is shown that for agent models described by double integrators, each of the agents located at the two endpoints of the string structure should know its own absolute position. For a class of agent models where each agent’s acceleration depends on its own position, the control laws do not need to use the absolute position. For both system models, the target formations that are asymptotically reachable by the proposed control laws are specified explicitly. Numerical simulations have been conducted to illustrate the effectiveness of the theoretical results.〈/p〉〈/div〉
    Print ISSN: 0093-7029
    Electronic ISSN: 1879-2693
    Topics: Mathematics , Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 31 July 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of the Franklin Institute〈/p〉 〈p〉Author(s): Zhengjiang Zhang, Junghui Chen〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The design, tuning, and implementation of controllers are crucial for the solutions to control problems. Generalized minimum variance control (GMVC) has attractive properties and it is widely used for controller performance enhancement. The measured signals of process output variables, which are used as feedback signals, are generally subject to measurement noise. However, the GMVC theory assumes the feedback signals are the process outputs, which rarely consider the unavoidable measurement noise. By additionally considering the measurement noise, the control performance of GMVC with the measurement noise is analyzed in this paper. The dynamic data reconciliation (DDR) method, which uses the information of both the process model and the measurement data to reconcile the measured signals, is introduced. It is combined with GMVC to reduce the effect of the measurement noise on the results of GMVC. The effectiveness of GMVC combined with DDR is illustrated in two case studies, where the proposed method is compared with the original GMVC and the GMVC with the conventional digital filter. The results in both SISO and MIMO control systems show that the proposed GMVC combined with DDR can reduce the effect of the measurement noise and achieve better control performance.〈/p〉〈/div〉
    Print ISSN: 0093-7029
    Electronic ISSN: 1879-2693
    Topics: Mathematics , Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 31 July 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of the Franklin Institute〈/p〉 〈p〉Author(s): P. Baziana, G. Fragkouli, E. Sykas〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉In this paper we study a multi-channel network, each station of which is equipped with a network interface that has a receiver buffer of multiple packets. In this way, each station is able to receive multiple packets per time instant. We adopt a synchronous access protocol which is affected by the collisions over the multiple channels and the destination conflicts. The proposed protocol performance crucially depends on the size of the receiver buffer since it determines the packet rejection probability at destination. An analytical probabilistic model based on a Markovian process is adopted for the performance measures derivation by means of closed mathematical formulas. The proposed protocol is compared to relative ones that either totally ignore the receiver collisions or assume a receiver buffer of a single packet capacity. The numerical results show that the increase of the receiver buffer size improves the performance decisively, resulting in higher throughput and lower delay and rejection probability. Also, it is shown that the appropriate receiver buffer size per station in order for the rejections at destination to be effectively eliminated is not unlimited but is limited to three packets for 0.1% accepted maximum level of rejection probability.〈/p〉〈/div〉
    Print ISSN: 0093-7029
    Electronic ISSN: 1879-2693
    Topics: Mathematics , Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 17 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of the Franklin Institute〈/p〉 〈p〉Author(s): Chengyang Luo, Jianyong Yao, Jason Gu〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉This paper presents an extended state observer-based output feedback adaptive controller with a continuous LuGre friction compensation for a hydraulic servo control system. A continuous approximation of the LuGre friction model is employed, which preserves the main physical characteristics of the original model without increasing the complexity of the system stability analysis. By this way, continuous friction compensation is used to eliminate the majority of nonlinear dynamics in hydraulic servo system. Besides, with the development of a new parameter adaption law, the problems of parametric uncertainties are overcome so that more accurate friction compensation is realized. For another, the developed adaption law is driven by tracking errors and observation errors simultaneously. Thus, the burden of extended state observer to solve the remaining uncertainties is alleviated greatly and high gain feedback is avoided, which means better tracking performance and robustness are achieved. The designed controller handles not only matched uncertainties but also unmatched dynamics with requiring little system information, more importantly, it is based on output feedback method, in other words, the synthesized controller only relies on input signal and position output signal of the system, which greatly reduces the effects caused by signal pollution, measurement noise and other unexpected dynamics. Lyapunov-based analysis has proved this strategy presents a prescribed tracking transient performance and final tracking accuracy while obtaining asymptotic tracking performance in the presence of parametric uncertainties only. Finally, comparative experiments are conducted on a hydraulic servo platform to verify the high tracking performance of the proposed control strategy.〈/p〉〈/div〉
    Print ISSN: 0093-7029
    Electronic ISSN: 1879-2693
    Topics: Mathematics , Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 9 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of the Franklin Institute〈/p〉 〈p〉Author(s): Engin H. Copur, Ahmet C. Arican, Sinan Ozcan, Metin U. Salamci〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉State Dependent Riccati Equation (SDRE) methods have the considerable advantages over other nonlinear control methods. However, stability issues can be arisen in SDRE based control system due to the lack of the global asymptotic stability property. Therefore, the previous studies have usually shown that local asymptotic stability can be ensured by estimating a Region of Attraction (ROA) around the equilibrium point. These estimated regions for stability may become narrow or the condition to keep the states in this region may be very conservative. To resolve these issues, this paper proposes a novel SDRE method employing an update algorithm to re-estimate the ROA when the states tend to move out of the stable region. The tendency is checked using a condition which is developed based on a new theorem. The theorem proves that it is possible to redesign the previous ROA with respect to the current states lying close to its boundary for ensuring the “non-local” stability along the trajectory without the need of solving SDRE at each time instant, unlike the standard SDRE approach. Therefore, the new theorem is now able to enhance the stability of the SDRE based closed-loop control system. The feasibility of the proposed SDRE control method is tested in both simulations and experiments. A validated 3-DOF laboratory helicopter is used for experiments and the control objective for the helicopter is to realise a preplanned movement in both elevation and travel axes. The results reveal that the proposed SDRE approach enables the controlled plant to track the desired trajectory as satisfactorily as the standard SDRE approach, while only solving SDRE when needed. The proposed SDRE method reduces the computational load for practical implementation of the control algorithm whilst ensuring the stability over the operational region.〈/p〉〈/div〉
    Print ISSN: 0093-7029
    Electronic ISSN: 1879-2693
    Topics: Mathematics , Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...