ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (20,562)
  • Oxford University Press  (20,562)
  • Public Library of Science
  • Bioinformatics  (3,731)
  • 2184
  • 101
    Publication Date: 2015-05-27
    Description: Motivation: With the advent of meta-‘omics’ data, the use of metabolic networks for the functional analysis of microbial communities became possible. However, while network-based methods are widely developed for single organisms, their application to bacterial communities is currently limited. Results: Herein, we provide a novel, context-specific reconstruction procedure based on metaproteomic and taxonomic data. Without previous knowledge of a high-quality, genome-scale metabolic networks for each different member in a bacterial community, we propose a meta-network approach, where the expression levels and taxonomic assignments of proteins are used as the most relevant clues for inferring an active set of reactions. Our approach was applied to draft the context-specific metabolic networks of two different naphthalene-enriched communities derived from an anthropogenically influenced, polyaromatic hydrocarbon contaminated soil, with (CN2) or without (CN1) bio-stimulation. We were able to capture the overall functional differences between the two conditions at the metabolic level and predict an important activity for the fluorobenzoate degradation pathway in CN1 and for geraniol metabolism in CN2. Experimental validation was conducted, and good agreement with our computational predictions was observed. We also hypothesize different pathway organizations at the organismal level, which is relevant to disentangle the role of each member in the communities. The approach presented here can be easily transferred to the analysis of genomic, transcriptomic and metabolomic data. Contact: fplanes@ceit.es or mferrer@icp.csic.es Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2015-05-27
    Description: Motivation: Identifying microRNAs associated with diseases (disease miRNAs) is helpful for exploring the pathogenesis of diseases. Because miRNAs fulfill function via the regulation of their target genes and because the current number of experimentally validated targets is insufficient, some existing methods have inferred potential disease miRNAs based on the predicted targets. It is difficult for these methods to achieve excellent performance due to the high false-positive and false-negative rates for the target prediction results. Alternatively, several methods have constructed a network composed of miRNAs based on their associated diseases and have exploited the information within the network to predict the disease miRNAs. However, these methods have failed to take into account the prior information regarding the network nodes and the respective local topological structures of the different categories of nodes. Therefore, it is essential to develop a method that exploits the more useful information to predict reliable disease miRNA candidates. Results: miRNAs with similar functions are normally associated with similar diseases and vice versa. Therefore, the functional similarity between a pair of miRNAs is calculated based on their associated diseases to construct a miRNA network. We present a new prediction method based on random walk on the network. For the diseases with some known related miRNAs, the network nodes are divided into labeled nodes and unlabeled nodes, and the transition matrices are established for the two categories of nodes. Furthermore, different categories of nodes have different transition weights. In this way, the prior information of nodes can be completely exploited. Simultaneously, the various ranges of topologies around the different categories of nodes are integrated. In addition, how far the walker can go away from the labeled nodes is controlled by restarting the walking. This is helpful for relieving the negative effect of noisy data. For the diseases without any known related miRNAs, we extend the walking on a miRNA-disease bilayer network. During the prediction process, the similarity between diseases, the similarity between miRNAs, the known miRNA-disease associations and the topology information of the bilayer network are exploited. Moreover, the importance of information from different layers of network is considered. Our method achieves superior performance for 18 human diseases with AUC values ranging from 0.786 to 0.945. Moreover, case studies on breast neoplasms, lung neoplasms, prostatic neoplasms and 32 diseases further confirm the ability of our method to discover potential disease miRNAs. Availability and implementation: A web service for the prediction and analysis of disease miRNAs is available at http://bioinfolab.stx.hk/midp/ . Contact: guoyahong_hlju@163.com or lixia@hrbmu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2015-05-27
    Description: Motivation: On the semantic web, in life sciences in particular, data is often distributed via multiple resources. Each of these sources is likely to use their own International Resource Identifier for conceptually the same resource or database record. The lack of correspondence between identifiers introduces a barrier when executing federated SPARQL queries across life science data. Results: We introduce a novel SPARQL-based service to enable on-the-fly integration of life science data. This service uses the identifier patterns defined in the Identifiers.org Registry to generate a plurality of identifier variants, which can then be used to match source identifiers with target identifiers. We demonstrate the utility of this identifier integration approach by answering queries across major producers of life science Linked Data. Availability and implementation: The SPARQL-based identifier conversion service is available without restriction at http://identifiers.org/services/sparql . Contact: sarala@ebi.ac.uk
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2015-05-27
    Description: : Network pharmacology-based prediction of multi-targeted drug combinations is becoming a promising strategy to improve anticancer efficacy and safety. We developed a logic-based network algorithm, called Target Inhibition Interaction using Maximization and Minimization Averaging (TIMMA), which predicts the effects of drug combinations based on their binary drug-target interactions and single-drug sensitivity profiles in a given cancer sample. Here, we report the R implementation of the algorithm (TIMMA-R), which is much faster than the original MATLAB code. The major extensions include modeling of multiclass drug-target profiles and network visualization. We also show that the TIMMA-R predictions are robust to the intrinsic noise in the experimental data, thus making it a promising high-throughput tool to prioritize drug combinations in various cancer types for follow-up experimentation or clinical applications. Availability and implementation: TIMMA-R source code is freely available at http://cran.r-project.org/web/packages/timma/ . Contact: jing.tang@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2015-05-27
    Description: Motivation: Omics Pipe ( http://sulab.scripps.edu/omicspipe ) is a computational framework that automates multi-omics data analysis pipelines on high performance compute clusters and in the cloud. It supports best practice published pipelines for RNA-seq, miRNA-seq, Exome-seq, Whole-Genome sequencing, ChIP-seq analyses and automatic processing of data from The Cancer Genome Atlas (TCGA). Omics Pipe provides researchers with a tool for reproducible, open source and extensible next generation sequencing analysis. The goal of Omics Pipe is to democratize next-generation sequencing analysis by dramatically increasing the accessibility and reproducibility of best practice computational pipelines, which will enable researchers to generate biologically meaningful and interpretable results. Results: Using Omics Pipe, we analyzed 100 TCGA breast invasive carcinoma paired tumor-normal datasets based on the latest UCSC hg19 RefSeq annotation. Omics Pipe automatically downloaded and processed the desired TCGA samples on a high throughput compute cluster to produce a results report for each sample. We aggregated the individual sample results and compared them to the analysis in the original publications. This comparison revealed high overlap between the analyses, as well as novel findings due to the use of updated annotations and methods. Availability and implementation: Source code for Omics Pipe is freely available on the web ( https://bitbucket.org/sulab/omics_pipe ). Omics Pipe is distributed as a standalone Python package for installation ( https://pypi.python.org/pypi/omics_pipe ) and as an Amazon Machine Image in Amazon Web Services Elastic Compute Cloud that contains all necessary third-party software dependencies and databases ( https://pythonhosted.org/omics_pipe/AWS_installation.html ). Contact: asu@scripps.edu or kfisch@ucsd.edu Supplementary Information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2015-05-27
    Description: Motivation: Intrinsically disordered regions of proteins play an essential role in the regulation of various biological processes. Key to their regulatory function is the binding of molecular recognition features (MoRFs) to globular protein domains in a process known as a disorder-to-order transition. Predicting the location of MoRFs in protein sequences with high accuracy remains an important computational challenge. Method: In this study, we introduce MoRF CHiBi , a new computational approach for fast and accurate prediction of MoRFs in protein sequences. MoRF CHiBi combines the outcomes of two support vector machine (SVM) models that take advantage of two different kernels with high noise tolerance. The first, SVM S , is designed to extract maximal information from the general contrast in amino acid compositions between MoRFs, their surrounding regions (Flanks), and the remainders of the sequences. The second, SVM T , is used to identify similarities between regions in a query sequence and MoRFs of the training set. Results: We evaluated the performance of our predictor by comparing its results with those of two currently available MoRF predictors, MoRFpred and ANCHOR. Using three test sets that have previously been collected and used to evaluate MoRFpred and ANCHOR, we demonstrate that MoRF CHiBi outperforms the other predictors with respect to different evaluation metrics. In addition, MoRF CHiBi is downloadable and fast, which makes it useful as a component in other computational prediction tools. Availability and implementation: http://www.chibi.ubc.ca/morf/ . Contact: gsponer@chibi.ubc.ca . Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2015-05-27
    Description: Motivation : Cell fate decisions have a strong stochastic component. The identification of the underlying mechanisms therefore requires a rigorous statistical analysis of large ensembles of single cells that were tracked and phenotyped over time. Results : We introduce a probabilistic framework for testing elementary hypotheses on dynamic cell behavior using time-lapse cell-imaging data. Factor graphs, probabilistic graphical models, are used to properly account for cell lineage and cell phenotype information. Our model is applied to time-lapse movies of murine granulocyte-macrophage progenitor (GMP) cells. It decides between competing hypotheses on the mechanisms of their differentiation. Our results theoretically substantiate previous experimental observations that lineage instruction, not selection is the cause for the differentiation of GMP cells into mature monocytes or neutrophil granulocytes. Availability and implementation : The Matlab source code is available at http://treschgroup.de/Genealogies.html Contact : failmezger@mpipz.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2015-05-27
    Description: Motivation: Quantitative and qualitative assessment of biological data often produces small essential recurrent networks, containing 3–5 components called network motifs. In this context, model solutions for small network motifs represent very high interest. Results: Software package NetExplore has been created in order to generate, classify and analyze solutions for network motifs including up to six network components. NetExplore allows plotting and visualization of the solution's phase spaces and bifurcation diagrams. Availability and implementation: The current version of NetExplore has been implemented in Perl-CGI and is accessible at the following locations: http://line.bioinfolab.net/nex/NetExplore.htm and http://nex.autosome.ru/nex/NetExplore.htm . Contact: dmitri.papatsenko@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2015-05-27
    Description: : Cytochrome P450 (CYPs) are the major enzymes involved in drug metabolism and bioactivation. Inhibition models were constructed for five of the most popular enzymes from the CYP superfamily in human liver. The five enzymes chosen for this study, namely CYP1A2, CYP2D6, CYP2C19, CYP2C9 and CYP3A4, account for 90% of the xenobiotic and drug metabolism in human body. CYP enzymes can be inhibited or induced by various drugs or chemical compounds. In this work, a rule-based CYP inhibition prediction online server, CypRules, was created based on predictive models generated by the rule-based C5.0 algorithm. CypRules can predict and provide structural rulesets for CYP inhibition for each compound uploaded to the server. Capable of fast execution performance, it can be used for virtual high-throughput screening (VHTS) of a large set of testing compounds. Availability and implementation: CypRules is freely accessible at http://cyprules.cmdm.tw/ and models, descriptor and program files for all compounds are publically available at http://cyprules.cmdm.tw/sources/sources.rar . Contact: yjtseng@csie.ntu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-06-14
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-06-14
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2015-06-14
    Description: We introduce a new divide and conquer approach to deal with the problem of de novo genome assembly in the presence of ultra-deep sequencing data (i.e. coverage of 1000x or higher). Our proposed meta-assembler S licembler partitions the input data into optimal-sized ‘slices’ and uses a standard assembly tool (e.g. Velvet, SPAdes, IDBA_UD and Ray) to assemble each slice individually. S licembler uses majority voting among the individual assemblies to identify long contigs that can be merged to the consensus assembly. To improve its efficiency, S licembler uses a generalized suffix tree to identify these frequent contigs (or fraction thereof). Extensive experimental results on real ultra-deep sequencing data (8000x coverage) and simulated data show that S licembler significantly improves the quality of the assembly compared with the performance of the base assembler. In fact, most of the times, S licembler generates error-free assemblies. We also show that S licembler is much more resistant against high sequencing error rate than the base assembler. Availability and implementation: S licembler can be accessed at http://slicembler.cs.ucr.edu/ . Contact: hamid.mirebrahim@email.ucr.edu
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2015-06-14
    Description: Motivation: CYP2D6 is highly polymorphic gene which encodes the (CYP2D6) enzyme, involved in the metabolism of 20–25% of all clinically prescribed drugs and other xenobiotics in the human body. CYP2D6 genotyping is recommended prior to treatment decisions involving one or more of the numerous drugs sensitive to CYP2D6 allelic composition. In this context, high-throughput sequencing (HTS) technologies provide a promising time-efficient and cost-effective alternative to currently used genotyping techniques. To achieve accurate interpretation of HTS data, however, one needs to overcome several obstacles such as high sequence similarity and genetic recombinations between CYP2D6 and evolutionarily related pseudogenes CYP2D7 and CYP2D8 , high copy number variation among individuals and short read lengths generated by HTS technologies. Results: In this work, we present the first algorithm to computationally infer CYP2D6 genotype at basepair resolution from HTS data. Our algorithm is able to resolve complex genotypes, including alleles that are the products of duplication, deletion and fusion events involving CYP2D6 and its evolutionarily related cousin CYP2D7. Through extensive experiments using simulated and real datasets, we show that our algorithm accurately solves this important problem with potential clinical implications. Availability and implementation: Cypiripi is available at http://sfu-compbio.github.io/cypiripi . Contact: cenk@sfu.ca .
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2015-06-14
    Description: Metagenomic data, which contains sequenced DNA reads of uncultured microbial species from environmental samples, provide a unique opportunity to thoroughly analyze microbial species that have never been identified before. Reconstructing 16S ribosomal RNA, a phylogenetic marker gene, is usually required to analyze the composition of the metagenomic data. However, massive volume of dataset, high sequence similarity between related species, skewed microbial abundance and lack of reference genes make 16S rRNA reconstruction difficult. Generic de novo assembly tools are not optimized for assembling 16S rRNA genes. In this work, we introduce a targeted rRNA assembly tool, REAGO (REconstruct 16S ribosomal RNA Genes from metagenOmic data). It addresses the above challenges by combining secondary structure-aware homology search, zproperties of rRNA genes and de novo assembly. Our experimental results show that our tool can correctly recover more rRNA genes than several popular generic metagenomic assembly tools and specially designed rRNA construction tools. Availability and implementation: The source code of REAGO is freely available at https://github.com/chengyuan/reago . Contact: yannisun@msu.edu
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2015-06-14
    Description: The analysis of concentrations of circulating antibodies in serum (antibody repertoire) is a fundamental, yet poorly studied, problem in immunoinformatics. The two current approaches to the analysis of antibody repertoires [next generation sequencing (NGS) and mass spectrometry (MS)] present difficult computational challenges since antibodies are not directly encoded in the germline but are extensively diversified by somatic recombination and hypermutations. Therefore, the protein database required for the interpretation of spectra from circulating antibodies is custom for each individual. Although such a database can be constructed via NGS, the reads generated by NGS are error-prone and even a single nucleotide error precludes identification of a peptide by the standard proteomics tools. Here, we present the I g R epertoire C onstructor algorithm that performs error-correction of immunosequencing reads and uses mass spectra to validate the constructed antibody repertoires. Availability and implementation : I g R epertoire C onstructor is open source and freely available as a C++ and Python program running on all Unix-compatible platforms. The source code is available from http://bioinf.spbau.ru/igtools . Contact : ppevzner@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2015-06-14
    Description: Motivation: A crucial problem in genome assembly is the discovery and correction of misassembly errors in draft genomes. We develop a method called mis SEQ uel that enhances the quality of draft genomes by identifying misassembly errors and their breakpoints using paired-end sequence reads and optical mapping data. Our method also fulfills the critical need for open source computational methods for analyzing optical mapping data. We apply our method to various assemblies of the loblolly pine, Francisella tularensis , rice and budgerigar genomes. We generated and used stimulated optical mapping data for loblolly pine and F.tularensis and used real optical mapping data for rice and budgerigar. Results: Our results demonstrate that we detect more than 54% of extensively misassembled contigs and more than 60% of locally misassembled contigs in assemblies of F.tularensis and between 31% and 100% of extensively misassembled contigs and between 57% and 73% of locally misassembled contigs in assemblies of loblolly pine. Using the real optical mapping data, we correctly identified 75% of extensively misassembled contigs and 100% of locally misassembled contigs in rice, and 77% of extensively misassembled contigs and 80% of locally misassembled contigs in budgerigar. Availability and implementation: mis SEQ uel can be used as a post-processing step in combination with any genome assembler and is freely available at http://www.cs.colostate.edu/seq/ . Contact: muggli@cs.colostate.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2015-06-14
    Description: Motivation: High-dimensional single-cell snapshot data are becoming widespread in the systems biology community, as a mean to understand biological processes at the cellular level. However, as temporal information is lost with such data, mathematical models have been limited to capture only static features of the underlying cellular mechanisms. Results: Here, we present a modular framework which allows to recover the temporal behaviour from single-cell snapshot data and reverse engineer the dynamics of gene expression. The framework combines a dimensionality reduction method with a cell time-ordering algorithm to generate pseudo time-series observations. These are in turn used to learn transcriptional ODE models and do model selection on structural network features. We apply it on synthetic data and then on real hematopoietic stem cells data, to reconstruct gene expression dynamics during differentiation pathways and infer the structure of a key gene regulatory network. Availability and implementation: C++ and Matlab code available at https://www.helmholtz-muenchen.de/fileadmin/ICB/software/inferenceSnapshot.zip . Contact: fabian.theis@helmholtz-muenchen.de Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2015-06-14
    Description: Motivation: The estimation of species phylogenies requires multiple loci, since different loci can have different trees due to incomplete lineage sorting, modeled by the multi-species coalescent model. We recently developed a coalescent-based method, ASTRAL, which is statistically consistent under the multi-species coalescent model and which is more accurate than other coalescent-based methods on the datasets we examined. ASTRAL runs in polynomial time, by constraining the search space using a set of allowed ‘bipartitions’. Despite the limitation to allowed bipartitions, ASTRAL is statistically consistent. Results: We present a new version of ASTRAL, which we call ASTRAL-II. We show that ASTRAL-II has substantial advantages over ASTRAL: it is faster, can analyze much larger datasets (up to 1000 species and 1000 genes) and has substantially better accuracy under some conditions. ASTRAL’s running time is $$O({n}^{2}k|X{|}^{2})$$ , and ASTRAL-II’s running time is $$O(nk|X{|}^{2})$$ , where n is the number of species, k is the number of loci and X is the set of allowed bipartitions for the search space. Availability and implementation: ASTRAL-II is available in open source at https://github.com/smirarab/ASTRAL and datasets used are available at http://www.cs.utexas.edu/~phylo/datasets/astral2/ . Contact: smirarab@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2015-06-14
    Description: Motivation: Detecting modules of co-ordinated activity is fundamental in the analysis of large biological studies. For two-dimensional data (e.g. genes x patients), this is often done via clustering or biclustering. More recently, studies monitoring patients over time have added another dimension. Analysis is much more challenging in this case, especially when time measurements are not synchronized. New methods that can analyze three-way data are thus needed. Results: We present a new algorithm for finding coherent and flexible modules in three-way data. Our method can identify both core modules that appear in multiple patients and patient-specific augmentations of these core modules that contain additional genes. Our algorithm is based on a hierarchical Bayesian data model and Gibbs sampling. The algorithm outperforms extant methods on simulated and on real data. The method successfully dissected key components of septic shock response from time series measurements of gene expression. Detected patient-specific module augmentations were informative for disease outcome. In analyzing brain functional magnetic resonance imaging time series of subjects at rest, it detected the pertinent brain regions involved. Availability and implementation: R code and data are available at http://acgt.cs.tau.ac.il/twigs/ . Contact: rshamir@tau.ac.il Supplementary information : Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2015-06-14
    Description: Motivation: Sampling structural models and ranking them are the two major challenges of protein structure prediction. Traditional protein structure prediction methods generally use one or a few quality assessment (QA) methods to select the best-predicted models, which cannot consistently select relatively better models and rank a large number of models well. Results: Here, we develop a novel large-scale model QA method in conjunction with model clustering to rank and select protein structural models. It unprecedentedly applied 14 model QA methods to generate consensus model rankings, followed by model refinement based on model combination (i.e. averaging). Our experiment demonstrates that the large-scale model QA approach is more consistent and robust in selecting models of better quality than any individual QA method. Our method was blindly tested during the 11th Critical Assessment of Techniques for Protein Structure Prediction (CASP11) as MULTICOM group. It was officially ranked third out of all 143 human and server predictors according to the total scores of the first models predicted for 78 CASP11 protein domains and second according to the total scores of the best of the five models predicted for these domains. MULTICOM’s outstanding performance in the extremely competitive 2014 CASP11 experiment proves that our large-scale QA approach together with model clustering is a promising solution to one of the two major problems in protein structure modeling. Availability and implementation : The web server is available at: http://sysbio.rnet.missouri.edu/multicom_cluster/human/ . Contact : chengji@missouri.edu
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2015-06-14
    Description: Motivation: Inferring structural dependencies among a protein’s side chains helps us understand their coupled motions. It is known that coupled fluctuations can reveal pathways of communication used for information propagation in a molecule. Side-chain conformations are commonly represented by multivariate angular variables, but existing partial correlation methods that can be applied to this inference task are not capable of handling multivariate angular data. We propose a novel method to infer direct couplings from this type of data, and show that this method is useful for identifying functional regions and their interactions in allosteric proteins. Results: We developed a novel extension of canonical correlation analysis (CCA), which we call ‘kernelized partial CCA’ (or simply KPCCA), and used it to infer direct couplings between side chains, while disentangling these couplings from indirect ones. Using the conformational information and fluctuations of the inactive structure alone for allosteric proteins in the Ras and other Ras-like families, our method identified allosterically important residues not only as strongly coupled ones but also in densely connected regions of the interaction graph formed by the inferred couplings. Our results were in good agreement with other empirical findings. By studying distinct members of the Ras, Rho and Rab sub-families, we show further that KPCCA was capable of inferring common allosteric characteristics in the small G protein super-family. Availability and implementation: https://github.com/lsgh/ismb15 Contact: lsoltang@uwaterloo.ca
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2015-06-14
    Description: Motivation: The ability to jointly learn gene regulatory networks (GRNs) in, or leverage GRNs between related species would allow the vast amount of legacy data obtained in model organisms to inform the GRNs of more complex, or economically or medically relevant counterparts. Examples include transferring information from Arabidopsis thaliana into related crop species for food security purposes, or from mice into humans for medical applications. Here we develop two related Bayesian approaches to network inference that allow GRNs to be jointly inferred in, or leveraged between, several related species: in one framework, network information is directly propagated between species; in the second hierarchical approach, network information is propagated via an unobserved ‘hypernetwork’. In both frameworks, information about network similarity is captured via graph kernels, with the networks additionally informed by species-specific time series gene expression data, when available, using Gaussian processes to model the dynamics of gene expression. Results: Results on in silico benchmarks demonstrate that joint inference, and leveraging of known networks between species, offers better accuracy than standalone inference. The direct propagation of network information via the non-hierarchical framework is more appropriate when there are relatively few species, while the hierarchical approach is better suited when there are many species. Both methods are robust to small amounts of mislabelling of orthologues. Finally, the use of Saccharomyces cerevisiae data and networks to inform inference of networks in the budding yeast Schizosaccharomyces pombe predicts a novel role in cell cycle regulation for Gas1 (SPAC19B12.02c), a 1,3-beta-glucanosyltransferase. Availability and implementation: MATLAB code is available from http://go.warwick.ac.uk/systemsbiology/software/ . Contact: d.l.wild@warwick.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2015-06-14
    Description: Motivation: Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which are key s to understanding their evolutionary histories and functions. Although various structure alignment methods have been developed to successfully access the similarities of protein structures or certain types of interaction interfaces, existing alignment tools cannot directly align arbitrary types of interfaces formed by protein, DNA or RNA molecules. Specifically, they require a ‘ blackbox preprocessing ’ to standardize interface types and chain identifiers. Yet their performance is limited and sometimes unsatisfactory. Results: Here we introduce a novel method, PROSTA-inter, that automatically determines and aligns interaction interfaces between two arbitrary types of complex structures. Our method uses sequentially remote fragments to search for the optimal superimposition. The optimal residue matching problem is then formulated as a maximum weighted bipartite matching problem to detect the optimal sequence order-independent alignment. Benchmark evaluation on all non-redundant protein – DNA complexes in PDB shows significant performance improvement of our method over TM-align and iAlign (with the ‘ blackbox preprocessing ’ ). Two case studies where our method discovers, for the first time, structural similarities between two pairs of functionally related protein – DNA complexes are presented. We further demonstrate the power of our method on detecting structural similarities between a protein – protein complex and a protein – RNA complex, which is biologically known as a protein – RNA mimicry case. Availability and implementation: The PROSTA-inter web-server is publicly available at http://www.cbrc.kaust.edu.sa/prosta/ . Contact: xin.gao@kaust.edu.sa
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2015-06-14
    Description: Motivation: It remains both a fundamental and practical challenge to understand and anticipate motions and conformational changes of proteins during their associations. Conventional normal mode analysis (NMA) based on anisotropic network model (ANM) addresses the challenge by generating normal modes reflecting intrinsic flexibility of proteins, which follows a conformational selection model for protein–protein interactions. But earlier studies have also found cases where conformational selection alone could not adequately explain conformational changes and other models have been proposed. Moreover, there is a pressing demand of constructing a much reduced but still relevant subset of protein conformational space to improve computational efficiency and accuracy in protein docking, especially for the difficult cases with significant conformational changes. Method and results: With both conformational selection and induced fit models considered, we extend ANM to include concurrent but differentiated intra- and inter-molecular interactions and develop an encounter complex-based NMA (cNMA) framework. Theoretical analysis and empirical results over a large data set of significant conformational changes indicate that cNMA is capable of generating conformational vectors considerably better at approximating conformational changes with contributions from both intrinsic flexibility and inter-molecular interactions than conventional NMA only considering intrinsic flexibility does. The empirical results also indicate that a straightforward application of conventional NMA to an encounter complex often does not improve upon NMA for an individual protein under study and intra- and inter-molecular interactions need to be differentiated properly. Moreover, in addition to induced motions of a protein under study, the induced motions of its binding partner and the coupling between the two sets of protein motions present in a near-native encounter complex lead to the improved performance. A study to isolate and assess the sole contribution of intermolecular interactions toward improvements against conventional NMA further validates the additional benefit from induced-fit effects. Taken together, these results provide new insights into molecular mechanisms underlying protein interactions and new tools for dimensionality reduction for flexible protein docking. Availability and implementation: Source codes are available upon request. Contact: yshen@tamu.edu
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2015-06-14
    Description: : Ongoing advances in high-throughput technologies have facilitated accurate proteomic measurements and provide a wealth of information on genomic and transcript level. In proteogenomics, this multi-omics data is combined to analyze unannotated organisms and to allow more accurate sample-specific predictions. Existing analysis methods still mainly depend on six-frame translations or reference protein databases that are extended by transcriptomic information or known single nucleotide polymorphisms (SNPs). However, six-frames introduce an artificial sixfold increase of the target database and SNP integration requires a suitable database summarizing results from previous experiments. We overcome these limitations by introducing MSProGene, a new method for integrative proteogenomic analysis based on customized RNA-Seq driven transcript databases. MSProGene is independent from existing reference databases or annotated SNPs and avoids large six-frame translated databases by constructing sample-specific transcripts. In addition, it creates a network combining RNA-Seq and peptide information that is optimized by a maximum-flow algorithm. It thereby also allows resolving the ambiguity of shared peptides for protein inference. We applied MSProGene on three datasets and show that it facilitates a database-independent reliable yet accurate prediction on gene and protein level and additionally identifies novel genes. Availability and implementation: MSProGene is written in Java and Python. It is open source and available at http://sourceforge.net/projects/msprogene/ . Contact: renardb@rki.de
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2015-06-14
    Description: Motivation: DNA sequencing of multiple samples from the same tumor provides data to analyze the process of clonal evolution in the population of cells that give rise to a tumor. Results: We formalize the problem of reconstructing the clonal evolution of a tumor using single-nucleotide mutations as the variant allele frequency (VAF) factorization problem. We derive a combinatorial characterization of the solutions to this problem and show that the problem is NP-complete. We derive an integer linear programming solution to the VAF factorization problem in the case of error-free data and extend this solution to real data with a probabilistic model for errors. The resulting AncesTree algorithm is better able to identify ancestral relationships between individual mutations than existing approaches, particularly in ultra-deep sequencing data when high read counts for mutations yield high confidence VAFs. Availability and implementation: An implementation of AncesTree is available at: http://compbio.cs.brown.edu/software . Contact: braphael@brown.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2015-06-14
    Description: Motivation: With increasing availability of temporal real-world networks, how to efficiently study these data? One can model a temporal network as a single aggregate static network, or as a series of time-specific snapshots, each being an aggregate static network over the corresponding time window. Then, one can use established methods for static analysis on the resulting aggregate network(s), but losing in the process valuable temporal information either completely, or at the interface between different snapshots, respectively. Here, we develop a novel approach for studying a temporal network more explicitly, by capturing inter-snapshot relationships. Results: We base our methodology on well-established graphlets (subgraphs), which have been proven in numerous contexts in static network research. We develop new theory to allow for graphlet-based analyses of temporal networks. Our new notion of dynamic graphlets is different from existing dynamic network approaches that are based on temporal motifs (statistically significant subgraphs). The latter have limitations: their results depend on the choice of a null network model that is required to evaluate the significance of a subgraph, and choosing a good null model is non-trivial. Our dynamic graphlets overcome the limitations of the temporal motifs. Also, when we aim to characterize the structure and function of an entire temporal network or of individual nodes, our dynamic graphlets outperform the static graphlets. Clearly, accounting for temporal information helps. We apply dynamic graphlets to temporal age-specific molecular network data to deepen our limited knowledge about human aging. Availability and implementation: http://www.nd.edu/~cone/DG . Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2015-06-14
    Description: Motivation: Time-series observations from reporter gene experiments are commonly used for inferring and analyzing dynamical models of regulatory networks. The robust estimation of promoter activities and protein concentrations from primary data is a difficult problem due to measurement noise and the indirect relation between the measurements and quantities of biological interest. Results: We propose a general approach based on regularized linear inversion to solve a range of estimation problems in the analysis of reporter gene data, notably the inference of growth rate, promoter activity, and protein concentration profiles. We evaluate the validity of the approach using in silico simulation studies, and observe that the methods are more robust and less biased than indirect approaches usually encountered in the experimental literature based on smoothing and subsequent processing of the primary data. We apply the methods to the analysis of fluorescent reporter gene data acquired in kinetic experiments with Escherichia coli . The methods are capable of reliably reconstructing time-course profiles of growth rate, promoter activity and protein concentration from weak and noisy signals at low population volumes. Moreover, they capture critical features of those profiles, notably rapid changes in gene expression during growth transitions. Availability and implementation : The methods described in this article are made available as a Python package (LGPL license) and also accessible through a web interface. For more information, see https://team.inria.fr/ibis/wellinverter . Contact: Hidde.de-Jong@inria.fr Supplementary information : Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2015-06-14
    Description: Motivation: The interactions between microbial colonies through chemical signaling are not well understood. A microbial colony can use different molecules to inhibit or accelerate the growth of other colonies. A better understanding of the molecules involved in these interactions could lead to advancements in health and medicine. Imaging mass spectrometry (IMS) applied to co-cultured microbial communities aims to capture the spatial characteristics of the colonies’ molecular fingerprints. These data are high-dimensional and require computational analysis methods to interpret. Results: Here, we present a dictionary learning method that deconvolves spectra of different molecules from IMS data. We call this method MOLecular Dictionary Learning ( MOLDL ). Unlike standard dictionary learning methods which assume Gaussian-distributed data, our method uses the Poisson distribution to capture the count nature of the mass spectrometry data. Also, our method incorporates universally applicable information on common ion types of molecules in MALDI mass spectrometry. This greatly reduces model parameterization and increases deconvolution accuracy by eliminating spurious solutions. Moreover, our method leverages the spatial nature of IMS data by assuming that nearby locations share similar abundances, thus avoiding overfitting to noise. Tests on simulated datasets show that this method has good performance in recovering molecule dictionaries. We also tested our method on real data measured on a microbial community composed of two species. We confirmed through follow-up validation experiments that our method recovered true and complete signatures of molecules. These results indicate that our method can discover molecules in IMS data reliably, and hence can help advance the study of interaction of microbial colonies. Availability and implementation: The code used in this paper is available at: https://github.com/frizfealer/IMS_project . Contact: vjojic@cs.unc.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2015-06-14
    Description: Motivation: Approaches to identifying new risk loci, training risk prediction models, imputing untyped variants and fine-mapping causal variants from summary statistics of genome-wide association studies are playing an increasingly important role in the human genetics community. Current summary statistics-based methods rely on global ‘best guess’ reference panels to model the genetic correlation structure of the dataset being studied. This approach, especially in admixed populations, has the potential to produce misleading results, ignores variation in local structure and is not feasible when appropriate reference panels are missing or small. Here, we develop a method, Adapt-Mix, that combines information across all available reference panels to produce estimates of local genetic correlation structure for summary statistics-based methods in arbitrary populations. Results: We applied Adapt-Mix to estimate the genetic correlation structure of both admixed and non-admixed individuals using simulated and real data. We evaluated our method by measuring the performance of two summary statistics-based methods: imputation and joint-testing. When using our method as opposed to the current standard of ‘best guess’ reference panels, we observed a 28% decrease in mean-squared error for imputation and a 73.7% decrease in mean-squared error for joint-testing. Availability and implementation: Our method is publicly available in a software package called ADAPT-Mix available at https://github.com/dpark27/adapt_mix . Contact: noah.zaitlen@ucsf.edu
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2015-06-14
    Description: Motivation: Gene regulatory network (GRN) inference based on genomic data is one of the most actively pursued computational biological problems. Because different types of biological data usually provide complementary information regarding the underlying GRN, a model that integrates big data of diverse types is expected to increase both the power and accuracy of GRN inference. Towards this goal, we propose a novel algorithm named iRafNet: i ntegrative r a ndom f orest for gene regulatory ne t work inference. Results: iRafNet is a flexible, unified integrative framework that allows information from heterogeneous data, such as protein–protein interactions, transcription factor (TF)-DNA-binding, gene knock-down, to be jointly considered for GRN inference. Using test data from the DREAM4 and DREAM5 challenges, we demonstrate that iRafNet outperforms the original random forest based network inference algorithm (GENIE3), and is highly comparable to the community learning approach. We apply iRafNet to construct GRN in Saccharomyces cerevisiae and demonstrate that it improves the performance in predicting TF-target gene regulations and provides additional functional insights to the predicted gene regulations. Availability and implementation: The R code of iRafNet implementation and a tutorial are available at: http://research.mssm.edu/tulab/software/irafnet.html Contact: zhidong.tu@mssm.edu Supplementary information : Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2015-06-14
    Description: Motivation: Markov networks are undirected graphical models that are widely used to infer relations between genes from experimental data. Their state-of-the-art inference procedures assume the data arise from a Gaussian distribution. High-throughput omics data, such as that from next generation sequencing, often violates this assumption. Furthermore, when collected data arise from multiple related but otherwise nonidentical distributions, their underlying networks are likely to have common features. New principled statistical approaches are needed that can deal with different data distributions and jointly consider collections of datasets. Results: We present FuseNet , a Markov network formulation that infers networks from a collection of nonidentically distributed datasets. Our approach is computationally efficient and general: given any number of distributions from an exponential family, FuseNet represents model parameters through shared latent factors that define neighborhoods of network nodes. In a simulation study, we demonstrate good predictive performance of FuseNet in comparison to several popular graphical models. We show its effectiveness in an application to breast cancer RNA-sequencing and somatic mutation data, a novel application of graphical models. Fusion of datasets offers substantial gains relative to inference of separate networks for each dataset. Our results demonstrate that network inference methods for non-Gaussian data can help in accurate modeling of the data generated by emergent high-throughput technologies. Availability and implementation: Source code is at https://github.com/marinkaz/fusenet . Contact: blaz.zupan@fri.uni-lj.si Supplementary information: Supplementary information is available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2015-06-14
    Description: Motivation: A basic problem of broad public and scientific interest is to use the DNA of an individual to infer the genomic ancestries of the parents. In particular, we are often interested in the fraction of each parent’s genome that comes from specific ancestries (e.g. European, African, Native American, etc). This has many applications ranging from understanding the inheritance of ancestry-related risks and traits to quantifying human assortative mating patterns. Results: We model the problem of parental genomic ancestry inference as a pooled semi-Markov process. We develop a general mathematical framework for pooled semi-Markov processes and construct efficient inference algorithms for these models. Applying our inference algorithm to genotype data from 231 Mexican trios and 258 Puerto Rican trios where we have the true genomic ancestry of each parent, we demonstrate that our method accurately infers parameters of the semi-Markov processes and parents’ genomic ancestries. We additionally validated the method on simulations. Our model of pooled semi-Markov process and inference algorithms may be of independent interest in other settings in genomics and machine learning. Contact: jazo@microsoft.com
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2015-06-14
    Description: Motivation: Discerning genetic contributions to diseases not only enhances our understanding of disease mechanisms, but also leads to translational opportunities for drug discovery. Recent computational approaches incorporate disease phenotypic similarities to improve the prediction power of disease gene discovery. However, most current studies used only one data source of human disease phenotype. We present an innovative and generic strategy for combining multiple different data sources of human disease phenotype and predicting disease-associated genes from integrated phenotypic and genomic data. Results: To demonstrate our approach, we explored a new phenotype database from biomedical ontologies and constructed Disease Manifestation Network (DMN). We combined DMN with mimMiner, which was a widely used phenotype database in disease gene prediction studies. Our approach achieved significantly improved performance over a baseline method, which used only one phenotype data source. In the leave-one-out cross-validation and de novo gene prediction analysis, our approach achieved the area under the curves of 90.7% and 90.3%, which are significantly higher than 84.2% ( P 〈 e –4 ) and 81.3% ( P 〈 e –12 ) for the baseline approach. We further demonstrated that our predicted genes have the translational potential in drug discovery. We used Crohn’s disease as an example and ranked the candidate drugs based on the rank of drug targets. Our gene prediction approach prioritized druggable genes that are likely to be associated with Crohn’s disease pathogenesis, and our rank of candidate drugs successfully prioritized the Food and Drug Administration-approved drugs for Crohn’s disease. We also found literature evidence to support a number of drugs among the top 200 candidates. In summary, we demonstrated that a novel strategy combining unique disease phenotype data with system approaches can lead to rapid drug discovery. Availability and implementation: nlp.case.edu/public/data/DMN Contact: rxx@case.edu
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2015-06-14
    Description: Motivation: The data gathered by the Pan-Cancer initiative has created an unprecedented opportunity for illuminating common features across different cancer types. However, separating tissue-specific features from across cancer signatures has proven to be challenging. One of the often-observed properties of the mutational landscape of cancer is the mutual exclusivity of cancer driving mutations. Even though studies based on individual cancer types suggested that mutually exclusive pairs often share the same functional pathway, the relationship between across cancer mutual exclusivity and functional connectivity has not been previously investigated. Results: We introduce a classification of mutual exclusivity into three basic classes: within tissue type exclusivity, across tissue type exclusivity and between tissue type exclusivity. We then combined across-cancer mutual exclusivity with interactions data to uncover pan-cancer dysregulated pathways. Our new method, Mutual Exclusivity Module Cover (MEMCover) not only identified previously known Pan-Cancer dysregulated subnetworks but also novel subnetworks whose across cancer role has not been appreciated well before. In addition, we demonstrate the existence of mutual exclusivity hubs, putatively corresponding to cancer drivers with strong growth advantages. Finally, we show that while mutually exclusive pairs within or across cancer types are predominantly functionally interacting, the pairs in between cancer mutual exclusivity class are more often disconnected in functional networks. Contact: przytyck@ncbi.nlm.nih.gov Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2015-06-14
    Description: Motivation: Phylogenetic algorithms have begun to see widespread use in cancer research to reconstruct processes of evolution in tumor progression. Developing reliable phylogenies for tumor data requires quantitative models of cancer evolution that include the unusual genetic mechanisms by which tumors evolve, such as chromosome abnormalities, and allow for heterogeneity between tumor types and individual patients. Previous work on inferring phylogenies of single tumors by copy number evolution assumed models of uniform rates of genomic gain and loss across different genomic sites and scales, a substantial oversimplification necessitated by a lack of algorithms and quantitative parameters for fitting to more realistic tumor evolution models. Results: We propose a framework for inferring models of tumor progression from single-cell gene copy number data, including variable rates for different gain and loss events. We propose a new algorithm for identification of most parsimonious combinations of single gene and single chromosome events. We extend it via dynamic programming to include genome duplications. We implement an expectation maximization (EM)-like method to estimate mutation-specific and tumor-specific event rates concurrently with tree reconstruction. Application of our algorithms to real cervical cancer data identifies key genomic events in disease progression consistent with prior literature. Classification experiments on cervical and tongue cancer datasets lead to improved prediction accuracy for the metastasis of primary cervical cancers and for tongue cancer survival. Availability and implementation: Our software (FISHtrees) and two datasets are available at ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees . Contact: russells@andrew.cmu.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2015-06-14
    Description: Motivation: Computational prediction of compound–protein interactions (CPIs) is of great importance for drug design and development, as genome-scale experimental validation of CPIs is not only time-consuming but also prohibitively expensive. With the availability of an increasing number of validated interactions, the performance of computational prediction approaches is severely impended by the lack of reliable negative CPI samples. A systematic method of screening reliable negative sample becomes critical to improving the performance of in silico prediction methods. Results: This article aims at building up a set of highly credible negative samples of CPIs via an in silico screening method. As most existing computational models assume that similar compounds are likely to interact with similar target proteins and achieve remarkable performance, it is rational to identify potential negative samples based on the converse negative proposition that the proteins dissimilar to every known/predicted target of a compound are not much likely to be targeted by the compound and vice versa. We integrated various resources, including chemical structures, chemical expression profiles and side effects of compounds, amino acid sequences, protein–protein interaction network and functional annotations of proteins, into a systematic screening framework. We first tested the screened negative samples on six classical classifiers, and all these classifiers achieved remarkably higher performance on our negative samples than on randomly generated negative samples for both human and Caenorhabditis elegans . We then verified the negative samples on three existing prediction models, including bipartite local model, Gaussian kernel profile and Bayesian matrix factorization, and found that the performances of these models are also significantly improved on the screened negative samples. Moreover, we validated the screened negative samples on a drug bioactivity dataset. Finally, we derived two sets of new interactions by training an support vector machine classifier on the positive interactions annotated in DrugBank and our screened negative interactions. The screened negative samples and the predicted interactions provide the research community with a useful resource for identifying new drug targets and a helpful supplement to the current curated compound–protein databases. Availability: Supplementary files are available at: http://admis.fudan.edu.cn/negative-cpi/ . Contact: sgzhou@fudan.edu.cn Supplementary Information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2015-06-14
    Description: Motivation: Recent advances in mass spectrometry and related metabolomics technologies have enabled the rapid and comprehensive analysis of numerous metabolites. However, biosynthetic and biodegradation pathways are only known for a small portion of metabolites, with most metabolic pathways remaining uncharacterized. Results: In this study, we developed a novel method for supervised de novo metabolic pathway reconstruction with an improved graph alignment-based approach in the reaction-filling framework. We proposed a novel chemical graph alignment algorithm, which we called PACHA (Pairwise Chemical Aligner), to detect the regioisomer-sensitive connectivities between the aligned substructures of two compounds. Unlike other existing graph alignment methods, PACHA can efficiently detect only one common subgraph between two compounds. Our results show that the proposed method outperforms previous descriptor-based methods or existing graph alignment-based methods in the enzymatic reaction-likeness prediction for isomer-enriched reactions. It is also useful for reaction annotation that assigns potential reaction characteristics such as EC (Enzyme Commission) numbers and PIERO (Enzymatic Reaction Ontology for Partial Information) terms to substrate–product pairs. Finally, we conducted a comprehensive enzymatic reaction-likeness prediction for all possible uncharacterized compound pairs, suggesting potential metabolic pathways for newly predicted substrate–product pairs. Contact: maskot@bio.titech.ac.jp
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2015-06-14
    Description: Motivation: Predicting disease phenotypes from genotypes is a key challenge in medical applications in the postgenomic era. Large training datasets of patients that have been both genotyped and phenotyped are the key requisite when aiming for high prediction accuracy. With current genotyping projects producing genetic data for hundreds of thousands of patients, large-scale phenotyping has become the bottleneck in disease phenotype prediction. Results: Here we present an approach for imputing missing disease phenotypes given the genotype of a patient. Our approach is based on co-training , which predicts the phenotype of unlabeled patients based on a second class of information, e.g. clinical health record information. Augmenting training datasets by this type of in silico phenotyping can lead to significant improvements in prediction accuracy. We demonstrate this on a dataset of patients with two diagnostic types of migraine, termed migraine with aura and migraine without aura, from the International Headache Genetics Consortium. Conclusions: Imputing missing disease phenotypes for patients via co-training leads to larger training datasets and improved prediction accuracy in phenotype prediction. Availability and implementation: The code can be obtained at: http://www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/co-training.html Contact: karsten.borgwardt@bsse.ethz.ch or menno.witteveen@bsse.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2015-06-14
    Description: Motivation: Motility is a fundamental cellular attribute, which plays a major part in processes ranging from embryonic development to metastasis. Traditionally, single cell motility is often studied by live cell imaging. Yet, such studies were so far limited to low throughput. To systematically study cell motility at a large scale, we need robust methods to quantify cell trajectories in live cell imaging data. Results: The primary contribution of this article is to present Mot ility study I ntegrated W orkflow (MotIW), a generic workflow for the study of single cell motility in high-throughput time-lapse screening data. It is composed of cell tracking, cell trajectory mapping to an original feature space and hit detection according to a new statistical procedure. We show that this workflow is scalable and demonstrates its power by application to simulated data, as well as large-scale live cell imaging data. This application enables the identification of an ontology of cell motility patterns in a fully unsupervised manner. Availability and implementation: Python code and examples are available online ( http://cbio.ensmp.fr/~aschoenauer/motiw.html ) Contact: thomas.walter@mines-paristech.fr Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2015-06-14
    Description: Motivation: ChIP-seq is a powerful technology to measure the protein binding or histone modification strength in the whole genome scale. Although there are a number of methods available for single ChIP-seq data analysis (e.g. ‘peak detection’), rigorous statistical method for quantitative comparison of multiple ChIP-seq datasets with the considerations of data from control experiment, signal to noise ratios, biological variations and multiple-factor experimental designs is under-developed. Results: In this work, we develop a statistical method to perform quantitative comparison of multiple ChIP-seq datasets and detect genomic regions showing differential protein binding or histone modification. We first detect peaks from all datasets and then union them to form a single set of candidate regions. The read counts from IP experiment at the candidate regions are assumed to follow Poisson distribution. The underlying Poisson rates are modeled as an experiment-specific function of artifacts and biological signals. We then obtain the estimated biological signals and compare them through the hypothesis testing procedure in a linear model framework. Simulations and real data analyses demonstrate that the proposed method provides more accurate and robust results compared with existing ones. Availability and implementation: An R software package ChIPComp is freely available at http://web1.sph.emory.edu/users/hwu30/software/ChIPComp.html . Contact: hao.wu@emory.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2015-06-14
    Description: Motivation : Large insertions of novel sequence are an important type of structural variants. Previous studies used traditional de novo assemblers for assembling non-mapping high-throughput sequencing (HTS) or capillary reads and then tried to anchor them in the reference using paired read information. Results : We present approaches for detecting insertion breakpoints and targeted assembly of large insertions from HTS paired data: BASIL and ANISE. On near identity repeats that are hard for assemblers, ANISE employs a repeat resolution step. This results in far better reconstructions than obtained by the compared methods. On simulated data, we found our insert assembler to be competitive with the de novo assemblers ABYSS and SGA while yielding already anchored inserted sequence as opposed to unanchored contigs as from ABYSS/SGA. On real-world data, we detected novel sequence in a human individual and thoroughly validated the assembled sequence. ANISE was found to be superior to the competing tool MindTheGap on both simulated and real-world data. Availability and implementation : ANISE and BASIL are available for download at http://www.seqan.de/projects/herbarium under a permissive open source license. Contact : manuel.holtgrewe@fu-berlin.de or knut.reinert@fu-berlin.de Supplementary information : Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2015-06-14
    Description: Motivation: The increasing throughput of sequencing technologies offers new applications and challenges for computational biology. In many of those applications, sequencing errors need to be corrected. This is particularly important when sequencing reads from an unknown reference such as random DNA barcodes. In this case, error correction can be done by performing a pairwise comparison of all the barcodes, which is a computationally complex problem. Results: Here, we address this challenge and describe an exact algorithm to determine which pairs of sequences lie within a given Levenshtein distance. For error correction or redundancy reduction purposes, matched pairs are then merged into clusters of similar sequences. The efficiency of starcode is attributable to the poucet search, a novel implementation of the Needleman–Wunsch algorithm performed on the nodes of a trie. On the task of matching random barcodes, starcode outperforms sequence clustering algorithms in both speed and precision. Availability and implementation: The C source code is available at http://github.com/gui11aume/starcode . Contact: guillaume.filion@gmail.com
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2015-06-14
    Description: Motivation : Storing, transmitting and archiving data produced by next-generation sequencing is a significant computational burden. New compression techniques tailored to short-read sequence data are needed. Results : We present here an approach to compression that reduces the difficulty of managing large-scale sequencing data. Our novel approach sits between pure reference-based compression and reference-free compression and combines much of the benefit of reference-based approaches with the flexibility of de novo encoding. Our method, called path encoding, draws a connection between storing paths in de Bruijn graphs and context-dependent arithmetic coding. Supporting this method is a system to compactly store sets of kmers that is of independent interest. We are able to encode RNA-seq reads using 3–11% of the space of the sequence in raw FASTA files, which is on average more than 34% smaller than competing approaches. We also show that even if the reference is very poorly matched to the reads that are being encoded, good compression can still be achieved. Availability and implementation : Source code and binaries freely available for download at http://www.cs.cmu.edu/~ckingsf/software/pathenc/ , implemented in Go and supported on Linux and Mac OS X. Contact : carlk@cs.cmu.edu . Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2016-07-30
    Description: Motivation: Random sampling of the solution space has emerged as a popular tool to explore and infer properties of large metabolic networks. However, conventional sampling approaches commonly used do not eliminate thermodynamically unfeasible loops. Results: In order to overcome this limitation, we developed an efficient sampling algorithm called loopless Artificially Centered Hit-and-Run on a Box (ll-ACHRB). This algorithm is inspired by the Hit-and-Run on a Box algorithm for uniform sampling from general regions, but employs the directions of choice approach of Artificially Centered Hit-and-Run. A novel strategy for generating feasible warmup points improved both sampling efficiency and mixing. ll-ACHRB shows overall better performance than current strategies to generate feasible flux samples across several models. Furthermore, we demonstrate that a failure to eliminate unfeasible loops greatly affects sample statistics, in particular the correlation structure. Finally, we discuss recommendations for the interpretation of sampling results and possible algorithmic improvements. Availability and implementation: Source code for MATLAB and OCTAVE including examples are freely available for download at http://www.aibn.uq.edu.au/cssb-resources under Software. Optimization runs can use Gurobi Optimizer (by default if available) or GLPK (included with the algorithm). Contact: lars.nielsen@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2016-07-30
    Description: Results: Here, we present a comprehensive analysis on the reproducibility of computational characterization of genomic variants using high throughput sequencing data. We reanalyzed the same datasets twice, using the same tools with the same parameters, where we only altered the order of reads in the input (i.e. FASTQ file). Reshuffling caused the reads from repetitive regions being mapped to different locations in the second alignment, and we observed similar results when we only applied a scatter/gather approach for read mapping—without prior shuffling. Our results show that, some of the most common variation discovery algorithms do not handle the ambiguous read mappings accurately when random locations are selected. In addition, we also observed that even when the exact same alignment is used, the GATK HaplotypeCaller generates slightly different call sets, which we pinpoint to the variant filtration step. We conclude that, algorithms at each step of genomic variation discovery and characterization need to treat ambiguous mappings in a deterministic fashion to ensure full replication of results. Availability and Implementation: Code, scripts and the generated VCF files are available at DOI:10.5281/zenodo.32611. Contact: calkan@cs.bilkent.edu.tr Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2016-07-30
    Description: Motivation: Animals from worms and insects to birds and mammals show distinct body plans; however, the embryonic development of diverse body plans with tissues and organs within is controlled by a surprisingly few signaling pathways. It is well recognized that combinatorial use of and dynamic interactions among signaling pathways follow specific logic to control complex and accurate developmental signaling and patterning, but it remains elusive what such logic is, or even, what it looks like. Results: We have developed a computational model for Drosophila eye development with innovated methods to reveal how interactions among multiple pathways control the dynamically generated hexagonal array of R8 cells. We obtained two novel findings. First, the coupling between the long-range inductive signals produced by the proneural Hh signaling and the short-range restrictive signals produced by the antineural Notch and EGFR signaling is essential for generating accurately spaced R8s. Second, the spatiotemporal orders of key signaling events reveal a robust pattern of lateral inhibition conducted by Ato-coordinated Notch and EGFR signaling to collectively determine R8 patterning. This pattern, stipulating the orders of signaling and comparable to the protocols of communication, may help decipher the well-appreciated but poorly defined logic of developmental signaling. Availability and implementation: The model is available upon request. Contact: hao.zhu@ymail.com Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2016-07-30
    Description: Motivation: The growing amount of regulatory data from the ENCODE, Roadmap Epigenomics and other consortia provides a wealth of opportunities to investigate the functional impact of single nucleotide polymorphisms (SNPs). Yet, given the large number of regulatory datasets, researchers are posed with a challenge of how to efficiently utilize them to interpret the functional impact of SNP sets. Results: We developed the GenomeRunner web server to automate systematic statistical analysis of SNP sets within a regulatory context. Besides defining the functional impact of SNP sets, GenomeRunner implements novel regulatory similarity/differential analyses, and cell type-specific regulatory enrichment analysis. Validated against literature- and disease ontology-based approaches, analysis of 39 disease/trait-associated SNP sets demonstrated that the functional impact of SNP sets corresponds to known disease relationships. We identified a group of autoimmune diseases with SNPs distinctly enriched in the enhancers of T helper cell subpopulations, and demonstrated relevant cell type-specificity of the functional impact of other SNP sets. In summary, we show how systematic analysis of genomic data within a regulatory context can help interpreting the functional impact of SNP sets. Availability and Implementation: GenomeRunner web server is freely available at http://www.integrativegenomics.org/ . Contact: mikhail.dozmorov@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2016-07-30
    Description: Motivation: Adverse drug reactions (ADRs) are a central consideration during drug development. Here we present a machine learning classifier to prioritize ADRs for approved drugs and pre-clinical small-molecule compounds by combining chemical structure (CS) and gene expression (GE) features. The GE data is from the Library of Integrated Network-based Cellular Signatures (LINCS) L1000 dataset that measured changes in GE before and after treatment of human cells with over 20 000 small-molecule compounds including most of the FDA-approved drugs. Using various benchmarking methods, we show that the integration of GE data with the CS of the drugs can significantly improve the predictability of ADRs. Moreover, transforming GE features to enrichment vectors of biological terms further improves the predictive capability of the classifiers. The most predictive biological-term features can assist in understanding the drug mechanisms of action. Finally, we applied the classifier to all 〉20 000 small-molecules profiled, and developed a web portal for browsing and searching predictive small-molecule/ADR connections. Availability and Implementation: The interface for the adverse event predictions for the 〉20 000 LINCS compounds is available at http://maayanlab.net/SEP-L1000/ . Contact: avi.maayan@mssm.edu Supplementary information : Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2016-07-30
    Description: Motivation: Environmental dissemination of antibiotic resistance genes (ARGs) has become an increasing concern for public health. Metagenomics approaches can effectively detect broad profiles of ARGs in environmental samples; however, the detection and subsequent classification of ARG-like sequences are time consuming and have been severe obstacles in employing metagenomic methods. We sought to accelerate quantification of ARGs in metagenomic data from environmental samples. Results: A Structured ARG reference database (SARG) was constructed by integrating ARDB and CARD, the two most commonly used databases. SARG was curated to remove redundant sequences and optimized to facilitate query sequence identification by similarity. A database with a hierarchical structure (type-subtype-reference sequence) was then constructed to facilitate classification (assigning ARG-like sequence to type, subtype and reference sequence) of sequences identified through similarity search. Utilizing SARG and a previously proposed hybrid functional gene annotation pipeline, we developed an online pipeline called ARGs-OAP for fast annotation and classification of ARG-like sequences from metagenomic data. We also evaluated and proposed a set of criteria important for efficiently conducting metagenomic analysis of ARGs using ARGs-OAP. Availability and Implementation: Perl script for ARGs-OAP can be downloaded from https://github.com/biofuture/Ublastx_stageone . ARGs-OAP can be accessed through http://smile.hku.hk/SARGs . Contact: zhangt@hku.hk or tiedjej@msu.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2016-07-30
    Description: : Visualizing genomic data in chromosomal context can help detecting errors in data processing and may suggest new hypotheses to be tested. Here, we report a new tool for displaying large and diverse genomic data along chromosomes. The software is implemented in R so that visualization can be easily integrated with its numerous packages for processing genomic data. It supports simultaneous visualization of multiple tracks of data. Large genomic regions such as QTLs or synteny tracts may be shown along histograms of number of genes, genetic variants, or any other type of genomic element. Tracks can also contain values for continuous or categorical variables and the user can choose among points, connected lines, colored segments, or histograms for representing data. chromPlot takes data from tables in data.frame in GRanges formats. The information necessary to draw chromosomes for mouse and human is included with the package. For other organisms, chromPlot can read Gap and cytoBandIdeo tables from the UCSC Genome Browser. We present common use cases here, and a full tutorial is included as the package’s vignette. Availability and Implementation: chromPlot is distributed under a GLP2 licence at http://www.bioconductor.org . Contact: raverdugo@u.uchile.cl Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2016-07-30
    Description: : The most important features of error correction tools for sequencing data are accuracy, memory efficiency and fast runtime. The previous version of BLESS was highly memory-efficient and accurate, but it was too slow to handle reads from large genomes. We have developed a new version of BLESS to improve runtime and accuracy while maintaining a small memory usage. The new version, called BLESS 2, has an error correction algorithm that is more accurate than BLESS, and the algorithm has been parallelized using hybrid MPI and OpenMP programming. BLESS 2 was compared with five top-performing tools, and it was found to be the fastest when it was executed on two computing nodes using MPI, with each node containing twelve cores. Also, BLESS 2 showed at least 11% higher gain while retaining the memory efficiency of the previous version for large genomes. Availability and implementation: Freely available at https://sourceforge.net/projects/bless-ec Contact: dchen@illinois.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2016-07-30
    Description: Motivation: Accurate segmentation of brain electron microscopy (EM) images is a critical step in dense circuit reconstruction. Although deep neural networks (DNNs) have been widely used in a number of applications in computer vision, most of these models that proved to be effective on image classification tasks cannot be applied directly to EM image segmentation, due to the different objectives of these tasks. As a result, it is desirable to develop an optimized architecture that uses the full power of DNNs and tailored specifically for EM image segmentation. Results: In this work, we proposed a novel design of DNNs for this task. We trained a pixel classifier that operates on raw pixel intensities with no preprocessing to generate probability values for each pixel being a membrane or not. Although the use of neural networks in image segmentation is not completely new, we developed novel insights and model architectures that allow us to achieve superior performance on EM image segmentation tasks. Our submission based on these insights to the 2D EM Image Segmentation Challenge achieved the best performance consistently across all the three evaluation metrics. This challenge is still ongoing and the results in this paper are as of June 5, 2015. Availability and Implementation : https://github.com/ahmed-fakhry/dive Contact : sji@eecs.wsu.edu
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2016-07-30
    Description: : Hilbert curves enable high-resolution visualization of genomic data on a chromosome- or genome-wide scale. Here we present the HilbertCurve package that provides an easy-to-use interface for mapping genomic data to Hilbert curves. The package transforms the curve as a virtual axis, thereby hiding the details of the curve construction from the user. HilbertCurve supports multiple-layer overlay that makes it a powerful tool to correlate the spatial distribution of multiple feature types. Availability and implementation: The HilbertCurve package and documentation are freely available from the Bioconductor project: http://www.bioconductor.org/packages/devel/bioc/html/HilbertCurve.html Contact: m.schlesner@dkfz.de Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2016-07-30
    Description: Motivation: The sequences among subgenomes in a polyploid species have high similarity, making it difficult to design genome-specific primers for sequence analysis. Results: We present GSP, a web-based platform to design genome-specific primers that distinguish subgenome sequences in a polyploid genome. GSP uses BLAST to extract homeologous sequences of the subgenomes in existing databases, performs a multiple sequence alignment, and design primers based on sequence variants in the alignment. An interactive primers diagram, a sequence alignment viewer and a virtual electrophoresis are displayed as parts of the primer design result. GSP also designs specific primers from multiple sequences uploaded by users. Availability and implementation: GSP is a user-friendly and efficient web platform freely accessible at http://probes.pw.usda.gov/GSP . Source code and command-line application are available at https://github.com/bioinfogenome/GSP . Contacts: yong.gu@ars.usda.gov or devin.coleman-derr@ars.usda.gov Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2016-07-30
    Description: : The prediction of protein–protein complexes from the structures of unbound components is a challenging and powerful strategy to decipher the mechanism of many essential biological processes. We present a user-friendly protein–protein docking server based on an improved version of FRODOCK that includes a complementary knowledge-based potential. The web interface provides a very effective tool to explore and select protein–protein models and interactively screen them against experimental distance constraints. The competitive success rates and efficiency achieved allow the retrieval of reliable potential protein–protein binding conformations that can be further refined with more computationally demanding strategies. Availability and Implementation: The server is free and open to all users with no login requirement at http://frodock.chaconlab.org Contact: pablo@chaconlab.org Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2016-07-30
    Description: : XIBD performs pairwise relatedness mapping on the X chromosome using dense single nucleotide polymorphism (SNP) data from either SNP chips or next generation sequencing data. It correctly accounts for the difference in chromosomal numbers between males and females and estimates global relatedness as well as regions of the genome that are identical by descent (IBD). XIBD also generates novel graphical summaries of all pairwise IBD tracts for a cohort making it very useful for disease locus mapping. Availability and implementation: XIBD is written in R/Rcpp and executed from shell scripts that are freely available from http://bioinf.wehi.edu.au/software/XIBD along with accompanying reference datasets. Contact: henden.l@wehi.edu.au Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2016-07-30
    Description: : Several approaches to the region-based association analysis of quantitative traits have recently been developed and successively applied. However, no software package has been developed that implements all of these approaches for either independent or structured samples. Here we introduce FREGAT (Family REGional Association Tests), an R package that can handle family and population samples and implements a wide range of region-based association methods including burden tests, functional linear models, and kernel machine-based regression. FREGAT can be used in genome/exome-wide region-based association studies of quantitative traits and candidate gene analysis. FREGAT offers many useful options to empower its users and increase the effectiveness and applicability of region-based association analysis. Availability and Implementation: https://cran.r-project.org/web/packages/FREGAT/index.html Supplementary Information: Supplementary data are available at Bioinformatics Online. Contact: belon@bionet.nsc.ru
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2016-07-30
    Description: Motivation: There is a growing need in bioinformatics for easy-to-use software implementations of algorithms that are usable across platforms. At the same time, reproducibility of computational results is critical and often a challenge due to source code changes over time and dependencies. Results: The approach introduced in this paper addresses both of these needs with AlgoRun, a dedicated packaging system for implemented algorithms, using Docker technology. Implemented algorithms, packaged with AlgoRun, can be executed through a user-friendly interface directly from a web browser or via a standardized RESTful web API to allow easy integration into more complex workflows. The packaged algorithm includes the entire software execution environment, thereby eliminating the common problem of software dependencies and the irreproducibility of computations over time. AlgoRun-packaged algorithms can be published on http://algorun.org , a centralized searchable directory to find existing AlgoRun-packaged algorithms. Availability and implementation: AlgoRun is available at http://algorun.org and the source code under GPL license is available at https://github.com/algorun Contact: laubenbacher@uchc.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2016-07-09
    Description: Motivation: Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. Results: Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experiments. To demonstrate, we describe example visualizations and analyses of datasets from RNA-Seq, ChIP-Seq and bisulfite sequencing experiments. Understanding results from genome-scale experiments requires viewing the data in the context of reference genome annotations and other related datasets. To facilitate this, we enhanced IGB’s ability to consume data from diverse sources, including Galaxy, Distributed Annotation and IGB-specific Quickload servers. To support future visualization needs as new genome-scale assays enter wide use, we transformed the IGB codebase into a modular, extensible platform for developers to create and deploy all-new visualizations of genomic data. Availability and implementation: IGB is open source and is freely available from http://bioviz.org/igb . Contact: aloraine@uncc.edu
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2016-07-09
    Description: Motivation: Single Molecule Real-Time (SMRT) sequencing technology and Oxford Nanopore technologies (ONT) produce reads over 10 kb in length, which have enabled high-quality genome assembly at an affordable cost. However, at present, long reads have an error rate as high as 10–15%. Complex and computationally intensive pipelines are required to assemble such reads. Results: We present a new mapper, minimap and a de novo assembler, miniasm, for efficiently mapping and assembling SMRT and ONT reads without an error correction stage. They can often assemble a sequencing run of bacterial data into a single contig in a few minutes, and assemble 45-fold Caenorhabditis elegans data in 9 min, orders of magnitude faster than the existing pipelines, though the consensus sequence error rate is as high as raw reads. We also introduce a pairwise read mapping format and a graphical fragment assembly format, and demonstrate the interoperability between ours and current tools. Availability and implementation: https://github.com/lh3/minimap and https://github.com/lh3/miniasm Contact: hengli@broadinstitute.org Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2016-07-09
    Description: Motivation: Alternative splicing represents a prime mechanism of post-transcriptional gene regulation whose misregulation is associated with a broad range of human diseases. Despite the vast availability of transcriptome data from different cell types and diseases, bioinformatics-based surveys of alternative splicing patterns remain a major challenge due to limited availability of analytical tools that combine high accuracy and rapidity. Results: We describe here a novel junction-centric method, jSplice, that enables de novo extraction of alternative splicing events from RNA-sequencing data with high accuracy, reliability and speed. Application to clear cell renal carcinoma (ccRCC) cell lines and 65 ccRCC patients revealed experimentally validatable alternative splicing changes and signatures able to prognosticate ccRCC outcome. In the aggregate, our results propose jSplice as a key analytic tool for the derivation of cell context-dependent alternative splicing patterns from large-scale RNA-sequencing datasets. Availability and implementation: jSplice is a standalone Python application freely available at http://www.mhs.biol.ethz.ch/research/krek/jsplice . Contact: wilhelm.krek@biol.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2016-07-09
    Description: Motivation: Single-cell RNA-sequencing technology allows detection of gene expression at the single-cell level. One typical feature of the data is a bimodality in the cellular distribution even for highly expressed genes, primarily caused by a proportion of non-expressing cells. The standard and the over-dispersed gamma-Poisson models that are commonly used in bulk-cell RNA-sequencing are not able to capture this property. Results: We introduce a beta-Poisson mixture model that can capture the bimodality of the single-cell gene expression distribution. We further integrate the model into the generalized linear model framework in order to perform differential expression analyses. The whole analytical procedure is called BPSC. The results from several real single-cell RNA-seq datasets indicate that ~90% of the transcripts are well characterized by the beta-Poisson model; the model-fit from BPSC is better than the fit of the standard gamma-Poisson model in 〉 80% of the transcripts. Moreover, in differential expression analyses of simulated and real datasets, BPSC performs well against edgeR, a conventional method widely used in bulk-cell RNA-sequencing data, and against scde and MAST, two recent methods specifically designed for single-cell RNA-seq data. Availability and Implementation: An R package BPSC for model fitting and differential expression analyses of single-cell RNA-seq data is available under GPL-3 license at https://github.com/nghiavtr/BPSC . Contact: yudi.pawitan@ki.se or mattias.rantalainen@ki.se Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2016-07-09
    Description: Motivation: Biological network querying is a problem requiring a considerable computational effort to be solved. Given a target and a query network, it aims to find occurrences of the query in the target by considering topological and node similarities (i.e. mismatches between nodes, edges, or node labels). Querying tools that deal with similarities are crucial in biological network analysis because they provide meaningful results also in case of noisy data. In addition, as the size of available networks increases steadily, existing algorithms and tools are becoming unsuitable. This is rising new challenges for the design of more efficient and accurate solutions. Results: This paper presents APPAGATO , a stochastic and parallel algorithm to find approximate occurrences of a query network in biological networks. APPAGATO handles node, edge and node label mismatches. Thanks to its randomic and parallel nature, it applies to large networks and, compared with existing tools, it provides higher performance as well as statistically significant more accurate results. Tests have been performed on protein–protein interaction networks annotated with synthetic and real gene ontology terms. Case studies have been done by querying protein complexes among different species and tissues. Availability and implementation: APPAGATO has been developed on top of CUDA-C ++ Toolkit 7.0 framework. The software is available online http://profs.sci.univr.it/~bombieri/APPAGATO . Contact: rosalba.giugno@univr.it Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2016-07-09
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2016-07-09
    Description: : We introduce SharpViSu, an interactive open-source software with a graphical user interface, which allows performing processing steps for localization data in an integrated manner. This includes common features and new tools such as correction of chromatic aberrations, drift correction based on iterative cross-correlation calculations, selection of localization events, reconstruction of 2D and 3D datasets in different representations, estimation of resolution by Fourier ring correlation, clustering analysis based on Voronoi diagrams and Ripley’s functions. SharpViSu is optimized to work with eventlist tables exported from most popular localization software. We show applications of these on single and double-labelled super-resolution data. Availability and implementation: SharpViSu is available as open source code and as compiled stand-alone application under https://github.com/andronovl/SharpViSu . Contact: klaholz@igbmc.fr Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2016-06-25
    Description: : A gene tree-species tree reconciliation explains the evolution of a gene tree within the species tree given a model of gene-family evolution. We describe ecceTERA, a program that implements a generic parsimony reconciliation algorithm, which accounts for gene duplication, loss and transfer (DTL) as well as speciation, involving sampled and unsampled lineages, within undated, fully dated or partially dated species trees. The ecceTERA reconciliation model and algorithm generalize or improve upon most published DTL parsimony algorithms for binary species trees and binary gene trees. Moreover, ecceTERA can estimate accurate species-tree aware gene trees using amalgamation. Availability and implementation : ecceTERA is freely available under http://mbb.univ-montp2.fr/MBB/download_sources/16__ecceTERA and can be run online at http://mbb.univ-montp2.fr/MBB/subsection/softExec.php?soft=eccetera . Contact: celine.scornavacca@umontpellier.fr Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2016-06-25
    Description: : The popularity of using NMR spectroscopy in metabolomics and natural products has driven the development of an array of NMR spectral analysis tools and databases. Particularly, web applications are well used recently because they are platform-independent and easy to extend through reusable web components. Currently available web applications provide the analysis of NMR spectra. However, they still lack the necessary processing and interactive visualization functionalities. To overcome these limitations, we present NMRPro, a web component that can be easily incorporated into current web applications, enabling easy-to-use online interactive processing and visualization. NMRPro integrates server-side processing with client-side interactive visualization through three parts: a python package to efficiently process large NMR datasets on the server-side, a Django App managing server-client interaction, and SpecdrawJS for client-side interactive visualization. Availability and implementation: Demo and installation instructions are available at http://mamitsukalab.org/tools/nmrpro/ Contact: mohamed@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2016-07-30
    Description: Motivation: DNA methylation is an important epigenetic modification related to a variety of diseases including cancers. We focus on the methylation data from Illumina’s Infinium HumanMethylation450 BeadChip. One of the key issues of methylation analysis is to detect the differential methylation sites between case and control groups. Previous approaches describe data with simple summary statistics or kernel function, and then use statistical tests to determine the difference. However, a summary statistics-based approach cannot capture complicated underlying structure, and a kernel function-based approach lacks interpretability of results. Results: We propose a novel method D 3 M, for detection of differential distribution of methylation, based on distribution-valued data. Our method can detect the differences in high-order moments, such as shapes of underlying distributions in methylation profiles, based on the Wasserstein metric. We test the significance of the difference between case and control groups and provide an interpretable summary of the results. The simulation results show that the proposed method achieves promising accuracy and shows favorable results compared with previous methods. Glioblastoma multiforme and lower grade glioma data from The Cancer Genome Atlas show that our method supports recent biological advances and suggests new insights. Availability and Implementation: R implemented code is freely available from https://github.com/ymatts/D3M/ . Contact: ymatsui@med.nagoya-u.ac.jp or shimamura@med.nagoya-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2016-07-30
    Description: Motivation: Similarity-based methods have been widely used in order to infer the properties of genes and gene products containing little or no experimental annotation. New approaches that overcome the limitations of methods that rely solely upon sequence similarity are attracting increased attention. One of these novel approaches is to use the organization of the structural domains in proteins. Results: We propose a method for the automatic annotation of protein sequences in the UniProt Knowledgebase (UniProtKB) by comparing their domain architectures, classifying proteins based on the similarities and propagating functional annotation. The performance of this method was measured through a cross-validation analysis using the Gene Ontology (GO) annotation of a sub-set of UniProtKB/Swiss-Prot. The results demonstrate the effectiveness of this approach in detecting functional similarity with an average F-score: 0.85. We applied the method on nearly 55.3 million uncharacterized proteins in UniProtKB/TrEMBL resulted in 44 818 178 GO term predictions for 12 172 114 proteins. 22% of these predictions were for 2 812 016 previously non-annotated protein entries indicating the significance of the value added by this approach. Availability and implementation: The results of the method are available at: ftp://ftp.ebi.ac.uk/pub/contrib/martin/DAAC/ . Contact: tdogan@ebi.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2016-07-30
    Description: Motivation: Species identification and quantification are common tasks in metagenomics and pathogen detection studies. The most recent techniques are built on mapping the sequenced reads against a reference database (e.g. whole genomes, marker genes, proteins) followed by application-dependent analysis steps. Although these methods have been proven to be useful in many scenarios, there is still room for improvement in species and strain level detection, mainly for low abundant organisms. Results: We propose a new method: DUDes, a reference-based taxonomic profiler that introduces a novel top-down approach to analyze metagenomic Next-generation sequencing (NGS) samples. Rather than predicting an organism presence in the sample based only on relative abundances, DUDes first identifies possible candidates by comparing the strength of the read mapping in each node of the taxonomic tree in an iterative manner. Instead of using the lowest common ancestor we propose a new approach: the deepest uncommon descendent. We showed in experiments that DUDes works for single and multiple organisms and can identify low abundant taxonomic groups with high precision. Availability and Implementation: DUDes is open source and it is available at http://sf.net/p/dudes Supplementary information: Supplementary data are available at Bioinformatics online. Contact: renardB@rki.de
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2016-07-30
    Description: Motivation: Moonlighting proteins (MPs) show multiple cellular functions within a single polypeptide chain. To understand the overall landscape of their functional diversity, it is important to establish a computational method that can identify MPs on a genome scale. Previously, we have systematically characterized MPs using functional and omics-scale information. In this work, we develop a computational prediction model for automatic identification of MPs using a diverse range of protein association information. Results: We incorporated a diverse range of protein association information to extract characteristic features of MPs, which range from gene ontology (GO), protein–protein interactions, gene expression, phylogenetic profiles, genetic interactions and network-based graph properties to protein structural properties, i.e. intrinsically disordered regions in the protein chain. Then, we used machine learning classifiers using the broad feature space for predicting MPs. Because many known MPs lack some proteomic features, we developed an imputation technique to fill such missing features. Results on the control dataset show that MPs can be predicted with over 98% accuracy when GO terms are available. Furthermore, using only the omics-based features the method can still identify MPs with over 75% accuracy. Last, we applied the method on three genomes: Saccharomyces cerevisiae , Caenorhabditis elegans and Homo sapiens , and found that about 2–10% of proteins in the genomes are potential MPs. Availability and Implementation: Code available at http://kiharalab.org/MPprediction Contact: dkihara@purdue.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2016-07-30
    Description: Motivation: Design of protein–protein interaction (PPI) inhibitors is a major challenge in Structural Bioinformatics. Peptides, especially short ones (5–15 amino acid long), are natural candidates for inhibition of protein–protein complexes due to several attractive features such as high structural compatibility with the protein binding site (mimicking the surface of one of the proteins), small size and the ability to form strong hotspot binding connections with the protein surface. Efficient rational peptide design is still a major challenge in computer aided drug design, due to the huge space of possible sequences, which is exponential in the length of the peptide, and the high flexibility of peptide conformations. Results: In this article we present PinaColada, a novel computational method for the design of peptide inhibitors for protein–protein interactions. We employ a version of the ant colony optimization heuristic, which is used to explore the exponential space ( 20n ) of length n peptide sequences, in combination with our fast robotics motivated PepCrawler algorithm, which explores the conformational space for each candidate sequence. PinaColada is being run in parallel, on a DELL PowerEdge 2.8 GHZ computer with 20 cores and 256 GB memory, and takes up to 24 h to design a peptide of 5-15 amino acids length. Availability and implementation: An online server available at: http://bioinfo3d.cs.tau.ac.il/PinaColada/. Contact: danielza@post.tau.ac.il ; wolfson@tau.ac.il
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2016-07-30
    Description: Motivation: Whole-genome low-coverage sequencing has been combined with linkage-disequilibrium (LD)-based genotype refinement to accurately and cost-effectively infer genotypes in large cohorts of individuals. Most genotype refinement methods are based on hidden Markov models, which are accurate but computationally expensive. We introduce an algorithm that models LD using a simple multivariate Gaussian distribution. The key feature of our algorithm is its speed. Results: Our method is hundreds of times faster than other methods on the same data set and its scaling behaviour is linear in the number of samples. We demonstrate the performance of the method on both low- and high-coverage samples. Availability and implementation: The source code is available at https://github.com/illumina/marvin Contact: rarthur@illumina.com Supplementary information: Supplementary data are available at Bioinformatics online .
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2016-07-30
    Description: Motivation : T-cell epitopes serve as molecular keys to initiate adaptive immune responses. Identification of T-cell epitopes is also a key step in rational vaccine design. Most available methods are driven by informatics and are critically dependent on experimentally obtained training data. Analysis of a training set from Immune Epitope Database (IEDB) for several alleles indicates that the sampling of the peptide space is extremely sparse covering a tiny fraction of the possible nonamer space, and also heavily skewed, thus restricting the range of epitope prediction. Results : We present a new epitope prediction method that has four distinct computational modules: (i) structural modelling, estimating statistical pair-potentials and constraint derivation, (ii) implicit modelling and interaction profiling, (iii) feature representation and binding affinity prediction and (iv) use of graphical models to extract peptide sequence signatures to predict epitopes for HLA class I alleles. Conclusions : HLaffy is a novel and efficient epitope prediction method that predicts epitopes for any Class-1 HLA allele, by estimating the binding strengths of peptide-HLA complexes which is achieved through learning pair-potentials important for peptide binding. It relies on the strength of the mechanistic understanding of peptide-HLA recognition and provides an estimate of the total ligand space for each allele. The performance of HLaffy is seen to be superior to the currently available methods. Availability and implementation : The method is made accessible through a webserver http://proline.biochem.iisc.ernet.in/HLaffy . Contact : nchandra@biochem.iisc.ernet.in Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2016-07-30
    Description: Motivation: In vitro and in vivo cell proliferation is often studied using the dye carboxyfluorescein succinimidyl ester (CFSE). The CFSE time-series data provide information about the proliferation history of populations of cells. While the experimental procedures are well established and widely used, the analysis of CFSE time-series data is still challenging. Many available analysis tools do not account for cell age and employ optimization methods that are inefficient (or even unreliable). Results: We present a new model-based analysis method for CFSE time-series data. This method uses a flexible description of proliferating cell populations, namely, a division-, age- and label-structured population model. Efficient maximum likelihood and Bayesian estimation algorithms are introduced to infer the model parameters and their uncertainties. These methods exploit the forward sensitivity equations of the underlying partial differential equation model for efficient and accurate gradient calculation, thereby improving computational efficiency and reliability compared with alternative approaches and accelerating uncertainty analysis. The performance of the method is assessed by studying a dataset for immune cell proliferation. This revealed the importance of different factors on the proliferation rates of individual cells. Among others, the predominate effect of cell age on the division rate is found, which was not revealed by available computational methods. Availability and implementation: The MATLAB source code implementing the models and algorithms is available from http://janhasenauer.github.io/ShAPE-DALSP/ . Contact: jan.hasenauer@helmholtz-muenchen.de Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2016-07-30
    Description: Motivation: The challenges of successfully applying causal inference methods include: (i) satisfying underlying assumptions, (ii) limitations in data/models accommodated by the software and (iii) low power of common multiple testing approaches. Results: The causal inference test (CIT) is based on hypothesis testing rather than estimation, allowing the testable assumptions to be evaluated in the determination of statistical significance. A user-friendly software package provides P -values and optionally permutation-based FDR estimates ( q -values) for potential mediators. It can handle single and multiple binary and continuous instrumental variables, binary or continuous outcome variables and adjustment covariates. Also, the permutation-based FDR option provides a non-parametric implementation. Conclusion: Simulation studies demonstrate the validity of the cit package and show a substantial advantage of permutation-based FDR over other common multiple testing strategies. Availability and implementation: The cit open-source R package is freely available from the CRAN website ( https://cran.r-project.org/web/packages/cit/index.html ) with embedded C ++ code that utilizes the GNU Scientific Library, also freely available ( http://www.gnu.org/software/gsl/ ). Contact: joshua.millstein@usc.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2016-07-30
    Description: Motivation: The vast majority of the many thousands of disease-associated single nucleotide polymorphisms (SNPs) lie in the non-coding part of the genome. They are likely to affect regulatory elements, such as enhancers and promoters, rather than the function of a protein. To understand the molecular mechanisms underlying genetic diseases, it is therefore increasingly important to study the effect of a SNP on nearby molecular traits such as chromatin or transcription factor binding. Results: We developed SNPhood , a user-friendly Bioconductor R package to investigate, quantify and visualise the local epigenetic neighbourhood of a set of SNPs in terms of chromatin marks or TF binding sites using data from NGS experiments. Availability and implementation: SNPhood is publicly available and maintained as an R Bioconductor package at http://bioconductor.org/packages/SNPhood/ . Contact: judith.zaugg@embl.de Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2016-07-30
    Description: Motivation: Versatile and efficient variant calling tools are needed to analyze large scale sequencing datasets. In particular, identification of copy number changes remains a challenging task due to their complexity, susceptibility to sequencing biases, variation in coverage data and dependence on genome-wide sample properties, such as tumor polyploidy or polyclonality in cancer samples. Results: We have developed a new tool, Canvas, for identification of copy number changes from diverse sequencing experiments including whole-genome matched tumor-normal and single-sample normal re-sequencing, as well as whole-exome matched and unmatched tumor-normal studies. In addition to variant calling, Canvas infers genome-wide parameters such as cancer ploidy, purity and heterogeneity. It provides fast and easy-to-run workflows that can scale to thousands of samples and can be easily incorporated into variant calling pipelines. Availability and Implementation: Canvas is distributed under an open source license and can be downloaded from https://github.com/Illumina/canvas . Contact: eroller@illumina.com Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2016-07-30
    Description: p ileup.js is a new browser-based genome viewer. It is designed to facilitate the investigation of evidence for genomic variants within larger web applications. It takes advantage of recent developments in the JavaScript ecosystem to provide a modular, reliable and easily embedded library. Availability and implementation: The code and documentation for pileup.js is publicly available at https://github.com/hammerlab/pileup.js under the Apache 2.0 license. Contact : correspondence@hammerlab.org
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2016-07-30
    Description: Motivation: We present an update to the pathway enrichment analysis tool ‘Pathway Analysis by Randomization Incorporating Structure (PARIS)’ that determines aggregated association signals generated from genome-wide association study results. Pathway-based analyses highlight biological pathways associated with phenotypes. PARIS uses a unique permutation strategy to evaluate the genomic structure of interrogated pathways, through permutation testing of genomic features, thus eliminating many of the over-testing concerns arising with other pathway analysis approaches. Results: We have updated PARIS to incorporate expanded pathway definitions through the incorporation of new expert knowledge from multiple database sources, through customized user provided pathways, and other improvements in user flexibility and functionality. Availability and implementation: PARIS is freely available to all users at https://ritchielab.psu.edu/software/paris-download . Contact: jnc43@case.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2016-07-30
    Description: : Nucleotide Similarity Scanner (NSimScan) is specialized for searching massive DNA databases for distant similarities. Its targeted applications include phylogenomics, comparative and functional studies of non-coding sequences, contamination detection, etc. NSimScan outperforms industry standard tools in combined sensitivity, accuracy and speed, operating at sensitivity similar to BLAST, accuracy of ssearch and speed of MegaBLAST. Availability and implementation: NSimScan is available at https://github.com/abadona/qsimscan as a part of QSimScan package. It is implemented in C ++, distributed under MIT license and supported on Linux, OS X and Windows (with cygwin). Contact: dkaznadzey@yahoo.com Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2016-07-30
    Description: : We present TreeDom, a web tool for graphically analysing the evolutionary history of domains in multi-domain proteins. Individual domains on the same protein chain may have distinct evolutionary histories, which is important to grasp in order to understand protein function. For instance, it may be important to know whether a domain was duplicated recently or long ago, to know the origin of inserted domains, or to know the pattern of domain loss within a protein family. TreeDom uses the Pfam database as the source of domain annotations, and displays these on a sequence tree. An advantage of TreeDom is that the user can limit the analysis to N sequences that are most similar to a query, or provide a list of sequence IDs to include. Using the Pfam alignment of the selected sequences, a tree is built and displayed together with the domain architecture of each sequence. Availablility and implementation: http://TreeDom.sbc.su.se Contact: Erik.Sonnhammer@scilifelab.se
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2016-07-30
    Description: : The NCI-60 human tumor cell line panel is an invaluable resource for cancer researchers, providing drug sensitivity, molecular and phenotypic data for a range of cancer types. CellMiner is a web resource that provides tools for the acquisition and analysis of quality-controlled NCI-60 data. CellMiner supports queries of up to 150 drugs or genes, but the output is an Excel file for each drug or gene. This output format makes it difficult for researchers to explore the data from large queries. CellMiner Companion is a web application that facilitates the exploration and visualization of output from CellMiner, further increasing the accessibility of NCI-60 data. Availability and Implementation: The web application is freely accessible at https://pul-bioinformatics.shinyapps.io/CellMinerCompanion . The R source code can be downloaded at https://github.com/pepascuzzi/CellMinerCompanion.git . Contact: ppascuzz@purdue.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2016-07-30
    Description: : SMeagol is a software tool to simulate highly realistic microscopy data based on spatial systems biology models, in order to facilitate development, validation and optimization of advanced analysis methods for live cell single molecule microscopy data. Availability and implementation: SMeagol runs on Matlab R2014 and later, and uses compiled binaries in C for reaction–diffusion simulations. Documentation, source code and binaries for Mac OS, Windows and Ubuntu Linux can be downloaded from http://smeagol.sourceforge.net . Contact: johan.elf@icm.uu.se Supplementary information : Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2016-07-30
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2013-09-20
    Description: Motivation: Pyrosequencing technology provides an important new approach to more extensively characterize diverse sequence populations and detect low frequency variants. However, the promise of this technology has been difficult to realize, as careful correction of sequencing errors is crucial to distinguish rare variants (~1%) in an infected host with high sensitivity and specificity. Results: We developed a new approach, referred to as Indel and Carryforward Correction (ICC), to cluster sequences without substitutions and locally correct only indel and carryforward sequencing errors within clusters to ensure that no rare variants are lost. ICC performs sequence clustering in the order of (i) homopolymer indel patterns only, (ii) indel patterns only and (iii) carryforward errors only, without the requirement of a distance cutoff value. Overall, ICC removed 93–95% of sequencing errors found in control datasets. On pyrosequencing data from a PCR fragment derived from 15 HIV-1 plasmid clones mixed at various frequencies as low as 0.1%, ICC achieved the highest sensitivity and similar specificity compared with other commonly used error correction and variant calling algorithms. Availability and implementation: Source code is freely available for download at http://indra.mullins.microbiol.washington.edu/ICC . It is implemented in Perl and supported on Linux, Mac OS X and MS Windows. Contact: jmullins@uw.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2013-09-20
    Description: : Tiki proteins appear to antagonize Wnt signalling pathway by acting as Wnt proteases, thereby affecting Wnt solubility by its amino-terminal cleavage. Tiki1 protease activity was shown to be metal ion-dependent and was inhibited by chelating agents and thus was tentatively proposed to be a metalloprotease. Nevertheless, Tiki proteins exhibit no detectable sequence similarity to previously described metalloproteases, but instead have been reported as being homologues of TraB proteins (Pfam ID: PF01963), a widely distributed family of unknown function and structure. Here, we show that Tiki proteins are members of a new superfamily of domains contained not just in TraB proteins, but also in erythromycin esterase (Pfam ID: PF05139), DUF399 (domain of unknown function 399; Pfam ID: PF04187) and MARTX toxins that contribute to host invasion and pathogenesis by bacteria. We establish the core fold of this enzymatic domain and its catalytic residues. Contact: luis.sanchezpulido@dpag.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2013-09-20
    Description: Motivation: The research area metabolomics achieved tremendous popularity and development in the last couple of years. Owing to its unique interdisciplinarity, it requires to combine knowledge from various scientific disciplines. Advances in the high-throughput technology and the consequently growing quality and quantity of data put new demands on applied analytical and computational methods. Exploration of finally generated and analyzed datasets furthermore relies on powerful tools for data mining and visualization. Results: To cover and keep up with these requirements, we have created MeltDB 2.0, a next-generation web application addressing storage, sharing, standardization, integration and analysis of metabolomics experiments. New features improve both efficiency and effectivity of the entire processing pipeline of chromatographic raw data from pre-processing to the derivation of new biological knowledge. First, the generation of high-quality metabolic datasets has been vastly simplified. Second, the new statistics tool box allows to investigate these datasets according to a wide spectrum of scientific and explorative questions. Availability: The system is publicly available at https://meltdb.cebitec.uni-bielefeld.de . A login is required but freely available. Contact: nkessler@cebitec.uni-bielefeld.de
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2013-09-20
    Description: Motivation: High - throughput next - generation sequencing technologies enable increasingly fast and affordable sequencing of genomes and transcriptomes, with a broad range of applications. The quality of the sequencing data is crucial for all applications. A significant portion of the data produced contains errors, and ever more efficient error correction programs are needed. Results: We propose RACER (Rapid and Accurate Correction of Errors in Reads), a new software program for correcting errors in sequencing data. RACER has better error-correcting performance than existing programs, is faster and requires less memory. To support our claims, we performed extensive comparison with the existing leading programs on a variety of real datasets. Availability: RACER is freely available for non-commercial use at www.csd.uwo.ca/~ilie/RACER/ . Contact: ilie@csd.uwo.ca Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2013-09-20
    Description: : Interactions between various types of molecules that regulate crucial cellular processes are extensively investigated by high-throughput experiments and require dedicated computational methods for the analysis of the resulting data. In many cases, these data can be represented as a bipartite graph because it describes interactions between elements of two different types such as the influence of different experimental conditions on cellular variables or the direct interaction between receptors and their activators/inhibitors. One of the major challenges in the analysis of such noisy datasets is the statistical evaluation of the relationship between any two elements of the same type. Here, we present SICOP (significant co-interaction patterns), an implementation of a method that provides such an evaluation based on the number of their common interaction partners, their so-called co-interaction. This general network analytic method, proved successful in diverse fields, provides a framework for assessing the significance of this relationship by comparison with the expected co-interaction in a suitable null model of the same bipartite graph. SICOP takes into consideration up to two distinct types of interactions such as up- or downregulation. The tool is written in Java and accepts several common input formats and supports different output formats, facilitating further analysis and visualization. Its key features include a user-friendly interface, easy installation and platform independence. Availability: The software is open source and available at cna.cs.uni-kl.de/SICOP under the terms of the GNU General Public Licence (version 3 or later). Contact: agnes.horvat@iwr.uni-heidelberg.de or zweig@cs.uni-kl.de
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2013-09-20
    Description: : Molecular recognition features (MoRFs) are small, intrinsically disordered regions in proteins that undergo a disorder-to-order transition on binding to their partners. MoRFs are involved in protein–protein interactions and may function as the initial step in molecular recognition. The aim of this work was to collect, organize and store all membrane proteins that contain MoRFs. Membrane proteins constitute ~30% of fully sequenced proteomes and are responsible for a wide variety of cellular functions. MoRFs were classified according to their secondary structure, after interacting with their partners. We identified MoRFs in transmembrane and peripheral membrane proteins. The position of transmembrane protein MoRFs was determined in relation to a protein’s topology. All information was stored in a publicly available mySQL database with a user-friendly web interface. A Jmol applet is integrated for visualization of the structures. mpMoRFsDB provides valuable information related to disorder-based protein–protein interactions in membrane proteins. Availability: http://bioinformatics.biol.uoa.gr/mpMoRFsDB Contact: shamodr@biol.uoa.gr
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2013-09-20
    Description: : The signaling Petri net (SPN) simulator, designed to provide insights into the trends of molecules’ activity levels in response to an external stimulus, contributes to the systems biology necessity of analyzing the dynamics of large-scale cellular networks. Implemented into the freely available software, BioLayout Express 3D , the simulator is publicly available and easy to use, provided the input files are prepared in the GraphML format, typically using the network editing software, yEd, and standards specific to the software. However, analysis of complex networks represented using other systems biology formatting languages (on which popular software, such as CellDesigner and Cytoscape, are based) requires manual manipulation, a step that is prone to error and limits the use of the SPN simulator in BioLayout Express 3D . To overcome this, we present a Cytoscape plug-in that enables users to automatically convert networks for analysis with the SPN simulator from the standard systems biology markup language. The automation of this step opens the SPN simulator to a far larger user group than has previously been possible. Availability and implementation: Distributed under the GNU General Public License Version 3 at http://apps.cytoscape.org/apps/spnconverter . Contact: christine@picb.ac.cn
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2013-09-20
    Description: Motivation: Conformational diversity is a key concept in the understanding of different issues related with protein function such as the study of catalytic processes in enzymes, protein-protein recognition, protein evolution and the origins of new biological functions. Here, we present a database of proteins with different degrees of conformational diversity. Conformational Diversity of Native State (CoDNaS) is a redundant collection of three-dimensional structures for the same protein derived from protein data bank. Structures for the same protein obtained under different crystallographic conditions have been associated with snapshots of protein dynamism and consequently could characterize protein conformers. CoDNaS allows the user to explore global and local structural differences among conformers as a function of different parameters such as presence of ligand, post-translational modifications, changes in oligomeric states and differences in pH and temperature. Additionally, CoDNaS contains information about protein taxonomy and function, disorder level and structural classification offering useful information to explore the underlying mechanism of conformational diversity and its close relationship with protein function. Currently, CoDNaS has 122 122 structures integrating 12 684 entries, with an average of 9.63 conformers per protein. Availability: The database is freely available at http://www.codnas.com.ar/ . Contact: gusparisi@gmail.com
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2013-09-20
    Description: Motivation: Recent experimental advancements allow determining positions of nucleosomes for complete genomes. However, the resulting nucleosome occupancy maps are averages of heterogeneous cell populations. Accordingly, they represent a snapshot of a dynamic ensemble at a single time point with an overlay of many configurations from different cells. To study the organization of nucleosomes along the genome and to understand the mechanisms of nucleosome translocation, it is necessary to retrieve features of specific conformations from the population average. Results: Here, we present a method for identifying non-overlapping nucleosome configurations that combines binary-variable analysis and a Monte Carlo approach with a simulated annealing scheme. In this manner, we obtain specific nucleosome configurations and optimized solutions for the complex positioning patterns from experimental data. We apply the method to compare nucleosome positioning at transcription factor binding sites in different mouse cell types. Our method can model nucleosome translocations at regulatory genomic elements and generate configurations for simulations of the spatial folding of the nucleosome chain. Availability: Source code, precompiled binaries, test data and a web-based test installation are freely available at http://bioinformatics.fh-stralsund.de/nucpos/ Contact: gero.wedemann@fh-stralsund.de Supplementary Information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2013-10-04
    Description: Motivation: Residue–residue contacts across the transmembrane helices dictate the three-dimensional topology of alpha-helical membrane proteins. However, contact determination through experiments is difficult because most transmembrane proteins are hard to crystallize. Results: We present a novel method (MemBrain) to derive transmembrane inter-helix contacts from amino acid sequences by combining correlated mutations and multiple machine learning classifiers. Tested on 60 non-redundant polytopic proteins using a strict leave-one-out cross-validation protocol, MemBrain achieves an average accuracy of 62%, which is 12.5% higher than the current best method from the literature. When applied to 13 recently solved G protein-coupled receptors, the MemBrain contact predictions helped increase the TM-score of the I-TASSER models by 37% in the transmembrane region. The number of foldable cases (TM-score 〉0.5) increased by 100%, where all G protein-coupled receptor templates and homologous templates with sequence identity 〉30% were excluded. These results demonstrate significant progress in contact prediction and a potential for contact-driven structure modeling of transmembrane proteins. Availability: www.csbio.sjtu.edu.cn/bioinf/MemBrain/ Contact: hbshen@sjtu.edu.cn or zhng@umich.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2013-10-04
    Description: Motivation: Identification of protein–ligand binding sites is critical to protein function annotation and drug discovery. However, there is no method that could generate optimal binding site prediction for different protein types. Combination of complementary predictions is probably the most reliable solution to the problem. Results: We develop two new methods, one based on binding-specific substructure comparison (TM-SITE) and another on sequence profile alignment (S-SITE), for complementary binding site predictions. The methods are tested on a set of 500 non-redundant proteins harboring 814 natural, drug-like and metal ion molecules. Starting from low-resolution protein structure predictions, the methods successfully recognize 〉51% of binding residues with average Matthews correlation coefficient (MCC) significantly higher (with P -value 〈10 –9 in student t -test) than other state-of-the-art methods, including COFACTOR, FINDSITE and ConCavity. When combining TM-SITE and S-SITE with other structure-based programs, a consensus approach (COACH) can increase MCC by 15% over the best individual predictions. COACH was examined in the recent community-wide COMEO experiment and consistently ranked as the best method in last 22 individual datasets with the Area Under the Curve score 22.5% higher than the second best method. These data demonstrate a new robust approach to protein–ligand binding site recognition, which is ready for genome-wide structure-based function annotations. Availability: http://zhanglab.ccmb.med.umich.edu/COACH/ Contact: zhng@umich.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2013-10-04
    Description: Motivation: The nucleosome is the basic repeating unit of chromatin. It contains two copies each of the four core histones H2A, H2B, H3 and H4 and about 147 bp of DNA. The residues of the histone proteins are subject to numerous post-translational modifications, such as methylation or acetylation. Chromatin immunoprecipitiation followed by sequencing (ChIP-seq) is a technique that provides genome-wide occupancy data of these modified histone proteins, and it requires appropriate computational methods. Results: We present NucHunter, an algorithm that uses the data from ChIP-seq experiments directed against many histone modifications to infer positioned nucleosomes. NucHunter annotates each of these nucleosomes with the intensities of the histone modifications. We demonstrate that these annotations can be used to infer nucleosomal states with distinct correlations to underlying genomic features and chromatin-related processes, such as transcriptional start sites, enhancers, elongation by RNA polymerase II and chromatin-mediated repression. Thus, NucHunter is a versatile tool that can be used to predict positioned nucleosomes from a panel of histone modification ChIP-seq experiments and infer distinct histone modification patterns associated to different chromatin states. Availability: The software is available at http://epigen.molgen.mpg.de/nuchunter/ . Contact: chung@molgen.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2013-10-04
    Description: Motivation: In biomedical research a growing number of platforms and technologies are used to measure diverse but related information, and the task of clustering a set of objects based on multiple sources of data arises in several applications. Most current approaches to multisource clustering either independently determine a separate clustering for each data source or determine a single ‘joint’ clustering for all data sources. There is a need for more flexible approaches that simultaneously model the dependence and the heterogeneity of the data sources. Results: We propose an integrative statistical model that permits a separate clustering of the objects for each data source. These separate clusterings adhere loosely to an overall consensus clustering, and hence they are not independent. We describe a computationally scalable Bayesian framework for simultaneous estimation of both the consensus clustering and the source-specific clusterings. We demonstrate that this flexible approach is more robust than joint clustering of all data sources, and is more powerful than clustering each data source independently. We present an application to subtype identification of breast cancer tumor samples using publicly available data from The Cancer Genome Atlas. Availability: R code with instructions and examples is available at http://people.duke.edu/%7Eel113/software.html . Contact: Eric.Lock@duke.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2013-10-04
    Description: Motivation: More and more evidences have indicated that long–non-coding RNAs (lncRNAs) play critical roles in many important biological processes. Therefore, mutations and dysregulations of these lncRNAs would contribute to the development of various complex diseases. Developing powerful computational models for potential disease-related lncRNAs identification would benefit biomarker identification and drug discovery for human disease diagnosis, treatment, prognosis and prevention. Results : In this article, we proposed the assumption that similar diseases tend to be associated with functionally similar lncRNAs. Then, we further developed the method of Laplacian Regularized Least Squares for LncRNA–Disease Association (LRLSLDA) in the semisupervised learning framework. Although known disease–lncRNA associations in the database are rare, LRLSLDA still obtained an AUC of 0.7760 in the leave-one-out cross validation, significantly improving the performance of previous methods. We also illustrated the performance of LRLSLDA is not sensitive (even robust) to the parameters selection and it can obtain a reliable performance in all the test classes. Plenty of potential disease–lncRNA associations were publicly released and some of them have been confirmed by recent results in biological experiments. It is anticipated that LRLSLDA could be an effective and important biological tool for biomedical research. Availability: The code of LRLSLDA is freely available at http://asdcd.amss.ac.cn/Software/Details/2 . Contact: xingchen@amss.ac.cn or yangy@amt.ac.cn Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...