ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10,629)
  • Copernicus  (10,629)
  • 2015-2019  (10,629)
  • Atmospheric Chemistry and Physics  (4,302)
  • The Cryosphere  (1,101)
  • 19026
  • 92597
  • 1
    Publication Date: 2015-08-11
    Description: Source attribution and process analysis for atmospheric mercury in eastern China simulated by CMAQ-Hg Atmospheric Chemistry and Physics, 15, 8767-8779, 2015 Author(s): J. Zhu, T. Wang, J. Bieser, and V. Matthias The contribution from different emission sources and atmospheric processes to gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), particulate bound mercury (PBM) and mercury deposition in eastern China were quantified using the Community Multi-scale Air Quality (CMAQ-Hg) modeling system run with a nested domain. Natural sources (NAT) and six categories of anthropogenic mercury sources (ANTH) including cement production (CEM), domestic life (DOM), industrial boilers (IND), metal production (MET), coal-fired power plants (PP) and traffic (TRA) were considered for source apportionment. NAT were responsible for 36.6 % of annual averaged GEM concentration, which was regarded as the most important source for GEM in spite of obvious seasonal variation. Among ANTH, the influence of MET and PP on GEM were most evident especially in winter. ANTH dominated the variations of GOM and PBM concentrations with contributions of 86.7 and 79.1 %, respectively. Among ANTH, IND were the largest contributor for GOM (57.5 %) and PBM (34.4 %) so that most mercury deposition came from IND. The effect of mercury emitted from out of China was indicated by a 〉 30 % contribution to GEM concentration and wet deposition. The contributions from nine processes – consisting of emissions (EMIS), gas-phase chemical production/loss (CHEM), horizontal advection (HADV), vertical advection (ZADV), horizontal advection (HDIF), vertical diffusion (VDIF), dry deposition (DDEP), cloud processes (CLDS) and aerosol processes (AERO) – were calculated for process analysis with their comparison in urban and non-urban regions of the Yangtze River delta (YRD). EMIS and VDIF affected surface GEM and PBM concentrations most and tended to compensate each other all the time in both urban and non-urban areas. However, DDEP was the most important removal process for GOM with 7.3 and 2.9 ng m −3 reduced in the surface of urban and non-urban areas, respectively, in 1 day. The diurnal profile variation of processes revealed the transportation of GOM from urban area to non-urban areas and the importance of CHEM/AERO in higher altitudes which partly caused diffusion of GOM downwards to non-urban areas. Most of the anthropogenic mercury was transported and diffused away from urban areas by HADV and VDIF and increased mercury concentrations in non-urban areas by HADV. Natural emissions only influenced CHEM and AERO more significantly than anthropogenic. Local emissions in the YRD contributed 8.5 % more to GEM and ~ 30 % more to GOM and PBM in urban areas compared to non-urban areas.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-11
    Description: Seasonal variation of secondary organic aerosol tracers in Central Tibetan Plateau Atmospheric Chemistry and Physics, 15, 8781-8793, 2015 Author(s): R.-Q. Shen, X. Ding, Q.-F. He, Z.-Y. Cong, Q.-Q. Yu, and X.-M. Wang Secondary organic aerosol (SOA) affects the earth's radiation balance and global climate. High-elevation areas are sensitive to global climate change. However, at present, SOA origins and seasonal variations are understudied in remote high-elevation areas. In this study, particulate samples were collected from July 2012 to July 2013 at the remote Nam Co (NC) site, Central Tibetan Plateau and analyzed for SOA tracers from biogenic (isoprene, monoterpenes and β-caryophyllene) and anthropogenic (aromatics) precursors. Among these compounds, isoprene SOA (SOA I ) tracers represented the majority (26.6 ± 44.2 ng m −3 ), followed by monoterpene SOA (SOA M ) tracers (0.97 ± 0.57 ng m −3 ), aromatic SOA (SOA A ) tracer (2,3-dihydroxy-4-oxopentanoic acid, DHOPA, 0.25 ± 0.18 ng m −3 ) and β-caryophyllene SOA tracer (β-caryophyllenic acid, 0.09 ± 0.10 ng m −3 ). SOA I tracers exhibited high concentrations in the summer and low levels in the winter. The similar temperature dependence of SOA I tracers and isoprene emission suggested that the seasonal variation of SOA I tracers at the NC site was mainly influenced by the isoprene emission. The ratio of high-NO x to low-NO x products of SOA I (2-methylglyceric acid to 2-methyltetrols) was highest in the winter and lowest in the summer, due to the influence of temperature and relative humidity. The seasonal variation of SOA M tracers was impacted by monoterpenes emission and gas-particle partitioning. During the summer to the fall, temperature effect on partitioning was the dominant process influencing SOA M tracers' variation; while the temperature effect on emission was the dominant process influencing SOA M tracers' variation during the winter to the spring. SOA M tracer levels did not elevate with increased temperature in the summer, probably resulting from the counteraction of temperature effects on emission and partitioning. The concentrations of DHOPA were 1–2 orders of magnitude lower than those reported in the urban regions of the world. Due to the transport of air pollutants from the adjacent Bangladesh and northeastern India, DHOPA presented relatively higher levels in the summer. In the winter when air masses mainly came from northwestern India, mass fractions of DHOPA in total tracers increased, although its concentrations declined. The SOA-tracer method was applied to estimate secondary organic carbon (SOC) from these four precursors. The annual average of SOC was 0.22 ± 0.29 μgC m −3 , with the biogenic SOC (sum of isoprene, monoterpenes and β-caryophyllene) accounting for 75 %. In the summer, isoprene was the major precursor with its SOC contributions of 81 %. In the winter when the emission of biogenic precursors largely dropped, the contributions of aromatic SOC increased. Our study implies that anthropogenic pollutants emitted in the Indian subcontinent could be transported to the TP and have an impact on SOC over the remote NC.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-11
    Description: Contrail life cycle and properties from 1 year of MSG/SEVIRI rapid-scan images Atmospheric Chemistry and Physics, 15, 8739-8749, 2015 Author(s): M. Vázquez-Navarro, H. Mannstein, and S. Kox The automatic contrail tracking algorithm (ACTA) – developed to automatically follow contrails as they age, drift and spread – enables the study of a large number of contrails and the evolution of contrail properties with time. In this paper we present a year's worth of tracked contrails, from August 2008 to July 2009 in order to derive statistically significant mean values. The tracking is performed using the 5 min rapid-scan mode of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellites. The detection is based on the high spatial resolution of the images provided by the Moderate Resolution Imaging Spectroradiometer on board the Terra satellite (Terra/MODIS), where a contrail detection algorithm (CDA) is applied. The results show the satellite-derived average lifetimes of contrails and contrail-cirrus along with the probability density function (PDF) of other geometric characteristics such as mean coverage, distribution and width. In combination with specifically developed algorithms (RRUMS; Rapid Retrieval of Upwelling irradiance from MSG/SEVIRI and COCS (Cirrus Optical properties derived from CALIOP and SEVIRI), explained below) it is possible to derive the radiative forcing (RF), energy forcing (EF), optical thickness (τ) and altitude of the tracked contrails. Mean values here retrieved are duration, 1 h; length, 130 km; width, 8 km; altitude, 11.7 km; optical thickness, 0.34. Radiative forcing and energy forcing are shown for land/water backgrounds in day/night situations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-11
    Description: A comparison of chemical mechanisms using tagged ozone production potential (TOPP) analysis Atmospheric Chemistry and Physics, 15, 8795-8808, 2015 Author(s): J. Coates and T. M. Butler Ground-level ozone is a secondary pollutant produced photochemically from reactions of NO x with peroxy radicals produced during volatile organic compound (VOC) degradation. Chemical transport models use simplified representations of this complex gas-phase chemistry to predict O 3 levels and inform emission control strategies. Accurate representation of O 3 production chemistry is vital for effective prediction. In this study, VOC degradation chemistry in simplified mechanisms is compared to that in the near-explicit Master Chemical Mechanism (MCM) using a box model and by "tagging" all organic degradation products over multi-day runs, thus calculating the tagged ozone production potential (TOPP) for a selection of VOCs representative of urban air masses. Simplified mechanisms that aggregate VOC degradation products instead of aggregating emitted VOCs produce comparable amounts of O 3 from VOC degradation to the MCM. First-day TOPP values are similar across mechanisms for most VOCs, with larger discrepancies arising over the course of the model run. Aromatic and unsaturated aliphatic VOCs have the largest inter-mechanism differences on the first day, while alkanes show largest differences on the second day. Simplified mechanisms break VOCs down into smaller-sized degradation products on the first day faster than the MCM, impacting the total amount of O 3 produced on subsequent days due to secondary chemistry.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-11
    Description: Trace metal characterization of aerosol particles and cloud water during HCCT 2010 Atmospheric Chemistry and Physics, 15, 8751-8765, 2015 Author(s): K. W. Fomba, D. van Pinxteren, K. Müller, Y. Iinuma, T. Lee, J. L. Collett Jr., and H. Herrmann Trace metal characterization of bulk and size-resolved aerosol and cloud water samples were performed during the Hill Cap Cloud Thuringia (HCCT) campaign. Cloud water was collected at the top of Mt. Schmücke while aerosol samples were collected at two stations upwind and downwind of Mt. Schmücke. Fourteen trace metals including Ti, V, Fe, Mn, Co, Zn, Ni, Cu, As, Sr, Rb, Pb, Cr, and Se were investigated during four full cloud events (FCEs) that fulfilled the conditions of a continuous air mass flow through the three stations. Aerosol particle trace metal concentrations were found to be lower than those observed in the same region during previous field experiments but were within a similar range to those observed in other rural regions in Europe. Fe and Zn were the most abundant elements with concentration ranges of 0.2–111.6 and 1.1–32.1 ng m −3 , respectively. Fe, Mn, and Ti were mainly found in coarse mode aerosols while Zn, Pb, and As were mostly found in the fine mode. Correlation and enrichment factor analysis of trace metals revealed that trace metals such as Ti and Rb were mostly of crustal origin while trace metals such as Zn, Pb, As, Cr, Ni, V, and Cu were of anthropogenic origin. Trace metals such as Fe and Mn were of mixed origins including crustal and combustion sources. Trace metal cloud water concentration decreased from Ti, Mn, Cr, to Co with average concentrations of 9.18, 5.59, 5.54, and 0.46 μg L −1 , respectively. A non-uniform distribution of soluble Fe, Cu, and Mn was observed across the cloud drop sizes. Soluble Fe and Cu were found mainly in cloud droplets with diameters between 16 and 22 μm, while Mn was found mostly in larger drops greater than 22 μm. Fe(III) was the main form of soluble Fe especially in the small and larger drops with concentrations ranging from 2.2 to 37.1 μg L −1 . In contrast to other studies, Fe(II) was observed mainly in the evening hours, implying its presence was not directly related to photochemical processes. Aerosol–cloud interaction did not lead to a marked increase in soluble trace metal concentrations; rather it led to differences in the chemical composition of the aerosol due to preferential loss of aerosol particles through physical processes including cloud drop deposition to vegetative surfaces.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-08
    Description: Impact of model developments on present and future simulations of permafrost in a global land-surface model The Cryosphere, 9, 1505-1521, 2015 Author(s): S. E. Chadburn, E. J. Burke, R. L. H. Essery, J. Boike, M. Langer, M. Heikenfeld, P. M. Cox, and P. Friedlingstein There is a large amount of organic carbon stored in permafrost in the northern high latitudes, which may become vulnerable to microbial decomposition under future climate warming. In order to estimate this potential carbon–climate feedback it is necessary to correctly simulate the physical dynamics of permafrost within global Earth system models (ESMs) and to determine the rate at which it will thaw. Additional new processes within JULES, the land-surface scheme of the UK ESM (UKESM), include a representation of organic soils, moss and bedrock and a modification to the snow scheme; the sensitivity of permafrost to these new developments is investigated in this study. The impact of a higher vertical soil resolution and deeper soil column is also considered. Evaluation against a large group of sites shows the annual cycle of soil temperatures is approximately 25 % too large in the standard JULES version, but this error is corrected by the model improvements, in particular by deeper soil, organic soils, moss and the modified snow scheme. A comparison with active layer monitoring sites shows that the active layer is on average just over 1 m too deep in the standard model version, and this bias is reduced by 70 cm in the improved version. Increasing the soil vertical resolution allows the full range of active layer depths to be simulated; by contrast, with a poorly resolved soil at least 50 % of the permafrost area has a maximum thaw depth at the centre of the bottom soil layer. Thus all the model modifications are seen to improve the permafrost simulations. Historical permafrost area corresponds fairly well to observations in all simulations, covering an area between 14 and 19 million km 2 . Simulations under two future climate scenarios show a reduced sensitivity of permafrost degradation to temperature, with the near-surface permafrost loss per degree of warming reduced from 1.5 million km 2 °C −1 in the standard version of JULES to between 1.1 and 1.2 million km 2 °C −1 in the new model version. However, the near-surface permafrost area is still projected to approximately half by the end of the 21st century under the RCP8.5 scenario.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-13
    Description: New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations Atmospheric Chemistry and Physics, 15, 8831-8846, 2015 Author(s): N. Andela, J. W. Kaiser, G. R. van der Werf, and M. J. Wooster Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in these FRE estimates are often substantial. This is for a large part because the most often used low-Earth orbit satellite-based instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) have a relatively poor sampling of the usually pronounced fire diurnal cycle. In this paper we explore the spatial variation of this fire diurnal cycle and its drivers using data from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI). In addition, we sampled data from the SEVIRI instrument at MODIS detection opportunities to develop two approaches to estimate hourly FRE based on MODIS active fire detections. The first approach ignored the fire diurnal cycle, assuming persistent fire activity between two MODIS observations, while the second approach combined knowledge on the climatology of the fire diurnal cycle with active fire detections to estimate hourly FRE. The full SEVIRI time series, providing full coverage of the fire diurnal cycle, were used to evaluate the results. Our study period comprised of 3 years (2010–2012), and we focused on Africa and the Mediterranean basin to avoid the use of potentially lower quality SEVIRI data obtained at very far off-nadir view angles. We found that the fire diurnal cycle varies substantially over the study region, and depends on both fuel and weather conditions. For example, more "intense" fires characterized by a fire diurnal cycle with high peak fire activity, long duration over the day, and with nighttime fire activity are most common in areas of large fire size (i.e., large burned area per fire event). These areas are most prevalent in relatively arid regions. Ignoring the fire diurnal cycle generally resulted in an overestimation of FRE, while including information on the climatology of the fire diurnal cycle improved FRE estimates. The approach based on knowledge of the climatology of the fire diurnal cycle also improved distribution of FRE over the day, although only when aggregating model results to coarser spatial and/or temporal scale good correlation was found with the full SEVIRI hourly reference data set. We recommend the use of regionally varying fire diurnal cycle information within the Global Fire Assimilation System (GFAS) used in the Copernicus Atmosphere Monitoring Services, which will improve FRE estimates and may allow for further reconciliation of biomass burning emission estimates from different inventories.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-13
    Description: The anthropogenic contribution to atmospheric black carbon concentrations in southern Africa: a WRF-Chem modeling study Atmospheric Chemistry and Physics, 15, 8809-8830, 2015 Author(s): F. Kuik, A. Lauer, J. P. Beukes, P. G. Van Zyl, M. Josipovic, V. Vakkari, L. Laakso, and G. T. Feig South Africa has one of the largest industrialized economies in Africa. Emissions of air pollutants are particularly high in the Johannesburg-Pretoria metropolitan area, the Mpumalanga Highveld and the Vaal Triangle, resulting in local air pollution. This study presents and evaluates a setup for conducting modeling experiments over southern Africa with the Weather Research and Forecasting model including chemistry and aerosols (WRF-Chem), and analyzes the contribution of anthropogenic emissions to the total black carbon (BC) concentrations from September to December 2010. The modeled BC concentrations are compared with measurements obtained at the Welgegund station situated ca. 100 km southwest of Johannesburg. An evaluation of WRF-Chem with observational data from ground-based measurement stations, radiosondes, and satellites shows that the meteorology is modeled mostly reasonably well, but precipitation amounts are widely overestimated and the onset of the wet season is modeled approximately 1 month too early in 2010. Modeled daily mean BC concentrations show a temporal correlation of 0.66 with measurements, but the total BC concentration is underestimated in the model by up to 50 %. Sensitivity studies with anthropogenic emissions of BC and co-emitted species turned off show that anthropogenic sources can contribute up to 100 % to BC concentrations in the industrialized and urban areas, and anthropogenic BC and co-emitted species together can contribute up to 60 % to PM 1 levels. Particularly the co-emitted species contribute significantly to the aerosol optical depth (AOD). Furthermore, in areas of large-scale biomass-burning atmospheric heating rates are increased through absorption by BC up to an altitude of about 600hPa.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-14
    Description: Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site Atmospheric Chemistry and Physics, 15, 8871-8888, 2015 Author(s): S. H. Budisulistiorini, X. Li, S. T. Bairai, J. Renfro, Y. Liu, Y. J. Liu, K. A. McKinney, S. T. Martin, V. F. McNeill, H. O. T. Pye, A. Nenes, M. E. Neff, E. A. Stone, S. Mueller, C. Knote, S. L. Shaw, Z. Zhang, A. Gold, and J. D. Surratt A suite of offline and real-time gas- and particle-phase measurements was deployed at Look Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formation. High- and low-time-resolution PM 2.5 samples were collected for analysis of known tracer compounds in isoprene-derived SOA by gas chromatography/electron ionization-mass spectrometry (GC/EI-MS) and ultra performance liquid chromatography/diode array detection-electrospray ionization-high-resolution quadrupole time-of-flight mass spectrometry (UPLC/DAD-ESI-HR-QTOFMS). Source apportionment of the organic aerosol (OA) was determined by positive matrix factorization (PMF) analysis of mass spectrometric data acquired on an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). Campaign average mass concentrations of the sum of quantified isoprene-derived SOA tracers contributed to ~ 9 % (up to 28 %) of the total OA mass, with isoprene-epoxydiol (IEPOX) chemistry accounting for ~ 97 % of the quantified tracers. PMF analysis resolved a factor with a profile similar to the IEPOX-OA factor resolved in an Atlanta study and was therefore designated IEPOX-OA. This factor was strongly correlated ( r 2 〉 0.7) with 2-methyltetrols, C 5 -alkene triols, IEPOX-derived organosulfates, and dimers of organosulfates, confirming the role of IEPOX chemistry as the source. On average, IEPOX-derived SOA tracer mass was ~ 26 % (up to 49 %) of the IEPOX-OA factor mass, which accounted for 32 % of the total OA. A low-volatility oxygenated organic aerosol (LV-OOA) and an oxidized factor with a profile similar to 91Fac observed in areas where emissions are biogenic-dominated were also resolved by PMF analysis, whereas no primary organic aerosol (POA) sources could be resolved. These findings were consistent with low levels of primary pollutants, such as nitric oxide (NO ~ 0.03 ppb), carbon monoxide (CO ~ 116 ppb), and black carbon (BC ~ 0.2 μg m −3 ). Particle-phase sulfate is fairly correlated ( r 2 ~ 0.3) with both methacrylic acid epoxide (MAE)/hydroxymethyl-methyl-α-lactone (HMML)- (henceforth called methacrolein (MACR)-derived SOA tracers) and IEPOX-derived SOA tracers, and more strongly correlated ( r 2 ~ 0.6) with the IEPOX-OA factor, in sum suggesting an important role of sulfate in isoprene SOA formation. Moderate correlation between the MACR-derived SOA tracer 2-methylglyceric acid with sum of reactive and reservoir nitrogen oxides (NO y ; r 2 = 0.38) and nitrate ( r 2 = 0.45) indicates the potential influence of anthropogenic emissions through long-range transport. Despite the lack of a clear association of IEPOX-OA with locally estimated aerosol acidity and liquid water content (LWC), box model calculations of IEPOX uptake using the simpleGAMMA model, accounting for the role of acidity and aerosol water, predicted the abundance of the IEPOX-derived SOA tracers 2-methyltetrols and the corresponding sulfates with good accuracy ( r 2 ~ 0.5 and ~ 0.7, respectively). The modeling and data combined suggest an anthropogenic influence on isoprene-derived SOA formation through acid-catalyzed heterogeneous chemistry of IEPOX in the southeastern US. However, it appears that this process was not limited by aerosol acidity or LWC at Look Rock during SOAS. Future studies should further explore the extent to which acidity and LWC as well as aerosol viscosity and morphology becomes a limiting factor of IEPOX-derived SOA, and their modulation by anthropogenic emissions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-15
    Description: Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber Atmospheric Chemistry and Physics, 15, 9049-9062, 2015 Author(s): T. Liu, X. Wang, W. Deng, Q. Hu, X. Ding, Y. Zhang, Q. He, Z. Zhang, S. Lü, X. Bi, J. Chen, and J. Yu In China, a rapid increase in passenger vehicles has led to the growing concern of vehicle exhaust as an important source of anthropogenic secondary organic aerosol (SOA) in megacities hard hit by haze. In this study, the SOA formation of emissions from two idling light-duty gasoline vehicles (LDGVs) (Euro 1 and Euro 4) operated in China was investigated in a 30 m 3 smog chamber. Five photo-oxidation experiments were carried out at 25 °C with relative humidity at around 50 %. After aging at an OH exposure of 5 × 10 6 molecules cm −3 h, the formed SOA was 12–259 times as high as primary organic aerosol (POA). The SOA production factors (PF) were 0.001–0.044 g kg −1 fuel, comparable with those from the previous studies at comparable OH exposure. This quite lower OH exposure than that in typical atmospheric conditions might however lead to the underestimation of the SOA formation potential from LDGVs. Effective SOA yields in this study were well fit by a one-product gas-particle partitioning model but quite lower than those of a previous study investigating SOA formation from three idling passenger vehicles (Euro 2–4). Traditional single-ring aromatic precursors and naphthalene could explain 51–90 % of the formed SOA. Unspeciated species such as branched and cyclic alkanes might be the possible precursors for the unexplained SOA. A high-resolution time-of-flight aerosol mass spectrometer was used to characterize the chemical composition of SOA. The relationship between f 43 (ratio of m/z 43, mostly C 2 H 3 O + , to the total signal in mass spectrum) and f 44 (mostly CO 2 + ) of the gasoline vehicle exhaust SOA is similar to the ambient semi-volatile oxygenated organic aerosol (SV-OOA). We plot the O : C and H : C molar ratios of SOA in a Van Krevelen diagram. The slopes of ΔH : C / ΔO : C ranged from −0.59 to −0.36, suggesting that the oxidation chemistry in these experiments was a combination of carboxylic acid and alcohol/peroxide formation.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-08-04
    Description: Uncertainties in global aerosols and climate effects due to biofuel emissions Atmospheric Chemistry and Physics, 15, 8577-8596, 2015 Author(s): J. K. Kodros, C. E. Scott, S. C. Farina, Y. H. Lee, C. L'Orange, J. Volckens, and J. R. Pierce Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing state, and model nucleation and background secondary organic aerosol (SOA). We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include amount, composition, size, and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (homogeneous, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from −0.02 to +0.06 W m −2 across all simulation/mixing-state combinations with regional effects in source regions ranging from −0.2 to +0.8 W m −2 . The global-mean cloud-albedo aerosol indirect effect (AIE) ranges from +0.01 to −0.02 W m −2 with regional effects in source regions ranging from −1.0 to −0.05 W m −2 . The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions, and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution, and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol effects is unclear due to uncertainties in model inputs. This uncertainty limits our ability to introduce mitigation strategies aimed at reducing biofuel black carbon emissions in order to counter warming effects from greenhouse gases. To better understand the climate impact of particle emissions from biofuel combustion, we recommend field/laboratory measurements to narrow constraints on (1) emissions mass, (2) emission size distribution, (3) mixing state, and (4) ratio of black carbon to organic aerosol.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-08-05
    Description: Assimilation of Antarctic velocity observations provides evidence for uncharted pinning points The Cryosphere, 9, 1427-1443, 2015 Author(s): J. J. Fürst, G. Durand, F. Gillet-Chaulet, N. Merino, L. Tavard, J. Mouginot, N. Gourmelen, and O. Gagliardini In ice flow modelling, the use of control methods to assimilate the dynamic and geometric state of an ice body has become common practice. These methods have primarily focussed on inverting for one of the two least known properties in glaciology, namely the basal friction coefficient or the ice viscosity parameter. Here, we present an approach to infer both properties simultaneously for the whole of the Antarctic ice sheet. After the assimilation, the root-mean-square deviation between modelled and observed surface velocities attains 8.7 m a −1 for the entire domain, with a slightly higher value of 14.0 m a −1 for the ice shelves. An exception in terms of the velocity mismatch is the Thwaites Glacier Ice Shelf, where the RMS value is almost 70 m a −1 . The reason is that the underlying Bedmap2 geometry ignores the presence of an ice rise, which exerts major control on the dynamics of the eastern part of the ice shelf. On these grounds, we suggest an approach to account for pinning points not included in Bedmap2 by locally allowing an optimisation of basal friction during the inversion. In this way, the velocity mismatch on the ice shelf of Thwaites Glacier is more than halved. A characteristic velocity mismatch pattern emerges for unaccounted pinning points close to the marine shelf front. This pattern is exploited to manually identify seven uncharted features around Antarctica that exert significant resistance to the shelf flow. Potential pinning points are detected on Fimbul, West, Shackleton, Nickerson and Venable ice shelves. As pinning points can provide substantial resistance to shelf flow, with considerable consequences if they became ungrounded in the future, the model community is in need of detailed bathymetry there. Our data assimilation points to some of these dynamically important features not present in Bedmap2 and implicitly quantifies their relevance.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-08-07
    Description: Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations Atmospheric Chemistry and Physics, 15, 8657-8678, 2015 Author(s): H. Cui, P. Mao, Y. Zhao, C. P. Nielsen, and J. Zhang China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29 % from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37 % (from 1356 to 1857 Gg). The residential, industrial, and transportation sectors contributed an estimated 74–78, 17–21, and 4–6 % of the total emissions of OC, respectively, and 49–55, 30–34, and 14–18 % of EC. Updated emission factors (EFs) based on the most recent local field measurements, particularly for biofuel stoves, led to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while higher OC / EC ratios are found in southern sites, due to the joint effects of primary emissions and meteorology. Higher OC / EC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC / OC is reduced, particularly at rural and remote sites, attributed partly to weaker atmospheric oxidation and SOC formation compared to summer. Enhanced SOC formation from oxidization and anthropogenic activities like biomass combustion is judged to have crucial effects on severe haze events characterized by high particle concentrations. Several observational studies indicate an increasing trend in ambient OC / EC (but not in OC or EC individually) from 2000 to 2010, confirming increased atmospheric oxidation of OC across the country. Combining the results of emission estimation and observations, the improvement over prior emission inventories is indicated by inter-annual comparisons and correlation analysis. It is also indicated, however, that the estimated growth in emissions might be faster than observed growth, and that some sources with high primary OC / EC, such as burning of biomass, are still underestimated. Further studies to determine changing EFs over time in the residential sector and to compare to other measurements, such as satellite observations, are thus suggested to improve understanding of the levels and trends of primary carbonaceous aerosol emissions in China.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-08-19
    Description: Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate The Cryosphere, 9, 1579-1600, 2015 Author(s): S. L. Cornford, D. F. Martin, A. J. Payne, E. G. Ng, A. M. Le Brocq, R. M. Gladstone, T. L. Edwards, S. R. Shannon, C. Agosta, M. R. van den Broeke, H. H. Hellmer, G. Krinner, S. R. M. Ligtenberg, R. Timmermann, and D. G. Vaughan We use the BISICLES adaptive mesh ice sheet model to carry out one, two, and three century simulations of the fast-flowing ice streams of the West Antarctic Ice Sheet, deploying sub-kilometer resolution around the grounding line since coarser resolution results in substantial underestimation of the response. Each of the simulations begins with a geometry and velocity close to present-day observations, and evolves according to variation in meteoric ice accumulation rates and oceanic ice shelf melt rates. Future changes in accumulation and melt rates range from no change, through anomalies computed by atmosphere and ocean models driven by the E1 and A1B emissions scenarios, to spatially uniform melt rate anomalies that remove most of the ice shelves over a few centuries. We find that variation in the resulting ice dynamics is dominated by the choice of initial conditions and ice shelf melt rate and mesh resolution, although ice accumulation affects the net change in volume above flotation to a similar degree. Given sufficient melt rates, we compute grounding line retreat over hundreds of kilometers in every major ice stream, but the ocean models do not predict such melt rates outside of the Amundsen Sea Embayment until after 2100. Within the Amundsen Sea Embayment the largest single source of variability is the onset of sustained retreat in Thwaites Glacier, which can triple the rate of eustatic sea level rise.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-21
    Description: A new model of the global biogeochemical cycle of carbonyl sulfide – Part 2: Use of carbonyl sulfide to constrain gross primary productivity in current vegetation models Atmospheric Chemistry and Physics, 15, 9285-9312, 2015 Author(s): T. Launois, P. Peylin, S. Belviso, and B. Poulter Clear analogies between carbonyl sulfide (OCS) and carbon dioxide (CO 2 ) diffusion pathways through leaves have been revealed by experimental studies, with plant uptake playing an important role for the atmospheric budget of both species. Here we use atmospheric OCS to evaluate the gross primary production (GPP) of three dynamic global vegetation models (Lund–Potsdam–Jena, LPJ; National Center for Atmospheric Research – Community Land Model 4, NCAR-CLM4; and Organising Carbon and Hydrology In Dynamic Ecosystems, ORCHIDEE). Vegetation uptake of OCS is modeled as a linear function of GPP and leaf relative uptake (LRU), the ratio of OCS to CO 2 deposition velocities of plants. New parameterizations for the non-photosynthetic sinks (oxic soils, atmospheric oxidation) and biogenic sources (oceans and anoxic soils) of OCS are also provided. Despite new large oceanic emissions, global OCS budgets created with each vegetation model show exceeding sinks by several hundred Gg S yr −1 . An inversion of the surface fluxes (optimization of a global scalar which accounts for flux uncertainties) led to balanced OCS global budgets, as atmospheric measurements suggest, mainly by drastic reduction (up to −50 %) in soil and vegetation uptakes. The amplitude of variations in atmospheric OCS mixing ratios is mainly dictated by the vegetation sink over the Northern Hemisphere. This allows for bias recognition in the GPP representations of the three selected models. The main bias patterns are (i) the terrestrial GPP of ORCHIDEE at high northern latitudes is currently overestimated, (ii) the seasonal variations of the GPP are out of phase in the NCAR-CLM4 model, showing a maximum carbon uptake too early in spring in the northernmost ecosystems, (iii) the overall amplitude of the seasonal variations of GPP in NCAR-CLM4 is too small, and (iv) for the LPJ model, the GPP is slightly out of phase for the northernmost ecosystems and the respiration fluxes might be too large in summer in the Northern Hemisphere. These results rely on the robustness of the OCS modeling framework and, in particular, the choice of the LRU values (assumed constant in time) and the parameterization of soil OCS uptake with small seasonal variations. Refined optimization with regional-scale and seasonally varying coefficients might help to test some of these hypothesis.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-21
    Description: Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core The Cryosphere, 9, 1633-1648, 2015 Author(s): J.-L. Tison, M. de Angelis, G. Littot, E. Wolff, H. Fischer, M. Hansson, M. Bigler, R. Udisti, A. Wegner, J. Jouzel, B. Stenni, S. Johnsen, V. Masson-Delmotte, A. Landais, V. Lipenkov, L. Loulergue, J.-M. Barnola, J.-R. Petit, B. Delmonte, G. Dreyfus, D. Dahl-Jensen, G. Durand, B. Bereiter, A. Schilt, R. Spahni, K. Pol, R. Lorrain, R. Souchez, and D. Samyn An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ 18 O ice , δ 18 O atm , total air content, CO 2 , CH 4 , N 2 O, dust, high-resolution chemistry, ice texture) of the bottom 60 m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12 m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the "basal clean ice facies". Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large-scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom-ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate "from within", and not from incorporation processes of debris from the ice sheet's substrate. We further discuss how the proposed mechanism is compatible with the other ice properties described. We conclude that the paleoclimatic signal is only marginally affected in terms of global ice properties at the bottom of EPICA Dome C, but that the timescale was considerably distorted by mechanical stretching of MIS20 due to the increasing influence of the subglacial topography, a process that might have started well above the bottom ice. A clear paleoclimatic signal can therefore not be inferred from the deeper part of the EPICA Dome C ice core. Our work suggests that the existence of a flat monotonic ice–bedrock interface, extending for several times the ice thickness, would be a crucial factor in choosing a future "oldest ice" drilling location in Antarctica.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-22
    Description: Impacts of an unknown daytime HONO source on the mixing ratio and budget of HONO, and hydroxyl, hydroperoxyl, and organic peroxy radicals, in the coastal regions of China Atmospheric Chemistry and Physics, 15, 9381-9398, 2015 Author(s): Y. Tang, J. An, F. Wang, Y. Li, Y. Qu, Y. Chen, and J. Lin Many field experiments have found high nitrous acid (HONO) mixing ratios in both urban and rural areas during daytime, but these high daytime HONO mixing ratios cannot be explained well by gas-phase production, HONO emissions, and nighttime hydrolysis conversion of nitrogen dioxide (NO 2 ) on aerosols, suggesting that an unknown daytime HONO source ( P unknown ) could exist. The formula P unknown ≈ 19.60[NO 2 ] · J (NO 2 ) was obtained using observed data from 13 field experiments across the globe. The three additional HONO sources (i.e., the P unknown , nighttime hydrolysis conversion of NO 2 on aerosols, and HONO emissions) were coupled into the WRF-Chem model (Weather Research and Forecasting model coupled with Chemistry) to assess the P unknown impacts on the concentrations and budgets of HONO and peroxy (hydroxyl, hydroperoxyl, and organic peroxy) radicals (RO x ) (= OH + HO 2 + RO 2 ) in the coastal regions of China. Results indicated that the additional HONO sources produced a significant improvement in HONO and OH simulations, particularly in the daytime. High daytime average P unknown values were found in the coastal regions of China, with a maximum of 2.5 ppb h −1 in the Beijing–Tianjin–Hebei region. The P unknown produced a 60–250 % increase of OH, HO 2 , and RO 2 near the ground in the major cities of the coastal regions of China, and a 5–48 % increase of OH, HO 2 , and RO 2 in the daytime meridional-mean mixing ratios within 1000 m above the ground. When the three additional HONO sources were included, the photolysis of HONO was the second most important source in the OH production rate in Beijing, Shanghai, and Guangzhou before 10:00 LST with a maximum of 3.72 ppb h −1 and a corresponding P unknown contribution of 3.06 ppb h −1 in Beijing, whereas the reaction of HO 2 + NO (nitric oxide) was dominant after 10:00 LST with a maximum of 9.38 ppb h −1 and a corresponding P unknown contribution of 7.23 ppb h −1 in Beijing. The whole RO x cycle was accelerated by the three additional HONO sources, especially the P unknown . The daytime average OH production rate was enhanced by 0.67 due to the three additional HONO sources; [0.64], due to the P unknown , to 4.32 [3.86] ppb h −1 , via the reaction of HO 2 + NO, and by 0.49 [0.47] to 1.86 [1.86] ppb h −1 , via the photolysis of HONO. The OH daytime average loss rate was enhanced by 0.58 [0.55] to 2.03 [1.92] ppb h −1 , via the reaction of OH + NO 2 , and by 0.31 [0.28] to 1.78 [1.64] ppb h −1 , via the reaction of OH + CO (carbon monoxide) in Beijing, Shanghai, and Guangzhou. Similarly, the three additional HONO sources produced an increase of 0.31 [0.28] (with a corresponding P unknown contribution) to 1.78 [1.64] ppb h −1 , via the reaction of OH + CO, and 0.10 [0.09] to 0.63 [0.59] ppb h −1 , via the reaction of CH 3 O 2 (methylperoxy radical) + NO in the daytime average HO 2 production rate, and 0.67 [0.61] to 4.32 [4.27] ppb h −1 , via the reaction of HO 2 + NO in the daytime average HO 2 loss rate in Beijing, Shanghai, and Guangzhou. The above results suggest that the P unknown considerably enhanced the RO x concentrations and accelerated RO x cycles in the coastal regions of China, and could produce significant increases in concentrations of inorganic aerosols and secondary organic aerosols and further aggravate haze events in these regions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-21
    Description: Impact of debris cover on glacier ablation and atmosphere–glacier feedbacks in the Karakoram The Cryosphere, 9, 1617-1632, 2015 Author(s): E. Collier, F. Maussion, L. I. Nicholson, T. Mölg, W. W. Immerzeel, and A. B. G. Bush The Karakoram range of the Hindu-Kush Himalaya is characterized by both extensive glaciation and a widespread prevalence of surficial debris cover on the glaciers. Surface debris exerts a strong control on glacier surface-energy and mass fluxes and, by modifying surface boundary conditions, has the potential to alter atmosphere–glacier feedbacks. To date, the influence of debris on Karakoram glaciers has only been directly assessed by a small number of glaciological measurements over short periods. Here, we include supraglacial debris in a high-resolution, interactively coupled atmosphere–glacier modeling system. To investigate glaciological and meteorological changes that arise due to the presence of debris, we perform two simulations using the coupled model from 1 May to 1 October 2004: one that treats all glacier surfaces as debris-free and one that introduces a simplified specification for the debris thickness. The basin-averaged impact of debris is a reduction in ablation of ~ 14 %, although the difference exceeds 5 m w.e. on the lowest-altitude glacier tongues. The relatively modest reduction in basin-mean mass loss results in part from non-negligible sub-debris melt rates under thicker covers and from compensating increases in melt under thinner debris, and may help to explain the lack of distinct differences in recent elevation changes between clean and debris-covered ice. The presence of debris also strongly alters the surface boundary condition and thus heat exchanges with the atmosphere; near-surface meteorological fields at lower elevations and their vertical gradients; and the atmospheric boundary layer development. These findings are relevant for glacio-hydrological studies on debris-covered glaciers and contribute towards an improved understanding of glacier behavior in the Karakoram.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-08-22
    Description: Particulate organic nitrates observed in an oil and natural gas production region during wintertime Atmospheric Chemistry and Physics, 15, 9313-9325, 2015 Author(s): L. Lee, P. J. Wooldridge, J. deGouw, S. S. Brown, T. S. Bates, P. K. Quinn, and R. C. Cohen Organic nitrates in both gas and condensed (aerosol) phases were measured during the Uintah Basin Winter Ozone Study from January to February in 2012. A high degree of correlation between total aerosol volume at diameters less than 500 nm and the particulate organic nitrate concentration indicates that organic nitrates are a consistent, if not dominant, fraction of fine aerosol mass. In contrast, a similar correlation with sub-2.5 μm aerosol volume is weaker. The C : N atomic ratio inferred from field measurements of PM 2.5 and particulate organic nitrate is 34 : 1. Calculations constrained by the observations indicate that both condensation of gas-phase nitrates and heterogeneous reactions of NO 3 / N 2 O 5 are responsible for introducing organic nitrate functionality into the aerosol and that the source molecules are alkanes. Extrapolating the results to urban aerosol suggests organic nitrate production from alkanes may be a major secondary organic aerosol source.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-08-22
    Description: The influences of mass loading and rapid dilution of secondary organic aerosol on particle volatility Atmospheric Chemistry and Physics, 15, 9327-9343, 2015 Author(s): K. R. Kolesar, C. Chen, D. Johnson, and C. D. Cappa The thermally induced evaporation of secondary organic aerosol (SOA) has been characterized for SOA formed from the dark ozonolysis of α-pinene at initial mass concentrations ranging from 1 to 800 μg m −3 . Temperature-dependent particle size distributions were measured using a thermodenuder and the resulting mass thermograms were compared between the SOA formed at the various SOA mass concentrations. Negligible differences were observed between the mass thermograms for SOA concentrations 〈 300 μg m −3 . At higher SOA concentrations, the observed mass thermograms indicated the SOA was actually slightly less volatile than the SOA at lower concentrations; this is likely an artifact due to either saturation of the gas phase or to recondensation during cooling. The thermograms observed when the SOA was formed at high concentrations (〉 380 μg m −3 ) and then rapidly isothermally diluted to low concentrations (1–20 μg m −3 ) were identical to those for the SOA that was initially formed at low concentrations. The experimental results were compared to a kinetic model that simulates particle evaporation upon heating in a thermodenuder for a given input volatility distribution and particle composition. Three cases were considered: (1) the SOA was composed of semi-volatile monomer species with a volatility distribution based on that derived previously from consideration of SOA growth experiments; (2) the initial SOA was composed almost entirely of non-volatile dimers that decompose upon heating into their semi-volatile monomer units, which can then evaporate; and (3) where a volatility distribution was derived by fitting the model to the observed mass thermograms. It was found that good agreement is obtained between model predictions and the observations when the particle composition is dominated by either compounds of low volatility or by dimers. These same models were used to simulate isothermal evaporation of the SOA and were found to be broadly consistent with literature observations that indicate that SOA evaporation occurs with multiple timescales. The use of the semi-volatile monomer volatility distribution fails to reproduce the observed evaporation. The presence of dimers and larger oligomers in secondary organic aerosol formed from products of the reaction of α-pinene and O 3 has been well established in laboratory studies. However, the timescale and relative importance of the formation of oligomers or low-volatility compounds in the growth and evaporation of SOA has been debated. This study provides further support that low-volatility compounds and oligomers are formed in α-pinene + O 3 in high abundances and suggests that their formation occurs rapidly upon particle formation.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-08-25
    Description: Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set Atmospheric Chemistry and Physics, 15, 9413-9433, 2015 Author(s): S. Eckhardt, B. Quennehen, D. J. L. Olivié, T. K. Berntsen, R. Cherian, J. H. Christensen, W. Collins, S. Crepinsek, N. Daskalakis, M. Flanner, A. Herber, C. Heyes, Ø. Hodnebrog, L. Huang, M. Kanakidou, Z. Klimont, J. Langner, K. S. Law, M. T. Lund, R. Mahmood, A. Massling, S. Myriokefalitakis, I. E. Nielsen, J. K. Nøjgaard, J. Quaas, P. K. Quinn, J.-C. Raut, S. T. Rumbold, M. Schulz, S. Sharma, R. B. Skeie, H. Skov, T. Uttal, K. von Salzen, and A. Stohl The concentrations of sulfate, black carbon (BC) and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze) and low values in summer. Models have long been struggling to capture this seasonality and especially the high concentrations associated with Arctic Haze. In this study, we evaluate sulfate and BC concentrations from eleven different models driven with the same emission inventory against a comprehensive pan-Arctic measurement data set over a time period of 2 years (2008–2009). The set of models consisted of one Lagrangian particle dispersion model, four chemistry transport models (CTMs), one atmospheric chemistry-weather forecast model and five chemistry climate models (CCMs), of which two were nudged to meteorological analyses and three were running freely. The measurement data set consisted of surface measurements of equivalent BC (eBC) from five stations (Alert, Barrow, Pallas, Tiksi and Zeppelin), elemental carbon (EC) from Station Nord and Alert and aircraft measurements of refractory BC (rBC) from six different campaigns. We find that the models generally captured the measured eBC or rBC and sulfate concentrations quite well, compared to previous comparisons. However, the aerosol seasonality at the surface is still too weak in most models. Concentrations of eBC and sulfate averaged over three surface sites are underestimated in winter/spring in all but one model (model means for January–March underestimated by 59 and 37 % for BC and sulfate, respectively), whereas concentrations in summer are overestimated in the model mean (by 88 and 44 % for July–September), but with overestimates as well as underestimates present in individual models. The most pronounced eBC underestimates, not included in the above multi-site average, are found for the station Tiksi in Siberia where the measured annual mean eBC concentration is 3 times higher than the average annual mean for all other stations. This suggests an underestimate of BC sources in Russia in the emission inventory used. Based on the campaign data, biomass burning was identified as another cause of the modeling problems. For sulfate, very large differences were found in the model ensemble, with an apparent anti-correlation between modeled surface concentrations and total atmospheric columns. There is a strong correlation between observed sulfate and eBC concentrations with consistent sulfate/eBC slopes found for all Arctic stations, indicating that the sources contributing to sulfate and BC are similar throughout the Arctic and that the aerosols are internally mixed and undergo similar removal. However, only three models reproduced this finding, whereas sulfate and BC are weakly correlated in the other models. Overall, no class of models (e.g., CTMs, CCMs) performed better than the others and differences are independent of model resolution.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-08-25
    Description: Investigation of post-depositional processing of nitrate in East Antarctic snow: isotopic constraints on photolytic loss, re-oxidation, and source inputs Atmospheric Chemistry and Physics, 15, 9435-9453, 2015 Author(s): G. Shi, A. M. Buffen, M. G. Hastings, C. Li, H. Ma, Y. Li, B. Sun, C. An, and S. Jiang Snowpits along a traverse from coastal East Antarctica to the summit of the ice sheet (Dome Argus) are used to investigate the post-depositional processing of nitrate (NO 3 − ) in snow. Seven snowpits from sites with accumulation rates between 24 and 172 kg m −2 a −1 were sampled to depths of 150 to 300 cm. At sites from the continental interior (low accumulation, 〈 55 kg m −2 a −1 ), nitrate mass fraction is generally 〉 200 ng g −1 in surface snow and decreases quickly with depth to 〈 50 ng g −1 . Considerably increasing values of δ 15 N of nitrate are also observed (16–461 ‰ vs. air N 2 ), particularly in the top 20 cm, which is consistent with predicted fractionation constants for the photolysis of nitrate. The δ 18 O of nitrate (17–84 ‰ vs. VSMOW (Vienna Standard Mean Ocean Water)), on the other hand, decreases with increasing δ 15 N, suggestive of secondary formation of nitrate in situ (following photolysis) with a low δ 18 O source. Previous studies have suggested that δ 15 N and δ 18 O of nitrate at deeper snow depths should be predictable based upon an exponential change derived near the surface. At deeper depths sampled in this study, however, the relationship between nitrate mass fraction and δ 18 O changes, with increasing δ 18 O of nitrate observed between 100 and 200 cm. Predicting the impact of post-depositional loss, and therefore changes in the isotopes with depth, is highly sensitive to the depth interval over which an exponential change is assumed. In the snowpits collected closer to the coast (accumulation 〉 91 kg m −2 a −1 ), there are no obvious trends detected with depth and instead seasonality in nitrate mass fraction and isotopic composition is found. In comparison to the interior sites, the coastal pits are lower in δ 15 N (−15–71 ‰ vs. air N 2 ) and higher in δ 18 O of nitrate (53–111 ‰ vs. VSMOW). The relationships found amongst mass fraction, δ 15 N, δ 18 O and Δ 17 O (Δ 17 O = δ 17 O–0.52 × δ 18 O) of nitrate cannot be explained by local post-depositional processes alone, and are instead interpreted in the context of a primary atmospheric signal. Consistent with other Antarctic observational and modeling studies, the isotopic results are suggestive of an important influence of stratospheric ozone chemistry on nitrate formation during the cold season and a mix of tropospheric sources and chemistry during the warm season. Overall, the findings in this study speak to the sensitivity of nitrate isotopic composition to post-depositional processing and highlight the strength of combined use of the nitrogen and oxygen isotopes for a mechanistic understanding of this processing.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-08-25
    Description: NO x emission estimates during the 2014 Youth Olympic Games in Nanjing Atmospheric Chemistry and Physics, 15, 9399-9412, 2015 Author(s): J. Ding, R. J. van der A, B. Mijling, P. F. Levelt, and N. Hao The Nanjing Government applied temporary environmental regulations to guarantee good air quality during the Youth Olympic Games (YOG) in 2014. We study the effect of those regulations by applying the emission estimate algorithm DECSO (Daily Emission estimates Constrained by Satellite Observations) to measurements of the Ozone Monitoring Instrument (OMI). We improved DECSO by updating the chemical transport model CHIMERE from v2006 to v2013 and by adding an Observation minus Forecast (OmF) criterion to filter outlying satellite retrievals due to high aerosol concentrations. The comparison of model results with both ground and satellite observations indicates that CHIMERE v2013 is better performing than CHIMERE v2006. After filtering the satellite observations with high aerosol loads that were leading to large OmF values, unrealistic jumps in the emission estimates are removed. Despite the cloudy conditions during the YOG we could still see a decrease of tropospheric NO 2 column concentrations of about 32 % in the OMI observations when compared to the average NO 2 columns from 2005 to 2012. The results of the improved DECSO algorithm for NO x emissions show a reduction of at least 25 % during the YOG period and afterwards. This indicates that air quality regulations taken by the local government have an effect in reducing NO x emissions. The algorithm is also able to detect an emission reduction of 10 % during the Chinese Spring Festival. This study demonstrates the capacity of the DECSO algorithm to capture the change of NO x emissions on a monthly scale. We also show that the observed NO 2 columns and the derived emissions show different patterns that provide complimentary information. For example, the Nanjing smog episode in December 2013 led to a strong increase in NO 2 concentrations without an increase in NO x emissions. Furthermore, DECSO gives us important information on the non-trivial seasonal relation between NO x emissions and NO 2 concentrations on a local scale.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-08-25
    Description: Observations of atmospheric mercury in China: a critical review Atmospheric Chemistry and Physics, 15, 9455-9476, 2015 Author(s): X. W. Fu, H. Zhang, B. Yu, X. Wang, C.-J. Lin, and X. B. Feng China presently contributes the largest amount of anthropogenic mercury (Hg) emission into the atmosphere in the world. Over the past decade, numerous studies have been conducted to characterize the concentration and forms of atmospheric Hg in China, which provide insights into the spatial and temporal distributions of atmospheric Hg through ground-based measurements at widely diverse geographical locations and during cruise and flight campaigns. In this paper, we present a comprehensive review of the state of understanding in atmospheric Hg in China. Gaseous elemental mercury (GEM) and particulate-bound mercury (PBM) measured at the remote sites in China are substantially elevated compared to the background values in the Northern Hemisphere. In Chinese urban areas, the highly elevated GEM, PBM and gaseous oxidized mercury (GOM) were mainly derived from local anthropogenic Hg emissions, whereas regional anthropogenic emissions and long-range transport from domestic source regions are the primary causes of the elevated GEM and PBM concentrations at remote sites. Using 7–9 years of continuous observations at a remote site and an urban site, a slight increase in atmospheric GEM (2.4–2.5 % yr −1 ) was identified (paired samples test: p 〈 0.01), which is in agreement with the increasing domestic anthropogenic emissions. Anthropogenic GEM emission quantity in China estimated through the observed GEM / CO concentration ratios ranged from 632 to 1138 t annually over the past decade, 2–3 times larger than published values using emission activity data. Modeling results and filed measurements show dry deposition is the predominant process for removing Hg from the atmosphere, 2.5–9.0 times larger than wet deposition, due to the elevated atmospheric GEM and PBM concentrations that facilitate dry deposition to terrestrial landscapes. Further studies to reconcile the observed and simulated Hg concentrations, to understand the impact of domestic emission reduction on Hg concentration and deposition and to delineate the role of Hg emission and deposition of China in the global Hg biogeochemical cycle, are needed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-20
    Description: A better understanding of hydroxyl radical photochemical sources in cloud waters collected at the puy de Dôme station – experimental versus modelled formation rates Atmospheric Chemistry and Physics, 15, 9191-9202, 2015 Author(s): A. Bianco, M. Passananti, H. Perroux, G. Voyard, C. Mouchel-Vallon, N. Chaumerliac, G. Mailhot, L. Deguillaume, and M. Brigante The oxidative capacity of the cloud aqueous phase is investigated during three field campaigns from 2013 to 2014 at the top of the puy de Dôme station (PUY) in France. A total of 41 cloud samples are collected and the corresponding air masses are classified as highly marine, marine and continental. Hydroxyl radical (HO•) formation rates (R HO• f ) are determined using a photochemical setup (xenon lamp that can reproduce the solar spectrum) and a chemical probe coupled with spectroscopic analysis that can trap all of the generated radicals for each sample. Using this method, the obtained values correspond to the total formation of HO• without its chemical sinks. These formation rates are correlated with the concentrations of the naturally occurring sources of HO•, including hydrogen peroxide, nitrite, nitrate and iron. The total hydroxyl radical formation rates are measured as ranging from approximately 2 × 10 −11 to 4 × 10 −10 M s −1 , and the hydroxyl radical quantum yield formation (Φ HO• ) is estimated between 10 −4 and 10 −2 . Experimental values are compared with modelled formation rates calculated by the model of multiphase cloud chemistry (M2C2), considering only the chemical sources of the hydroxyl radicals. The comparison between the experimental and the modelled results suggests that the photoreactivity of the iron species as a source of HO• is overestimated by the model, and H 2 O 2 photolysis represents the most important source of this radical (between 70 and 99 %) for the cloud water sampled at the PUY station (primarily marine and continental).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-08-20
    Description: Dust–air pollution dynamics over the eastern Mediterranean Atmospheric Chemistry and Physics, 15, 9173-9189, 2015 Author(s): M. Abdelkader, S. Metzger, R. E. Mamouri, M. Astitha, L. Barrie, Z. Levin, and J. Lelieveld Interactions of desert dust and air pollution over the eastern Mediterranean (EM) have been studied, focusing on two distinct dust transport events on 22 and 28 September 2011. The atmospheric chemistry–climate model EMAC has been used at about 50 km grid spacing, applying an online dust emission scheme and calcium as a proxy for dust reactivity. EMAC includes a detailed tropospheric chemistry mechanism, aerosol microphysics and thermodynamics schemes to describe dust "aging". The model is evaluated using ground-based observations for aerosol concentrations and aerosol optical depth (AOD) as well as satellite observations. Simulation results and back trajectory analysis show that the development of synoptic disturbances over the EM can enhance dust transport from the Sahara and Arabian deserts in frontal systems that also carry air pollution to the EM. The frontal systems are associated with precipitation that controls the dust removal. Our results show the importance of chemical aging of dust, which increases particle size, dust deposition and scavenging efficiency during transport, overall reducing the lifetime relative to non-aged dust particles. The relatively long travel periods of Saharan dust result in more sustained aging compared to Arabian dust. Sensitivity simulations indicate 3 times more dust deposition of aged relative to pristine dust, which significantly decreases the dust lifetime and loading.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-08-21
    Description: A method for merging nadir-sounding climate records, with an application to the global-mean stratospheric temperature data sets from SSU and AMSU Atmospheric Chemistry and Physics, 15, 9271-9284, 2015 Author(s): C. McLandress, T. G. Shepherd, A. I. Jonsson, T. von Clarmann, and B. Funke A method is proposed for merging different nadir-sounding climate data records using measurements from high-resolution limb sounders to provide a transfer function between the different nadir measurements. The two nadir-sounding records need not be overlapping so long as the limb-sounding record bridges between them. The method is applied to global-mean stratospheric temperatures from the NOAA Climate Data Records based on the Stratospheric Sounding Unit (SSU) and the Advanced Microwave Sounding Unit-A (AMSU), extending the SSU record forward in time to yield a continuous data set from 1979 to present, and providing a simple framework for extending the SSU record into the future using AMSU. SSU and AMSU are bridged using temperature measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is of high enough vertical resolution to accurately represent the weighting functions of both SSU and AMSU. For this application, a purely statistical approach is not viable since the different nadir channels are not sufficiently linearly independent, statistically speaking. The near-global-mean linear temperature trends for extended SSU for 1980–2012 are −0.63 ± 0.13, −0.71 ± 0.15 and −0.80 ± 0.17 K decade −1 (95 % confidence) for channels 1, 2 and 3, respectively. The extended SSU temperature changes are in good agreement with those from the Microwave Limb Sounder (MLS) on the Aura satellite, with both exhibiting a cooling trend of ~ 0.6 ± 0.3 K decade −1 in the upper stratosphere from 2004 to 2012. The extended SSU record is found to be in agreement with high-top coupled atmosphere–ocean models over the 1980–2012 period, including the continued cooling over the first decade of the 21st century.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-08-22
    Description: Ash iron mobilization through physicochemical processing in volcanic eruption plumes: a numerical modeling approach Atmospheric Chemistry and Physics, 15, 9361-9379, 2015 Author(s): G. A. Hoshyaripour, M. Hort, and B. Langmann It has been shown that volcanic ash fertilizes the Fe-limited areas of the surface ocean through releasing soluble iron. As ash iron is mostly insoluble upon the eruption, it is hypothesized that heterogeneous in-plume and in-cloud processing of the ash promote the iron solubilization. Direct evidences concerning such processes are, however, lacking. In this study, a 1-D numerical model is developed to simulate the physicochemical interactions of the gas–ash–aerosol in volcanic eruption plumes focusing on the iron mobilization processes at temperatures between 600 and 0 °C. Results show that sulfuric acid and water vapor condense at ~ 150 and ~ 50 °C on the ash surface, respectively. This liquid phase then efficiently scavenges the surrounding gases (〉 95 % of HCl, 3–20 % of SO 2 and 12–62 % of HF) forming an extremely acidic coating at the ash surface. The low pH conditions of the aqueous film promote acid-mediated dissolution of the Fe-bearing phases present in the ash material. We estimate that 0.1–33 % of the total iron available at the ash surface is dissolved in the aqueous phase before the freezing point is reached. The efficiency of dissolution is controlled by the halogen content of the erupted gas as well as the mineralogy of the iron at ash surface: elevated halogen concentrations and presence of Fe 2+ -carrying phases lead to the highest dissolution efficiency. Findings of this study are in agreement with the data obtained through leaching experiments.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-08-14
    Description: Concentrations and solubility of trace elements in fine particles at a mountain site, southern China: regional sources and cloud processing Atmospheric Chemistry and Physics, 15, 8987-9002, 2015 Author(s): T. Li, Y. Wang, W. J. Li, J. M. Chen, T. Wang, and W. X. Wang The concentrations and solubility of twelve trace elements in PM 2.5 at Mt. Lushan, southern China, were investigated during the summer of 2011 and the spring of 2012. The average PM 2.5 mass was 55.2 ± 20.1 μg m −3 during the observation period. Temporal variations of all trace elements including total and water-soluble fractions with several dust storm spikes in total fractions of Al and Fe were observed. The enrichment factor (EF) values were 1 order of magnitude higher for the water-soluble fractions versus the total fractions of trace elements. Four major emission sources, namely nonferrous metal mining and smelting (for Cr, As, Ba and parts of Zn), coal combustion (for Pb, Zn, Se, Cu and Mn), crustal materials (for Al and Fe) and municipal solid waste incineration (for Cd and Mo), were classified by principal component analysis (PCA). Trajectory cluster analysis and the potential source contribution function (PSCF) consistently identified the Yangtze River delta (YRD), the Pearl River delta (PRD), and the neighbouring provinces of Mt. Lushan as the major source regions and transport pathways for anthropogenic elements. Northern China was identified as a major source region for crustal elements. It should be noted that apart from the YRD, the area around Mt. Lushan has become the most significant contributor to the solubility of most trace elements. Element solubility can be partially determined by emission sources. However, enhanced solubility of trace elements corresponding to increased concentrations of sulfate after the occurrence of cloud events indicated significant effects of cloud processing on aerosol element dissolution. Metal particles mixed with sulfate in cloud droplet residues were further investigated through transmission electron microscopy (TEM) analysis. Irreversible alteration of particle morphology by cloud processing was confirmed to be highly responsible for the enhancement of trace element solubility. The findings from this study imply an important role of regional anthropogenic pollution and cloud processing in the evolution of aerosol trace element solubility during transport in the troposphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-08-15
    Description: Interactions among drainage flows, gravity waves and turbulence: a BLLAST case study Atmospheric Chemistry and Physics, 15, 9031-9047, 2015 Author(s): C. Román-Cascón, C. Yagüe, L. Mahrt, M. Sastre, G.-J. Steeneveld, E. Pardyjak, A. van de Boer, and O. Hartogensis The interactions among several stable-boundary-layer (SBL) processes occurring just after the evening transition of 2 July 2011 have been analysed using data from instruments deployed over the area of Lannemezan (France) during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign. The near-calm situation of the afternoon was followed by the formation of local shallow drainage flows (SDFs) of less than 10 m depth at different locations. The SDF stage ended with the arrival of a stronger wind over a deeper layer more associated with the mountain-plain circulation, which caused mixing and destruction of the SDFs. Several gravity-wave-related oscillations were also observed on different time series. Wavelet analyses and wave parameters were calculated from high resolution and accurate surface pressure data of an array of microbarometers. These waves propagated relatively long distances within the SBL. The effects of these phenomena on turbulent parameters (friction velocity and kinematic heat flux) have been studied through multi-resolution flux decomposition methods performed on high frequency data from sonic anemometers deployed at different heights and locations. With this method, we were able to detect the different time-scales involved in each turbulent parameter and separate them from wave contributions, which becomes very important when choosing averaging-windows for surface flux computations using eddy covariance methods. The extensive instrumentation allowed us to highlight in detail the peculiarities of the surface turbulent parameters in the SBL, where several of the noted processes were interacting and producing important variations in turbulence with height and between sites along the sloping terrain.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-08-15
    Description: Three-dimensional dust aerosol distribution and extinction climatology over northern Africa simulated with the ALADIN numerical prediction model from 2006 to 2010 Atmospheric Chemistry and Physics, 15, 9063-9082, 2015 Author(s): M. Mokhtari, P. Tulet, C. Fischer, Y. Bouteloup, F. Bouyssel, and O. Brachemi The seasonal cycle and optical properties of mineral dust aerosols in northern Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) coupled to the surface scheme SURFEX (SURFace EXternalisée). The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account on short timescales and at mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in northern Africa. The mean monthly aerosol optical thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over northern Africa and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Cape Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over northern Africa is 878 Tg year −1 . The Bodélé Depression appears to be the main area of dust emission in northern Africa, with an average estimate of about 21.6 Tg year −1 . The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over northern Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006–2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and regional climate models. Moreover, the 3-D distribution of the simulated AOTs also provides information about the vertical structure of the dust aerosol extinction.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-08-04
    Description: On the use of satellite-derived CH 4 : CO 2 columns in a joint inversion of CH 4 and CO 2 fluxes Atmospheric Chemistry and Physics, 15, 8615-8629, 2015 Author(s): S. Pandey, S. Houweling, M. Krol, I. Aben, and T. Röckmann We present a method for assimilating total column CH 4 : CO 2 ratio measurements from satellites for inverse modeling of CH 4 and CO 2 fluxes using the variational approach. Unlike conventional approaches, in which retrieved CH 4 : CO 2 are multiplied by model-derived total column CO 2 and only the resulting CH 4 is assimilated, our method assimilates the ratio of CH 4 and CO 2 directly and is therefore called the ratio method. It is a dual tracer inversion, in which surface fluxes of CH 4 and CO 2 are optimized simultaneously. The optimization of CO 2 fluxes turns the hard constraint of prescribing model-derived CO 2 fields into a weak constraint on CO 2 , which allows us to account for uncertainties in CO 2 . The method has been successfully tested in a synthetic inversion setup. We show that the ratio method is able to reproduce assumed true CH 4 and CO 2 fluxes starting from a prior, which is derived by perturbing the true fluxes randomly. We compare the performance of the ratio method with that of the traditional proxy approach and the use of only surface measurements for estimating CH 4 fluxes. Our results confirm that the optimized CH 4 fluxes are sensitive to the treatment of CO 2 , and that hard constraints on CO 2 may significantly compromise results that are obtained for CH 4 . We find that the relative performance of ratio and proxy methods have a regional dependence. The ratio method performs better than the proxy method in regions where the CO 2 fluxes are most uncertain. However, both ratio and proxy methods perform better than the surface-measurement-only inversion, confirming the potential of spaceborne measurements for accurately determining fluxes of CH 4 and other greenhouse gases (GHGs).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-08-04
    Description: Relationships between photosynthesis and formaldehyde as a probe of isoprene emission Atmospheric Chemistry and Physics, 15, 8559-8576, 2015 Author(s): Y. Zheng, N. Unger, M. P. Barkley, and X. Yue Atmospheric oxidation of isoprene emission from land plants affects radiative forcing of global climate change. There is an urgent need to understand the factors that control isoprene emission variability on large spatiotemporal scales but such direct observations of isoprene emission do not exist. Two readily available global-scale long-term observation-based data sets hold information about surface isoprene activity: gross primary productivity (GPP) and tropospheric formaldehyde column variability (HCHOv). We analyze multi-year seasonal linear correlations between observed GPP and HCHOv. The observed GPP–HCHOv correlation patterns are used to evaluate a global Earth system model that embeds three alternative leaf-level isoprene emission algorithms. GPP and HCHOv are decoupled in the summertime in the southeast US ( r =−0.03). In the Amazon, GPP and HCHOv are weakly correlated in March-April-May (MAM), correlated in June-July-August (JJA) and weakly anticorrelated in September-October-November (SON). Isoprene emission algorithms that include soil moisture dependence demonstrate greater skill in reproducing the observed interannual seasonal GPP–HCHOv correlations in the southeast US and the Amazon. In isoprene emission models that include soil moisture dependence, isoprene emission is correlated with photosynthesis and anticorrelated with HCHOv. In an isoprene emission model without soil moisture dependence, isoprene emission is anticorrelated with photosynthesis and correlated with HCHOv. Long-term monitoring of isoprene emission, soil moisture and meteorology is required in water-limited ecosystems to improve understanding of the factors controlling isoprene emission and its representation in global Earth system models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-08-04
    Description: Effects of urban land expansion on the regional meteorology and air quality of eastern China Atmospheric Chemistry and Physics, 15, 8597-8614, 2015 Author(s): W. Tao, J. Liu, G. A. Ban-Weiss, D. A. Hauglustaine, L. Zhang, Q. Zhang, Y. Cheng, Y. Yu, and S. Tao Rapid urbanization throughout eastern China is imposing an irreversible effect on local climate and air quality. In this paper, we examine the response of a range of meteorological and air quality indicators to urbanization. Our study uses the Weather Research and Forecasting model coupled with chemistry (WRF/Chem) to simulate the climate and air quality impacts of four hypothetical urbanization scenarios with fixed surface pollutant emissions during the month of July from 2008 to 2012. An improved integrated process rate (IPR) analysis scheme is implemented in WRF/Chem to investigate the mechanisms behind the forcing–response relationship at the process level. For all years, as urban land area expands, concentrations of CO, elemental carbon (EC), and particulate matter with aerodynamic diameter less than 2.5 microns (PM 2.5 ) tend to decrease near the surface (below ~ 500 m), but increase at higher altitudes (1–3 km), resulting in a reduced vertical concentration gradient. On the other hand, the O 3 burden, averaged over all newly urbanized grid cells, consistently increases from the surface to a height of about 4 km. Sensitivity tests show that the responses of pollutant concentrations to the spatial extent of urbanization are nearly linear near the surface, but nonlinear at higher altitudes. Over eastern China, each 10 % increase in nearby urban land coverage on average leads to a decrease of approximately 2 % in surface concentrations for CO, EC, and PM 2.5 , while for O 3 an increase of about 1 % is simulated. At 800 hPa, pollutants' concentrations tend to increase even more rapidly with an increase in nearby urban land coverage. This indicates that as large tracts of new urban land emerge, the influence of urban expansion on meteorology and air pollution would be significantly amplified. IPR analysis reveals the contribution of individual atmospheric processes to pollutants' concentration changes. It indicates that, for primary pollutants, the enhanced sink (source) caused by turbulent mixing and vertical advection in the lower (upper) atmosphere could be a key factor in changes to simulated vertical profiles. The evolution of secondary pollutants is further influenced by the upward relocation of precursors that impact gas-phase chemistry for O 3 and aerosol processes for PM 2.5 . Our study indicates that dense urbanization has a moderate dilution effect on surface primary airborne contaminants, but may intensify severe haze and ozone pollution if local emissions are not well controlled.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-08-05
    Description: Improvement of climate predictions and reduction of their uncertainties using learning algorithms Atmospheric Chemistry and Physics, 15, 8631-8641, 2015 Author(s): E. Strobach and G. Bel Simulated climate dynamics, initialized with observed conditions, is expected to be synchronized, for several years, with the actual dynamics. However, the predictions of climate models are not sufficiently accurate. Moreover, there is a large variance between simulations initialized at different times and between different models. One way to improve climate predictions and to reduce the associated uncertainties is to use an ensemble of climate model predictions, weighted according to their past performances. Here, we show that skillful predictions, for a decadal time scale, of the 2 m temperature can be achieved by applying a sequential learning algorithm to an ensemble of decadal climate model simulations. The predictions generated by the learning algorithm are shown to be better than those of each of the models in the ensemble, the better performing simple average and a reference climatology. In addition, the uncertainties associated with the predictions are shown to be reduced relative to those derived from an equally weighted ensemble of bias-corrected predictions. The results show that learning algorithms can help to better assess future climate dynamics.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-08-06
    Description: Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using structure-from-motion photogrammetry The Cryosphere, 9, 1445-1463, 2015 Author(s): M. Nolan, C. Larsen, and M. Sturm Airborne photogrammetry is undergoing a renaissance: lower-cost equipment, more powerful software, and simplified methods have significantly lowered the barriers to entry and now allow repeat mapping of cryospheric dynamics at spatial resolutions and temporal frequencies that were previously too expensive to consider. Here we apply these advancements to the measurement of snow depth from manned aircraft. Our main airborne hardware consists of a consumer-grade digital camera directly coupled to a dual-frequency GPS; no inertial motion unit (IMU) or on-board computer is required, such that system hardware and software costs less than USD 30 000, exclusive of aircraft. The photogrammetric processing is done using a commercially available implementation of the structure from motion (SfM) algorithm. The system is simple enough that it can be operated by the pilot without additional assistance and the technique creates directly georeferenced maps without ground control, further reducing overall costs. To map snow depth, we made digital elevation models (DEMs) during snow-free and snow-covered conditions, then subtracted these to create difference DEMs (dDEMs). We assessed the accuracy (real-world geolocation) and precision (repeatability) of our DEMs through comparisons to ground control points and to time series of our own DEMs. We validated these assessments through comparisons to DEMs made by airborne lidar and by a similar photogrammetric system. We empirically determined that our DEMs have a geolocation accuracy of ±30 cm and a repeatability of ±8 cm (both 95 % confidence). We then validated our dDEMs against more than 6000 hand-probed snow depth measurements at 3 separate test areas in Alaska covering a wide-variety of terrain and snow types. These areas ranged from 5 to 40 km 2 and had ground sample distances of 6 to 20 cm. We found that depths produced from the dDEMs matched probe depths with a 10 cm standard deviation, and were statistically identical at 95 % confidence. Due to the precision of this technique, other real changes on the ground such as frost heave, vegetative compaction by snow, and even footprints become sources of error in the measurement of thin snow packs ( 〈 20 cm). The ability to directly measure such small changes over entire landscapes eliminates the need to extrapolate limited field measurements. The fact that this mapping can be done at substantially lower costs than current methods may transform the way we approach studying change in the cryosphere.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-08-07
    Description: Recent changes in north-west Greenland climate documented by NEEM shallow ice core data and simulations, and implications for past-temperature reconstructions The Cryosphere, 9, 1481-1504, 2015 Author(s): V. Masson-Delmotte, H. C. Steen-Larsen, P. Ortega, D. Swingedouw, T. Popp, B. M. Vinther, H. Oerter, A. E. Sveinbjornsdottir, H. Gudlaugsdottir, J. E. Box, S. Falourd, X. Fettweis, H. Gallée, E. Garnier, V. Gkinis, J. Jouzel, A. Landais, B. Minster, N. Paradis, A. Orsi, C. Risi, M. Werner, and J. W. C. White Combined records of snow accumulation rate, δ 18 O and deuterium excess were produced from several shallow ice cores and snow pits at NEEM (North Greenland Eemian Ice Drilling), covering the period from 1724 to 2007. They are used to investigate recent climate variability and characterise the isotope–temperature relationship. We find that NEEM records are only weakly affected by inter-annual changes in the North Atlantic Oscillation. Decadal δ 18 O and accumulation variability is related to North Atlantic sea surface temperature and is enhanced at the beginning of the 19th century. No long-term trend is observed in the accumulation record. By contrast, NEEM δ 18 O shows multidecadal increasing trends in the late 19th century and since the 1980s. The strongest annual positive δ 18 O values are recorded at NEEM in 1928 and 2010, while maximum accumulation occurs in 1933. The last decade is the most enriched in δ 18 O (warmest), while the 11-year periods with the strongest depletion (coldest) are depicted at NEEM in 1815–1825 and 1836–1846, which are also the driest 11-year periods. The NEEM accumulation and δ 18 O records are strongly correlated with outputs from atmospheric models, nudged to atmospheric reanalyses. Best performance is observed for ERA reanalyses. Gridded temperature reconstructions, instrumental data and model outputs at NEEM are used to estimate the multidecadal accumulation–temperature and δ 18 O–temperature relationships for the strong warming period in 1979–2007. The accumulation sensitivity to temperature is estimated at 11 ± 2 % °C −1 and the δ 18 O–temperature slope at 1.1 ± 0.2 ‰ °C −1 , about twice as large as previously used to estimate last interglacial temperature change from the bottom part of the NEEM deep ice core.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-08-08
    Description: On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern United States Atmospheric Chemistry and Physics, 15, 8679-8694, 2015 Author(s): K. M. Cerully, A. Bougiatioti, J. R. Hite Jr., H. Guo, L. Xu, N. L. Ng, R. Weber, and A. Nenes The formation of secondary organic aerosols (SOAs) combined with the partitioning of semivolatile organic components can impact numerous aerosol properties including cloud condensation nuclei (CCN) activity, hygroscopicity, and volatility. During the summer 2013 Southern Oxidant and Aerosol Study (SOAS) field campaign in a rural site in the southeastern United States, a suite of instruments including a CCN counter, a thermodenuder (TD), and a high-resolution time-of-flight aerosol mass spectrometer (AMS) were used to measure CCN activity, aerosol volatility, composition, and oxidation state. Particles were either sampled directly from ambient or through a particle-into-liquid sampler (PILS), allowing the investigation of the water-soluble aerosol component. Ambient aerosols exhibited size-dependent composition with larger particles being more hygroscopic. The hygroscopicity of thermally denuded aerosols was similar between ambient and PILS-generated aerosols and showed limited dependence on volatilization. Results of AMS three-factor positive matrix factorization (PMF) analysis for the PILS-generated aerosols showed that the most hygroscopic components are most likely the most and the least volatile features of the aerosols. No clear relationship was found between organic hygroscopicity and the oxygen-to-carbon ratio; in fact, isoprene-derived organic aerosols (isoprene-OAs) were found to be the most hygroscopic factor, while at the same time being the least oxidized and likely most volatile of all PMF factors. Considering the diurnal variation of each PMF factor and its associated hygroscopicity, isoprene-OA and more-oxidized oxygenated organic aerosols are the prime contributors to hygroscopicity and co-vary with less-oxidized oxygenated organic aerosols in a way that induces the observed diurnal invariance in total organic hygroscopicity. Biomass burning organic aerosols contributed little to aerosol hygroscopicity, which is expected since there was little biomass burning activity during the sampling period examined.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-06-05
    Description: Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles Atmospheric Chemistry and Physics, 15, 6127-6146, 2015 Author(s): M. Hummel, C. Hoose, M. Gallagher, D. A. Healy, J. A. Huffman, D. O'Connor, U. Pöschl, C. Pöhlker, N. H. Robinson, M. Schnaiter, J. R. Sodeau, M. Stengel, E. Toprak, and H. Vogel Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART (Consortium for Small-scale Modelling-Aerosols and Reactive Trace gases) regional atmospheric model. Two literature-based emission rates for fungal spores derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization for fluorescent biological aerosol particles (FBAP) was adapted to field measurements from four locations across Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies for several locations have suggested that FBAP are in many cases dominated by fungal spores. Thus, we suggest that simulated FBAP and fungal spore concentrations obtained from the three different emission parameterizations can be compared to FBAP measurements. The comparison reveals that simulated fungal spore concentrations based on literature emission parameterizations are lower than measured FBAP concentrations. In agreement with the measurements, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Temperature and specific humidity, together with leaf area index (LAI), were chosen to drive the new emission parameterization which is fitted to the FBAP observations. The new parameterization results in similar root mean square errors (RMSEs) and correlation coefficients compared to the FBAP observations as the previously existing fungal spore emission parameterizations, with some improvements in the bias. Using the new emission parameterization on a model domain covering western Europe, FBAP in the lowest model layer comprise a fraction of 15% of the total aerosol mass over land and reach average number concentrations of 26 L −1 . The results confirm that fungal spores and biological particles may account for a major fraction of supermicron aerosol particle number and mass concentration over vegetated continental regions and should thus be explicitly considered in air quality and climate studies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-06-05
    Description: Photochemical processing of aqueous atmospheric brown carbon Atmospheric Chemistry and Physics, 15, 6087-6100, 2015 Author(s): R. Zhao, A. K. Y. Lee, L. Huang, X. Li, F. Yang, and J. P. D. Abbatt Atmospheric brown carbon (BrC) is a collective term for light absorbing organic compounds in the atmosphere. While the identification of BrC and its formation mechanisms is currently a central effort in the community, little is known about the atmospheric removal processes of aerosol BrC. As a result, we report on a series of laboratory studies of photochemical processing of BrC in the aqueous phase, by direct photolysis and OH oxidation. Solutions of ammonium sulfate mixed with glyoxal (GLYAS) or methylglyoxal (MGAS) are used as surrogates for a class of secondary BrC mediated by imine intermediates. Three nitrophenol species, namely 4-nitrophenol, 5-nitroguaiacol and 4-nitrocatechol, were investigated as a class of water-soluble BrC originating from biomass burning. Photochemical processing induced significant changes in the absorptive properties of BrC. The imine-mediated BrC solutions exhibited rapid photo-bleaching with both direct photolysis and OH oxidation, with atmospheric half-lives of minutes to a few hours. The nitrophenol species exhibited photo-enhancement in the visible range during direct photolysis and the onset of OH oxidation, but rapid photo-bleaching was induced by further OH exposure on an atmospheric timescale of an hour or less. To illustrate the atmospheric relevance of this work, we also performed direct photolysis experiments on water-soluble organic carbon extracted from biofuel combustion samples and observed rapid changes in the optical properties of these samples as well. Overall, these experiments indicate that atmospheric models need to incorporate representations of atmospheric processing of BrC species to accurately model their radiative impacts.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2015-06-05
    Description: Evolution of ice-shelf channels in Antarctic ice shelves The Cryosphere, 9, 1169-1181, 2015 Author(s): R. Drews Ice shelves buttress the continental ice flux and mediate ice–ocean interactions. They are often traversed by channels in which basal melting is enhanced, impacting ice-shelf stability. Here, channel evolution is investigated using a transient, three-dimensional full Stokes model and geophysical data collected on the Roi Baudouin Ice Shelf (RBIS), Antarctica. The modeling confirms basal melting as a feasible mechanism for channel creation, although channels may also advect without melting for many tens of kilometers. Channels can be out of hydrostatic equilibrium depending on their width and the upstream melt history. Inverting surface elevation for ice thickness using hydrostatic equilibrium in those areas is erroneous, and corresponding observational evidence is presented at RBIS by comparing the hydrostatically inverted ice thickness with radar measurements. The model shows that channelized melting imprints the flow field characteristically, which can result in enhanced horizontal shearing across channels. This is exemplified for a channel at RBIS using observed surface velocities and opens up the possibility to classify channelized melting from space, an important step towards incorporating these effects in ice–ocean models.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-06-06
    Description: Ozone and aerosol tropospheric concentrations variability analyzed using the ADRIMED measurements and the WRF and CHIMERE models Atmospheric Chemistry and Physics, 15, 6159-6182, 2015 Author(s): L. Menut, S. Mailler, G. Siour, B. Bessagnet, S. Turquety, G. Rea, R. Briant, M. Mallet, J. Sciare, P. Formenti, and F. Meleux During the months of June and July 2013, over the Euro–Mediterranean area, the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project was dedicated to characterize the ozone and aerosol concentrations in the troposphere. It is first shown that this period was not highly polluted compared to previous summers in this region, with a moderate ozone production, no significant vegetation fire events and several precipitation periods scavenging the aerosol. The period is modeled with the WRF (Weather Research and Forecasting) and CHIMERE models, and their ability to quantify the observed pollution transport events is presented. The CHIMERE model simulating all kinds of sources (anthropogenic, biogenic, mineral dust, vegetation fires); the aerosol speciation, not available with the measurements, is presented: during the whole period, the aerosol was mainly constituted by mineral dust, sea salt and sulfates close to the surface and mainly by mineral dust in the troposphere. Compared to the AERONET (Aerosol Robotic Network) size distribution, it is shown that the model underestimates the coarse mode near mineral dust sources and overestimates the fine mode in the Mediterranean area, highlighting the need to improve the model representation of the aerosol size distribution both during emissions, long-range transport and deposition.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-06-06
    Description: Arctic microbial and next-generation sequencing approach for bacteria in snow and frost flowers: selected identification, abundance and freezing nucleation Atmospheric Chemistry and Physics, 15, 6183-6204, 2015 Author(s): R. Mortazavi, S. Attiya, and P. A. Ariya During the spring of 2009, as part of the Ocean–Atmosphere–Sea Ice–Snowpack (OASIS) campaign in Barrow, Alaska, USA, we examined the identity, population diversity, freezing nucleation ability of the microbial communities of five different snow types and frost flowers. In addition to the culturing and gene-sequence-based identification approach, we utilized a state-of-the-art genomic next-generation sequencing (NGS) technique to examine the diversity of bacterial communities in Arctic samples. Known phyla or candidate divisions were detected (11–18) with the majority of sequences (12.3–83.1%) belonging to one of the five major phyla: Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Cyanobacteria. The number of genera detected ranged from, 101–245. The highest number of cultivable bacteria was observed in frost flowers (FFs) and accumulated snow (AS) with 325 ± 35 and 314 ± 142 CFU m L −1 , respectively; and for cultivable fungi 5 ± 1 CFU m L −1 in windpack (WP) and blowing snow (BS). Morphology/elemental composition and ice-nucleating abilities of the identified taxa were obtained using high resolution electron microscopy with energy-dispersive X-ray spectroscopy and ice nucleation cold-plate, respectively. Freezing point temperatures for bacterial isolates ranged from −20.3 ± 1.5 to −15.7 ± 5.6 °C, and for melted snow samples from −9.5 ± 1.0 to −18.4 ± 0.1 °C. An isolate belonging to the genus Bacillus (96% similarity) had ice nucleation activity of −6.8 ± 0.2 °C. Comparison with Montreal urban snow, revealed that a seemingly diverse community of bacteria exists in the Arctic with some taxa possibly originating from distinct ecological environments. We discuss the potential impact of snow microorganisms in the freezing and melting process of the snowpack in the Arctic.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-06-06
    Description: User requirements for the snow and land ice services – CryoLand The Cryosphere, 9, 1191-1202, 2015 Author(s): E. Malnes, A. Buanes, T. Nagler, G. Bippus, D. Gustafsson, C. Schiller, S. Metsämäki, J. Pulliainen, K. Luojus, H. E. Larsen, R. Solberg, A. Diamandi, and A. Wiesmann CryoLand (2011–2015) is a project carried out within the 7th Framework of the European Commission aimed at developing downstream services for monitoring seasonal snow, glaciers and lake/river ice primarily based on satellite remote sensing. The services target private and public users from a wide variety of application areas, and aim to develop sustainable services after the project is completed. The project has performed a thorough user requirement survey in order to derive targeted requirements for the service and provide recommendations for the design and priorities of the service. In this paper we describe the methods used, the major findings in this user survey, and how we used the results to design and specify the CryoLand snow and land ice service. The user requirement analysis shows that a European operational snow and land ice service is required and that there exists developed cryosphere products that can meet the specific needs. The majority of the users were mainly interested not only in the snow services, but also the lake/river ice products and the glacier products were desired.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-07-30
    Description: Corrigendum to "In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC 4 RS: observations of a modest aerosol enhancement aloft" published in Atmos. Chem. Phys., 15, 7085–7102, 2015 Atmospheric Chemistry and Physics, 15, 8455-8455, 2015 Author(s): N. L. Wagner, C. A. Brock, W. M. Angevine, A. Beyersdorf, P. Campuzano-Jost, D. A. Day, J. A. de Gouw, G. S. Diskin, T. D. Gordon, M. G. Graus, J. S. Holloway, G. Huey, J. L. Jimenez, D. A. Lack, J. Liao, X. Liu, M. Z. Markovic, A. M. Middlebrook, T. Mikoviny, J. Peischl, A. E. Perring, M. S. Richardson, T. B. Ryerson, J. P. Schwarz, C. Warneke, A. Welti, A. Wisthaler, L. D. Ziemba, and D. M. Murphy No abstract available.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-07-30
    Description: X-ray computed microtomography of sea ice – comment on "A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (2014) Atmospheric Chemistry and Physics, 15, 8457-8458, 2015 Author(s): R. W. Obbard This comment addresses a statement made in "A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (Atmos. Chem. Phys., 14, 1587–1633, doi:10.5194/acp-14-1587-2014 , 2014). Here we rebut the assertion that X-ray computed microtomography of sea ice fails to reveal liquid brine inclusions by discussing the phases present at the analysis temperature.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-08-07
    Description: Contribution from biogenic organic compounds to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate needleleaf forest Atmospheric Chemistry and Physics, 15, 8643-8656, 2015 Author(s): L. Zhou, R. Gierens, A. Sogachev, D. Mogensen, J. Ortega, J. N. Smith, P. C. Harley, A. J. Prenni, E. J. T. Levin, A. Turnipseed, A. Rusanen, S. Smolander, A. B. Guenther, M. Kulmala, T. Karl, and M. Boy New particle formation (NPF) is an important atmospheric phenomenon. During an NPF event, particles first form by nucleation and then grow further in size. The growth step is crucial because it controls the number of particles that can become cloud condensation nuclei. Among various physical and chemical processes contributing to particle growth, condensation by organic vapors has been suggested as important. In order to better understand the influence of biogenic emissions on particle growth, we carried out modeling studies of NPF events during the BEACHON-ROCS (Bio–hydro–atmosphere interactions of Energy, Aerosol, Carbon, H2O, Organics & Nitrogen – Rocky Mountain Organic Carbon Study) campaign at Manitou Experimental Forest Observatory in Colorado, USA. The site is representative of the semi-arid western USA. With the latest Criegee intermediate reaction rates implemented in the chemistry scheme, the model underestimates sulfuric acid concentration by 50 %, suggesting either missing sources of atmospheric sulfuric acid or an overestimated sink term. The results emphasize the contribution from biogenic volatile organic compound emissions to particle growth by demonstrating the effects of the oxidation products of monoterpenes and 2-Methyl-3-buten-2-ol (MBO). Monoterpene oxidation products are shown to influence the nighttime particle loadings significantly, while their concentrations are insufficient to grow the particles during the day. The growth of ultrafine particles in the daytime appears to be closely related to the OH oxidation products of MBO.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-08-08
    Description: Meteorological, elevation, and slope effects on surface hoar formation The Cryosphere, 9, 1523-1533, 2015 Author(s): S. Horton, M. Schirmer, and B. Jamieson Failure in layers of buried surface hoar crystals (frost) can cause hazardous snow slab avalanches. Surface hoar crystals form on the snow surface and are sensitive to micro-meteorological conditions. In this study, the role of meteorological and terrain factors was investigated for three layers of surface hoar in the Columbia Mountains of Canada. The distribution of crystals over different elevations and aspects was observed on 20 days of field observations during a period of high pressure. The same layers were modelled over simplified terrain on a 2.5 km horizontal grid by forcing the snow cover model SNOWPACK with forecast weather data from a numerical weather prediction model. Modelled surface hoar growth was associated with warm air temperatures, high humidity, cold surface temperatures, and low wind speeds. Surface hoar was most developed in regions and elevation bands where these conditions existed, although strong winds at high elevations caused some model discrepancies. SNOWPACK simulations on virtual slopes systematically predicted smaller surface hoar on south-facing slopes. In the field, a complex combination of surface hoar and sun crusts were observed, suggesting the simplified model did not adequately resolve the surface energy balance on slopes. Overall, a coupled weather–snow cover model could benefit avalanche forecasters by predicting surface hoar layers on a regional scale over different elevation bands.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-08-08
    Description: Area, elevation and mass changes of the two southernmost ice caps of the Canadian Arctic Archipelago between 1952 and 2014 The Cryosphere, 9, 1535-1550, 2015 Author(s): C. Papasodoro, E. Berthier, A. Royer, C. Zdanowicz, and A. Langlois Grinnell and Terra Nivea Ice Caps are located on the southern Baffin Island, Nunavut, in the Canadian Arctic Archipelago. These relatively small ice caps have received little attention compared to the much larger ice masses further north. Their evolution can, however, give valuable information about the impact of the recent Arctic warming at lower latitudes (i.e. ~ 62.5° N). In this paper, we measure or estimate historical and recent changes of area, elevation and mass of both ice caps using in situ, airborne and spaceborne data sets, including imagery from the Pléiades satellites. The area of Terra Nivea Ice Cap has decreased by 34 % since the late 1950s, while that of Grinnell Ice Cap has decreased by 20 % since 1952. For both ice caps, the areal reduction accelerated at the beginning of the 21st century. The estimated glacier-wide mass balance was −0.37 ± 0.21 m a −1 water equivalent (w.e.) over Grinnell Ice Cap for the 1952–2014 period, and −0.47 ± 0.16 m a −1 w.e. over Terra Nivea Ice Cap for the 1958/59–2014 period. Terra Nivea Ice Cap has experienced an accelerated rate of mass loss of −1.77 ± 0.36 m a −1 w.e. between 2007 and 2014. This rate is 5.9 times as negative when compared to the 1958/59–2007 period (−0.30 ± 0.19 m a −1 w.e.) and 2 times as negative when compared to the mass balance of other glaciers in the southern parts of Baffin Island over the 2003–2009 period. A similar acceleration in mass loss is suspected for the Grinnell Ice Cap, given the calculated elevation changes and the proximity to Terra Nivea Ice Cap. The recent increase in mass loss rates for these two ice caps is linked to a strong near-surface regional warming and a lengthening of the melt season into the autumn that may be indirectly strengthened by a later freezing of sea ice in the Hudson Strait sector. On a methodological level, our study illustrates the strong potential of Pléiades satellite data to unlock the under-exploited archive of old aerial photographs.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-08-14
    Description: Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign Atmospheric Chemistry and Physics, 15, 8847-8869, 2015 Author(s): E. F. Mikhailov, G. N. Mironov, C. Pöhlker, X. Chi, M. L. Krüger, M. Shiraiwa, J.-D. Förster, U. Pöschl, S. S. Vlasenko, T. I. Ryshkevich, M. Weigand, A. L. D. Kilcoyne, and M. O. Andreae In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia (61° N, 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical compositions of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38 % of particulate matter (PM) in the accumulation mode and coarse mode, respectively. The water-soluble fraction of organic matter was estimated to be 52 and 8 % of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34 % in the accumulation mode vs. ~ 47 % in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4 % RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same relative humidity (RH), starting at ~ 70 %, while efflorescence occurred at different humidities, i.e., at ~ 35 % RH for submicron particles vs. ~ 50 % RH for supermicron particles. This ~ 15 % RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4 % RH range. Based on KIM, the volume-based hygroscopicity parameter, κ v , was calculated. The κ v,ws value related to the water-soluble (ws) fraction was estimated to be ~ 0.15 for the accumulation mode and ~ 0.36 for the coarse mode, respectively. The obtained κ v,ws for the accumulation mode is in good agreement with earlier data reported for remote sites in the Amazon rain forest (κ v ≈ 0.15) and a Colorado mountain forest (κ v ≈ 0.16 ). We used the Zdanovskii–Stokes–Robinson (ZSR) mixing rule to predict the chemical composition dependent hygroscopicity, κ v,p . The obtained κ v,p values overestimate the experimental FDHA-KIM-derived κ v,ws by factors of 1.8 and 1.5 for the accumulation and coarse modes, respectively. This divergence can be explained by incomplete dissolution of the hygroscopic inorganic compounds resulting from kinetic limitations due to a sparingly soluble organic coating. The TEM and STXM-NEXAFS results indicate that aged submicron (〉 300 nm) and supermicron aerosol particles possess core–shell structures with an inorganic core, and are enriched in organic carbon at the mixed particle surface. The direct FDHA kinetic studies provide a bulk diffusion coefficient of water of ~ 10 −12 cm 2 s −1 indicating a semi-solid state of the organic-rich phase leading to kinetic limitations of water uptake and release during hydration and dehydration cycles. Overall, the present ZOTTO data set, obtained in the growing season, has revealed a strong influence of organic carbon on the hygroscopic properties of the ambient aerosols. The sparingly soluble organic coating controls hygroscopic growth, phase transitions, and microstructural rearrangement processes. The observed kinetic limitations can strongly influence the outcome of experiments performed on multi-second timescales, such as the commonly applied HTDMA (Hygroscopicity Tandem Differential Mobility Analyzer) and CCNC (Cloud Condensation Nuclei Counter) measurements.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-08-13
    Description: Melt pond fraction and spectral sea ice albedo retrieval from MERIS data – Part 2: Case studies and trends of sea ice albedo and melt ponds in the Arctic for years 2002–2011 The Cryosphere, 9, 1567-1578, 2015 Author(s): L. Istomina, G. Heygster, M. Huntemann, H. Marks, C. Melsheimer, E. Zege, A. Malinka, A. Prikhach, and I. Katsev The spatial and temporal dynamics of melt ponds and sea ice albedo contain information on the current state and the trend of the climate of the Arctic region. This publication presents a study on melt pond fraction (MPF) and sea ice albedo spatial and temporal dynamics obtained with the Melt Pond Detection (MPD) retrieval scheme for the Medium Resolution Imaging Spectrometer (MERIS) satellite data. This study compares sea ice albedo and MPF to surface air temperature reanalysis data, compares MPF retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS), and examines albedo and MPF trends. Weekly averages of MPF for 2007 and 2011 showed different MPF dynamics while summer sea ice minimum was similar for both years. The gridded MPF and albedo products compare well to independent reanalysis temperature data and show melt onset when the temperature gets above zero; however MPD shows an offset at low MPFs of about 10 % most probably due to unscreened high clouds. Weekly averaged trends show pronounced dynamics of both, MPF and albedo: a negative MPF trend in the East Siberian Sea and a positive MPF trend around the Queen Elizabeth Islands. The negative MPF trend appears due to a change of the absolute MPF value in its peak, whereas the positive MPF trend is created by the earlier melt onset, with the peak MPF values unchanged. The MPF dynamics in the East Siberian Sea could indicate a temporal change of ice type prevailing in the region, as opposed to the Queen Elizabeth Islands, where MPF dynamics react to an earlier seasonal onset of melt.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-08-13
    Description: Melt pond fraction and spectral sea ice albedo retrieval from MERIS data – Part 1: Validation against in situ, aerial, and ship cruise data The Cryosphere, 9, 1551-1566, 2015 Author(s): L. Istomina, G. Heygster, M. Huntemann, P. Schwarz, G. Birnbaum, R. Scharien, C. Polashenski, D. Perovich, E. Zege, A. Malinka, A. Prikhach, and I. Katsev The presence of melt ponds on the Arctic sea ice strongly affects the energy balance of the Arctic Ocean in summer. It affects albedo as well as transmittance through the sea ice, which has consequences for the heat balance and mass balance of sea ice. An algorithm to retrieve melt pond fraction and sea ice albedo from Medium Resolution Imaging Spectrometer (MERIS) data is validated against aerial, shipborne and in situ campaign data. The results show the best correlation for landfast and multiyear ice of high ice concentrations. For broadband albedo, R 2 is equal to 0.85, with the RMS (root mean square) being equal to 0.068; for the melt pond fraction, R 2 is equal to 0.36, with the RMS being equal to 0.065. The correlation for lower ice concentrations, subpixel ice floes, blue ice and wet ice is lower due to ice drift and challenging for the retrieval surface conditions. Combining all aerial observations gives a mean albedo RMS of 0.089 and a mean melt pond fraction RMS of 0.22. The in situ melt pond fraction correlation is R 2 = 0.52 with an RMS = 0.14. Ship cruise data might be affected by documentation of varying accuracy within the Antarctic Sea Ice Processes and Climate (ASPeCt) protocol, which may contribute to the discrepancy between the satellite value and the observed value: mean R 2 = 0.044, mean RMS = 0.16. An additional dynamic spatial cloud filter for MERIS over snow and ice has been developed to assist with the validation on swath data.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-08-14
    Description: Hygroscopic and phase separation properties of ammonium sulfate/organics/water ternary solutions Atmospheric Chemistry and Physics, 15, 8975-8986, 2015 Author(s): M. A. Zawadowicz, S. R. Proud, S. S. Seppalainen, and D. J. Cziczo Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead, they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR (Fourier transform infrared) spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance and, therefore, particles prepared in this study should mimic atmospheric mixed-phase aerosol particles. Some results of this study tend to be in agreement with previous microscopy experiments, but others, such as phase separation properties of 1,2,6-hexanetriol, do not agree with previous work. Because the particles studied in this experiment are of a smaller size than those used in microscopy studies, the discrepancies found could be a size-related effect.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-08-14
    Description: An investigation of how radiation may cause accelerated rates of tropical cyclogenesis and diurnal cycles of convective activity Atmospheric Chemistry and Physics, 15, 9003-9029, 2015 Author(s): M. E. Nicholls Recent cloud-resolving numerical modeling results suggest that radiative forcing causes accelerated rates of tropical cyclogenesis and early intensification. Furthermore, observational studies of tropical cyclones have found that oscillations of the cloud canopy areal extent often occur that are clearly related to the solar diurnal cycle. A theory is put forward to explain these findings. The primary mechanism that seems responsible can be considered a refinement of the mechanism proposed by Gray and Jacobson (1977) to explain diurnal variations of oceanic tropical deep cumulus convection. It is hypothesized that differential radiative cooling or heating between a relatively cloud-free environment and a developing tropical disturbance generates circulations that can have very significant influences on convective activity in the core of the system. It is further suggested that there are benefits to understanding this mechanism by viewing it in terms of the lateral propagation of thermally driven gravity wave circulations, also known as buoyancy bores. Numerical model experiments indicate that mean environmental radiative cooling outside the cloud system is playing an important role in causing a significant horizontal differential radiative forcing and accelerating the rate of tropical cyclogenesis. As an expansive stratiform cloud layer forms aloft within a developing system the mean low-level radiative cooling is reduced, while at mid levels small warming occurs. During the daytime there is not a very large differential radiative forcing between the environment and the cloud system, but at nighttime when there is strong radiative clear-sky cooling of the environment it becomes significant. Thermally driven circulations develop, characterized by relatively weak subsidence in the environment but much stronger upward motion in the cloud system. This upward motion leads to a cooling tendency and increased relative humidity. The increased relative humidity at night appears to be a major factor in enhancing convective activity, thereby leading in the mean to an increased rate of genesis. It is postulated that the increased upward motion and relative humidity that occur throughout a deep layer aid both in the triggering of convection and in providing a more favorable local environment at mid levels for maintenance of buoyancy in convective cells due to a reduction of the detrimental effects of dry air entrainment. Additionally, the day/night modulations of the environmental radiative forcing appear to play a major role in the diurnal cycles of convective activity in the cloud system. It is shown that the upward velocity tendencies in the system core produced by the radiative forcing are extremely weak when compared to those produced by latent heat release in convective towers, but nevertheless over the course of a night they appear capable of significantly influencing convective activity.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-08-14
    Description: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer Atmospheric Chemistry and Physics, 15, 8889-8973, 2015 Author(s): P. S. Monks, A. T. Archibald, A. Colette, O. Cooper, M. Coyle, R. Derwent, D. Fowler, C. Granier, K. S. Law, G. E. Mills, D. S. Stevenson, O. Tarasova, V. Thouret, E. von Schneidemesser, R. Sommariva, O. Wild, and M. L. Williams Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a byproduct of the very oxidation chemistry it largely initiates. Much effort is focused on the reduction of surface levels of ozone owing to its health and vegetation impacts, but recent efforts to achieve reductions in exposure at a country scale have proved difficult to achieve owing to increases in background ozone at the zonal hemispheric scale. There is also a growing realisation that the role of ozone as a short-lived climate pollutant could be important in integrated air quality climate change mitigation. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models. It takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner. The review shows that there remain a number of clear challenges for ozone such as explaining surface trends, incorporating new chemical understanding, ozone–climate coupling, and a better assessment of impacts. There is a clear and present need to treat ozone across the range of scales, a transboundary issue, but with an emphasis on the hemispheric scales. New observational opportunities are offered both by satellites and small sensors that bridge the scales.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-08-15
    Description: The ENSO signal in atmospheric composition fields: emission-driven versus dynamically induced changes Atmospheric Chemistry and Physics, 15, 9083-9097, 2015 Author(s): A. Inness, A. Benedetti, J. Flemming, V. Huijnen, J. W. Kaiser, M. Parrington, and S. Remy The El Niño–Southern Oscillation (ENSO) not only affects meteorological fields but also has a large impact on atmospheric composition. Atmospheric composition fields from the Monitoring Atmospheric Composition and Climate (MACC) reanalysis are used to identify the ENSO signal in tropospheric ozone, carbon monoxide, nitrogen oxide and smoke aerosols, concentrating on the months October to December. During El Niño years, all of these fields have increased concentrations over maritime South East Asia in October. The MACC Composition Integrated Forecasting System (C-IFS) model is used to quantify the relative magnitude of dynamically induced and emission-driven changes in the atmospheric composition fields. While changes in tropospheric ozone are a combination of dynamically induced and emission-driven changes, the changes in carbon monoxide, nitrogen oxides and smoke aerosols are almost entirely emission-driven in the MACC model. The ozone changes continue into December, i.e. after the end of the Indonesian fire season while changes in the other fields are confined to the fire season.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-09-15
    Description: Deuterium excess in the atmospheric water vapour of a Mediterranean coastal wetland: regional vs. local signatures Atmospheric Chemistry and Physics, 15, 10167-10181, 2015 Author(s): H. Delattre, C. Vallet-Coulomb, and C. Sonzogni Stable isotopes of water vapour represent a powerful tool for tracing atmospheric vapour origin and mixing processes. Laser spectrometry recently allowed high time-resolution measurements, but despite an increasing number of experimental studies, there is still a need for a better understanding of the isotopic signal variability at different time scales. We present results of in situ measurements of δ 18 O and δD during 36 consecutive days in summer 2011 in atmospheric vapour of a Mediterranean coastal wetland exposed to high evaporation (Camargue, Rhône River delta, France). The mean composition of atmospheric vapour (δ v ) is δ 18 O = −14.66 ‰ and δD = − 95.4 ‰, with data plotting clearly above the local meteoric water line on a δ 18 O-δD plot, and an average deuterium excess ( d ) of 21.9 ‰. Important diurnal d variations are observed, and an hourly time scale analysis is necessary to interpret the main processes involved in its variability. After having classified the data according to air mass back trajectories, we analyse the average daily cycles relating to the two main meteorological situations, i.e. air masses originating from North Atlantic Ocean and Mediterranean Sea. In both situations, we show that diurnal fluctuations are driven by (1) the influence of local evaporation, culminating during daytime, and leading to an increase in absolute water vapour concentration associated to a δ v enrichment and d increase; (2) vertical air mass redistribution when the Planetary Boundary Layer collapses in the evening, leading to a d decrease, and (3) dew formation during the night, producing a δ v depletion with d remaining stable. Using a two-component mixing model, we calculate the average composition of the locally evaporated vapour (δ E ). We find higher d (E) under North Atlantic air mass conditions, which is consistent with lower humidity conditions. We also suggest that δ v measured when the PBL collapses is the most representative of a regional signal. Strong, cold and dry winds coming from the north bring an isotopically depleted vapour, while light, warm and wet winds coming from the south bring an isotopically enriched vapour. Under northern conditions, a strong advection rate dilutes the contribution of the locally evaporated vapour (δ E ) to the ambient moisture (δ v ). The higher d values measured under northern conditions, compared to the Mediterranean situation, thus results from the combination of a higher d in both local and regional vapour. This depiction of typical daily cycles of water vapour isotopic composition can be used as a framework for further quantitative analyses of vapour sources during specific days.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-09-17
    Description: Technical Note: A proposal for ice nucleation terminology Atmospheric Chemistry and Physics, 15, 10263-10270, 2015 Author(s): G. Vali, P. J. DeMott, O. Möhler, and T. F. Whale Terminology dealing with ice nucleation in the atmosphere, in biological systems, and in other areas has not kept pace with the growth of empirical evidence and the development of new ideas over recent decades. Ambiguities and misinterpretations could be seen in the literature. This paper offers a set of definitions for various terms in common use, adds some qualifications, and introduces some new ones. Input has been received on the interpretation of various terms from a fair number of researchers; diverse views have been accommodated with some success. It is anticipated that the terminology proposed here will be helpful both to those who adopt it and to those who wish to explain a different perspective.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-09-17
    Description: Simultaneous monitoring of stable oxygen isotope composition in water vapour and precipitation over the central Tibetan Plateau Atmospheric Chemistry and Physics, 15, 10251-10262, 2015 Author(s): W. Yu, L. Tian, Y. Ma, B. Xu, and D. Qu This study investigated daily δ 18 O variations of water vapour (δ 18 O v ) and precipitation (δ 18 O p ) simultaneously at Nagqu on the central Tibetan Plateau for the first time. Data show that the δ 18 O tendencies of water vapour coincide strongly with those of associated precipitation. The δ 18 O values of precipitation affect those of water vapour not only on the same day, but also for the following several days. In comparison, the δ 18 O values of local water vapour may only partly contribute to those of precipitation. During the entire sampling period, the variations of δ 18 O v and δ 18 O p at Nagqu did not appear dependent on temperature, but did seem significantly dependent on the joint contributions of relative humidity, pressure, and precipitation amount. In addition, the δ 18 O changes in water vapour and precipitation can be used to diagnose different moisture sources, especially the influences of the Indian monsoon and convection. Moreover, intense activities of the Indian monsoon and convection may cause the relative enrichment of δ 18 O p relative to δ 18 O v at Nagqu (on the central Tibetan Plateau) to differ from that at other stations on the northern Tibetan Plateau. These results indicate that the effects of different moisture sources, including the Indian monsoon and convection currents, need be considered when attempting to interpret paleoclimatic records on the central Tibetan Plateau.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-09-19
    Description: Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet The Cryosphere, 9, 1831-1844, 2015 Author(s): B. Noël, W. J. van de Berg, E. van Meijgaard, P. Kuipers Munneke, R. S. W. van de Wal, and M. R. van den Broeke We discuss Greenland Ice Sheet (GrIS) surface mass balance (SMB) differences between the updated polar version of the RACMO climate model (RACMO2.3) and the previous version (RACMO2.1). Among other revisions, the updated model includes an adjusted rainfall-to-snowfall conversion that produces exclusively snowfall under freezing conditions; this especially favours snowfall in summer. Summer snowfall in the ablation zone of the GrIS has a pronounced effect on melt rates, affecting modelled GrIS SMB in two ways. By covering relatively dark ice with highly reflective fresh snow, these summer snowfalls have the potential to locally reduce melt rates in the ablation zone of the GrIS through the snow-albedo-melt feedback. At larger scales, SMB changes are driven by differences in orographic precipitation following a shift in large-scale circulation, in combination with enhanced moisture to precipitation conversion for warm to moderately cold conditions. A detailed comparison of model output with observations from automatic weather stations, ice cores and ablation stakes shows that the model update generally improves the simulated SMB-elevation gradient as well as the representation of the surface energy balance, although significant biases remain.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-09-22
    Description: Investigating the observed sensitivities of air-quality extremes to meteorological drivers via quantile regression Atmospheric Chemistry and Physics, 15, 10349-10366, 2015 Author(s): W. C. Porter, C. L. Heald, D. Cooley, and B. Russell Air pollution variability is strongly dependent on meteorology. However, quantifying the impacts of changes in regional climatology on pollution extremes can be difficult due to the many non-linear and competing meteorological influences on the production, transport, and removal of pollutant species. Furthermore, observed pollutant levels at many sites show sensitivities at the extremes that differ from those of the overall mean, indicating relationships that would be poorly characterized by simple linear regressions. To address this challenge, we apply quantile regression to observed daily ozone (O 3 ) and fine particulate matter (PM 2.5 ) levels and reanalysis meteorological fields in the USA over the past decade to specifically identify the meteorological sensitivities of higher pollutant levels. From an initial set of over 1700 possible meteorological indicators (including 28 meteorological variables with 63 different temporal options), we generate reduced sets of O 3 and PM 2.5 indicators for both summer and winter months, analyzing pollutant sensitivities to each for response quantiles ranging from 2 to 98 %. Primary covariates connected to high-quantile O 3 levels include temperature and relative humidity in the summer, while winter O 3 levels are most commonly associated with incoming radiation flux. Covariates associated with summer PM 2.5 include temperature, wind speed, and tropospheric stability at many locations, while stability, humidity, and planetary boundary layer height are the key covariates most frequently associated with winter PM 2.5 . We find key differences in covariate sensitivities across regions and quantiles. For example, we find nationally averaged sensitivities of 95th percentile summer O 3 to changes in maximum daily temperature of approximately 0.9 ppb °C −1 , while the sensitivity of 50th percentile summer O 3 (the annual median) is only 0.6 ppb °C −1 . This gap points to differing sensitivities within various percentiles of the pollutant distribution, highlighting the need for statistical tools capable of identifying meteorological impacts across the entire response spectrum.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-09-22
    Description: Comprehensive mapping and characteristic regimes of aerosol effects on the formation and evolution of pyro-convective clouds Atmospheric Chemistry and Physics, 15, 10325-10348, 2015 Author(s): D. Chang, Y. Cheng, P. Reutter, J. Trentmann, S. M. Burrows, P. Spichtinger, S. Nordmann, M. O. Andreae, U. Pöschl, and H. Su A recent parcel model study (Reutter et al., 2009) showed three deterministic regimes of initial cloud droplet formation, characterized by different ratios of aerosol concentrations ( N CN ) to updraft velocities. This analysis, however, did not reveal how these regimes evolve during the subsequent cloud development. To address this issue, we employed the Active Tracer High Resolution Atmospheric Model (ATHAM) with full microphysics and extended the model simulation from the cloud base to the entire column of a single pyro-convective mixed-phase cloud. A series of 2-D simulations (over 1000) were performed over a wide range of N CN and dynamic conditions. The integrated concentration of hydrometeors over the full spatial and temporal scales was used to evaluate the aerosol and dynamic effects. The results show the following. (1) The three regimes for cloud condensation nuclei (CCN) activation in the parcel model (namely aerosol-limited, updraft-limited, and transitional regimes) still exist within our simulations, but net production of raindrops and frozen particles occurs mostly within the updraft-limited regime. (2) Generally, elevated aerosols enhance the formation of cloud droplets and frozen particles. The response of raindrops and precipitation to aerosols is more complex and can be either positive or negative as a function of aerosol concentrations. The most negative effect was found for values of N CN of ~ 1000 to 3000 cm −3 . (3) The nonlinear properties of aerosol–cloud interactions challenge the conclusions drawn from limited case studies in terms of their representativeness, and ensemble studies over a wide range of aerosol concentrations and other influencing factors are strongly recommended for a more robust assessment of the aerosol effects.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-09-23
    Description: Variability in Antarctic ozone loss in the last decade (2004–2013): high-resolution simulations compared to Aura MLS observations Atmospheric Chemistry and Physics, 15, 10385-10397, 2015 Author(s): J. Kuttippurath, S. Godin-Beekmann, F. Lefèvre, M. L. Santee, L. Froidevaux, and A. Hauchecorne A detailed analysis of the polar ozone loss processes during 10 recent Antarctic winters is presented with high-resolution MIMOSA–CHIM (Modèle Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection avec CHIMie) model simulations and high-frequency polar vortex observations from the Aura microwave limb sounder (MLS) instrument. The high-frequency measurements and simulations help to characterize the winters and assist the interpretation of interannual variability better than either data or simulations alone. Our model results for the Antarctic winters of 2004–2013 show that chemical ozone loss starts in the edge region of the vortex at equivalent latitudes (EqLs) of 65–67° S in mid-June–July. The loss progresses with time at higher EqLs and intensifies during August–September over the range 400–600 K. The loss peaks in late September–early October, when all EqLs (65–83° S) show a similar loss and the maximum loss (〉 2 ppmv – parts per million by volume) is found over a broad vertical range of 475–550 K. In the lower stratosphere, most winters show similar ozone loss and production rates. In general, at 500 K, the loss rates are about 2–3 ppbv sh −1 (parts per billion by volume per sunlit hour) in July and 4–5 ppbv sh −1 in August–mid-September, while they drop rapidly to 0 by mid-October. In the middle stratosphere, the loss rates are about 3–5 ppbv sh −1 in July–August and October at 675 K. On average, the MIMOSA–CHIM simulations show that the very cold winters of 2005 and 2006 exhibit a maximum loss of ~ 3.5 ppmv around 550 K or about 149–173 DU over 350–850 K, and the warmer winters of 2004, 2010, and 2012 show a loss of ~ 2.6 ppmv around 475–500 K or 131–154 DU over 350–850 K. The winters of 2007, 2008, and 2011 were moderately cold, and thus both ozone loss and peak loss altitudes are between these two ranges (3 ppmv around 500 K or 150 ± 10 DU). The modeled ozone loss values are in reasonably good agreement with those estimated from Aura MLS measurements, but the model underestimates the observed ClO, largely due to the slower vertical descent in the model during spring.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-09-24
    Description: Model studies of volatile diesel exhaust particle formation: are organic vapours involved in nucleation and growth? Atmospheric Chemistry and Physics, 15, 10435-10452, 2015 Author(s): L. Pirjola, M. Karl, T. Rönkkö, and F. Arnold A high concentration of volatile nucleation mode particles (NUP) formed in the atmosphere when the exhaust cools and dilutes has hazardous health effects and it impairs the visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulfur content (FSC) fuel, under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested. Based on the measured gaseous sulfuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrier-free heteromolecular homogeneous nucleation between the GSA and a semi-volatile organic vapour combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur due to the similar organic vapour at concentrations of (1−2) × 10 12 cm −3 . The pre-existing core and soot mode concentrations had an opposite trend on the NUP formation, and the maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, the model predicted that the NUP formation ceased if the GSA concentration in the raw exhaust was less than 10 10 cm −3 , which was the case when biofuel was used.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-09-24
    Description: Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model Atmospheric Chemistry and Physics, 15, 10411-10433, 2015 Author(s): P. S. Kim, D. J. Jacob, J. A. Fisher, K. Travis, K. Yu, L. Zhu, R. M. Yantosca, M. P. Sulprizio, J. L. Jimenez, P. Campuzano-Jost, K. D. Froyd, J. Liao, J. W. Hair, M. A. Fenn, C. F. Butler, N. L. Wagner, T. D. Gordon, A. Welti, P. O. Wennberg, J. D. Crounse, J. M. St. Clair, A. P. Teng, D. B. Millet, J. P. Schwarz, M. Z. Markovic, and A. E. Perring We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC 4 RS), and satellite (MODIS, MISR) observations over the southeast US during the summer–fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 × 25 km 2 resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM 2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the southeast US. OA is simulated successfully with a simple parameterization, assuming irreversible uptake of low-volatility products of hydrocarbon oxidation. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 25 % in the cloud convective layer at 1.5–3 km, and 15 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization ( f = [NH 4 + ]/(2[SO 4 2− ] + [NO 3 − ]) is only 0.5–0.7 mol mol −1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by OA. This would explain the long-term decline of ammonium aerosol in the southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 8–28 % (consistently biased low). The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines are due to shutdowns in both biogenic emissions and UV-driven photochemistry. Surface PM 2.5 shows far less summer-to-winter decrease than AOD and we attribute this in part to the offsetting effect of weaker boundary layer ventilation. The SEAC4RS aircraft data demonstrate that AODs measured from space are consistent with surface PM 2.5 . This implies that satellites can be used reliably to infer surface PM 2.5 over monthly timescales if a good CTM representation of the aerosol vertical profile is available.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-09-24
    Description: A macroscale mixture theory analysis of deposition and sublimation rates during heat and mass transfer in dry snow The Cryosphere, 9, 1857-1878, 2015 Author(s): A. C. Hansen and W. E. Foslien The microstructure of a dry alpine snowpack is a dynamic environment where microstructural evolution is driven by seasonal density profiles and weather conditions. Notably, temperature gradients on the order of 10–20 K m −1 , or larger, are known to produce a faceted snow microstructure exhibiting little strength. However, while strong temperature gradients are widely accepted as the primary driver for kinetic growth, they do not fully account for the range of experimental observations. An additional factor influencing snow metamorphism is believed to be the rate of mass transfer at the macroscale. We develop a mixture theory capable of predicting macroscale deposition and/or sublimation in a snow cover under temperature gradient conditions. Temperature gradients and mass exchange are tracked over periods ranging from 1 to 10 days. Interesting heat and mass transfer behavior is observed near the ground, near the surface, as well as immediately above and below dense ice crusts. Information about deposition (condensation) and sublimation rates may help explain snow metamorphism phenomena that cannot be accounted for by temperature gradients alone. The macroscale heat and mass transfer analysis requires accurate representations of the effective thermal conductivity and the effective mass diffusion coefficient for snow. We develop analytical models for these parameters based on first principles at the microscale. The expressions derived contain no empirical adjustments, and further, provide self consistent values for effective thermal conductivity and the effective diffusion coefficient for the limiting cases of air and solid ice. The predicted values for these macroscale material parameters are also in excellent agreement with numerical results based on microscale finite element analyses of representative volume elements generated from X-ray tomography.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-09-25
    Description: Evaluating the climate and air quality impacts of short-lived pollutants Atmospheric Chemistry and Physics, 15, 10529-10566, 2015 Author(s): A. Stohl, B. Aamaas, M. Amann, L. H. Baker, N. Bellouin, T. K. Berntsen, O. Boucher, R. Cherian, W. Collins, N. Daskalakis, M. Dusinska, S. Eckhardt, J. S. Fuglestvedt, M. Harju, C. Heyes, Ø. Hodnebrog, J. Hao, U. Im, M. Kanakidou, Z. Klimont, K. Kupiainen, K. S. Law, M. T. Lund, R. Maas, C. R. MacIntosh, G. Myhre, S. Myriokefalitakis, D. Olivié, J. Quaas, B. Quennehen, J.-C. Raut, S. T. Rumbold, B. H. Samset, M. Schulz, Ø. Seland, K. P. Shine, R. B. Skeie, S. Wang, K. E. Yttri, and T. Zhu This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP 20 ) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together defined a SLCP mitigation (MIT) scenario. Compared to CLE, the MIT scenario would reduce global methane (CH 4 ) and black carbon (BC) emissions by about 50 and 80 %, respectively. For CH 4 , measures on shale gas production, waste management and coal mines were most important. For non-CH 4 SLCPs, elimination of high-emitting vehicles and wick lamps, as well as reducing emissions from gas flaring, coal and biomass stoves, agricultural waste, solvents and diesel engines were most important. These measures lead to large reductions in calculated surface concentrations of ozone and particulate matter. We estimate that in the EU, the loss of statistical life expectancy due to air pollution was 7.5 months in 2010, which will be reduced to 5.2 months by 2030 in the CLE scenario. The MIT scenario would reduce this value by another 0.9 to 4.3 months. Substantially larger reductions due to the mitigation are found for China (1.8 months) and India (11–12 months). The climate metrics cannot fully quantify the climate response. Therefore, a second research path was taken. Transient climate ensemble simulations with the four ESMs were run for the CLE and MIT scenarios, to determine the climate impacts of the mitigation. In these simulations, the CLE scenario resulted in a surface temperature increase of 0.70 ± 0.14 K between the years 2006 and 2050. For the decade 2041–2050, the warming was reduced by 0.22 ± 0.07 K in the MIT scenario, and this result was in almost exact agreement with the response calculated based on the emission metrics (reduced warming of 0.22 ± 0.09 K). The metrics calculations suggest that non-CH 4 SLCPs contribute ~ 22 % to this response and CH 4 78 %. This could not be fully confirmed by the transient simulations, which attributed about 90 % of the temperature response to CH 4 reductions. Attribution of the observed temperature response to non-CH 4 SLCP emission reductions and BC specifically is hampered in the transient simulations by small forcing and co-emitted species of the emission basket chosen. Nevertheless, an important conclusion is that our mitigation basket as a whole would lead to clear benefits for both air quality and climate. The climate response from BC reductions in our study is smaller than reported previously, possibly because our study is one of the first to use fully coupled climate models, where unforced variability and sea ice responses cause relatively strong temperature fluctuations that may counteract (and, thus, mask) the impacts of small emission reductions. The temperature responses to the mitigation were generally stronger over the continents than over the oceans, and with a warming reduction of 0.44 K (0.39–0.49) K the largest over the Arctic. Our calculations suggest particularly beneficial climate responses in southern Europe, where surface warming was reduced by about 0.3 K and precipitation rates were increased by about 15 (6–21) mm yr −1 (more than 4 % of total precipitation) from spring to autumn. Thus, the mitigation could help to alleviate expected future drought and water shortages in the Mediterranean area. We also report other important results of the ECLIPSE project.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-09-25
    Description: Ice phase in altocumulus clouds over Leipzig: remote sensing observations and detailed modeling Atmospheric Chemistry and Physics, 15, 10453-10470, 2015 Author(s): M. Simmel, J. Bühl, A. Ansmann, and I. Tegen The present work combines remote sensing observations and detailed cloud modeling to investigate two altocumulus cloud cases observed over Leipzig, Germany. A suite of remote sensing instruments was able to detect primary ice at rather high temperatures of −6 °C. For comparison, a second mixed phase case at about −25 °C is introduced. To further look into the details of cloud microphysical processes, a simple dynamics model of the Asai-Kasahara (AK) type is combined with detailed spectral microphysics (SPECS) forming the model system AK-SPECS. Vertical velocities are prescribed to force the dynamics, as well as main cloud features, to be close to the observations. Subsequently, sensitivity studies with respect to ice microphysical parameters are carried out with the aim to quantify the most important sensitivities for the cases investigated. For the cases selected, the liquid phase is mainly determined by the model dynamics (location and strength of vertical velocity), whereas the ice phase is much more sensitive to the microphysical parameters (ice nucleating particle (INP) number, ice particle shape). The choice of ice particle shape may induce large uncertainties that are on the same order as those for the temperature-dependent INP number distribution.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-09-25
    Description: Acetylene (C 2 H 2 ) and hydrogen cyanide (HCN) from IASI satellite observations: global distributions, validation, and comparison with model Atmospheric Chemistry and Physics, 15, 10509-10527, 2015 Author(s): V. Duflot, C. Wespes, L. Clarisse, D. Hurtmans, Y. Ngadi, N. Jones, C. Paton-Walsh, J. Hadji-Lazaro, C. Vigouroux, M. De Mazière, J.-M. Metzger, E. Mahieu, C. Servais, F. Hase, M. Schneider, C. Clerbaux, and P.-F. Coheur We present global distributions of C 2 H 2 and hydrogen cyanide (HCN) total columns derived from the Infrared Atmospheric Sounding Interferometer (IASI) for the years 2008–2010. These distributions are obtained with a fast method allowing to retrieve C 2 H 2 abundance globally with a 5 % precision and HCN abundance in the tropical (subtropical) belt with a 10 % (25 %) precision. IASI data are compared for validation purposes with ground-based Fourier transform infrared (FTIR) spectrometer measurements at four selected stations. We show that there is an overall agreement between the ground-based and space measurements with correlation coefficients for daily mean measurements ranging from 0.28 to 0.81, depending on the site. Global C 2 H 2 and subtropical HCN abundances retrieved from IASI spectra show the expected seasonality linked to variations in the anthropogenic emissions and seasonal biomass burning activity, as well as exceptional events, and are in good agreement with previous spaceborne studies. Total columns simulated by the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) are compared to the ground-based FTIR measurements at the four selected stations. The model is able to capture the seasonality in the two species in most of the cases, with correlation coefficients for daily mean measurements ranging from 0.50 to 0.86, depending on the site. IASI measurements are also compared to the distributions from MOZART-4. Seasonal cycles observed from satellite data are reasonably well reproduced by the model with correlation coefficients ranging from −0.31 to 0.93 for C 2 H 2 daily means, and from 0.09 to 0.86 for HCN daily means, depending on the considered region. However, the anthropogenic (biomass burning) emissions used in the model seem to be overestimated (underestimated), and a negative global mean bias of 1 % (16 %) of the model relative to the satellite observations was found for C 2 H 2 (HCN).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-09-25
    Description: Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS): methodology and sample results with a focus on HCl, H 2 O, and O 3 Atmospheric Chemistry and Physics, 15, 10471-10507, 2015 Author(s): L. Froidevaux, J. Anderson, H.-J. Wang, R. A. Fuller, M. J. Schwartz, M. L. Santee, N. J. Livesey, H. C. Pumphrey, P. F. Bernath, J. M. Russell III, and M. P. McCormick We describe the publicly available data from the Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS) project and provide some results, with a focus on hydrogen chloride (HCl), water vapor (H 2 O), and ozone (O 3 ). This data set is a global long-term stratospheric Earth system data record, consisting of monthly zonal mean time series starting as early as 1979. The data records are based on high-quality measurements from several NASA satellite instruments and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on SCISAT. We examine consistency aspects between the various data sets. To merge ozone records, the time series are debiased relative to SAGE II (Stratospheric Aerosol and Gas Experiments) values by calculating average offsets versus SAGE II during measurement overlap periods, whereas for other species the merging derives from an averaging procedure during overlap periods. The GOZCARDS files contain mixing ratios on a common pressure–latitude grid, as well as standard errors and other diagnostics; we also present estimates of systematic uncertainties in the merged products. Monthly mean temperatures for GOZCARDS were also produced, based directly on data from the Modern-Era Retrospective analysis for Research and Applications. The GOZCARDS HCl merged product comes from the Halogen Occultation Experiment (HALOE), ACE-FTS and lower-stratospheric Aura Microwave Limb Sounder (MLS) data. After a rapid rise in upper-stratospheric HCl in the early 1990s, the rate of decrease in this region for 1997–2010 was between 0.4 and 0.7 % yr −1 . On 6–8-year timescales, the rate of decrease peaked in 2004–2005 at about 1 % yr −1 , and it has since levelled off, at ~ 0.5 % yr −1 . With a delay of 6–7 years, these changes roughly follow total surface chlorine, whose behavior versus time arises from inhomogeneous changes in the source gases. Since the late 1990s, HCl decreases in the lower stratosphere have occurred with pronounced latitudinal variability at rates sometimes exceeding 1–2 % yr −1 . Recent short-term tendencies of lower-stratospheric and column HCl vary substantially, with increases from 2005 to 2010 for northern midlatitudes and deep tropics, but decreases (increases) after 2011 at northern (southern) midlatitudes. For H 2 O, the GOZCARDS product covers both stratosphere and mesosphere, and the same instruments as for HCl are used, along with Upper Atmosphere Research Satellite (UARS) MLS stratospheric H 2 O data (1991–1993). We display seasonal to decadal-type variability in H 2 O from 22 years of data. In the upper mesosphere, the anticorrelation between H 2 O and solar flux is now clearly visible over two full solar cycles. Lower-stratospheric tropical H 2 O has exhibited two periods of increasing values, followed by fairly sharp drops (the well-documented 2000–2001 decrease and a recent drop in 2011–2013). Tropical decadal variability peaks just above the tropopause. Between 1991 and 2013, both in the tropics and on a near-global basis, H 2 O has decreased by ~ 5–10 % in the lower stratosphere, but about a 10 % increase is observed in the upper stratosphere and lower mesosphere. However, such tendencies may not represent longer-term trends. For ozone, we used SAGE I, SAGE II, HALOE, UARS and Aura MLS, and ACE-FTS data to produce a merged record from late 1979 onward, using SAGE II as the primary reference. Unlike the 2 to 3 % increase in near-global column ozone after the late 1990s reported by some, GOZCARDS stratospheric column O 3 values do not show a recent upturn of more than 0.5 to 1 %; long-term interannual column ozone variations from GOZCARDS are generally in very good agreement with interannual changes in merged total column ozone (Version 8.6) data from SBUV instruments. A brief mention is also made of other currently available, commonly formatted GOZCARDS satellite data records for stratospheric composition, namely those for N 2 O and HNO 3 .
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-09-26
    Description: Strong aerosol–cloud interaction in altocumulus during updraft periods: lidar observations over central Europe Atmospheric Chemistry and Physics, 15, 10687-10700, 2015 Author(s): J. Schmidt, A. Ansmann, J. Bühl, and U. Wandinger For the first time, a liquid-water cloud study of the aerosol–cloud-dynamics relationship, solely based on lidar, was conducted. Twenty-nine cases of pure liquid-water altocumulus layers were observed with a novel dual-field-of-view Raman lidar over the polluted central European site of Leipzig, Germany, between September 2010 and September 2012. By means of the novel Raman lidar technique, cloud properties such as the droplet effective radius and cloud droplet number concentration (CDNC) in the lower part of altocumulus layers are obtained. The conventional aerosol Raman lidar technique provides the aerosol extinction coefficient (used as aerosol proxy) below cloud base. A collocated Doppler lidar measures the vertical velocity at cloud base and thus updraft and downdraft occurrence. Here, we present the key results of our statistical analysis of the 2010–2012 observations. Besides a clear aerosol effect on cloud droplet number concentration in the lower part of the altocumulus layers during updraft periods, turbulent mixing and entrainment of dry air is assumed to be the main reason for the found weak correlation between aerosol proxy and CDNC higher up in the cloud. The corresponding aerosol–cloud interaction parameter based on changes in cloud droplet number concentration with aerosol loading was found to be close to 0.8 at 30–70 m above cloud base during updraft periods and below 0.4 when ignoring vertical-wind information in the analysis. Our findings are extensively compared with literature values and agree well with airborne observations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-09-26
    Description: The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus Atmospheric Chemistry and Physics, 15, 10631-10643, 2015 Author(s): A. Solomon, G. Feingold, and M. D. Shupe This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing and recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. The results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-09-26
    Description: The impact of observing characteristics on the ability to predict ozone under varying polluted photochemical regimes Atmospheric Chemistry and Physics, 15, 10645-10667, 2015 Author(s): P. D. Hamer, K. W. Bowman, D. K. Henze, J.-L. Attié, and V. Marécal We conduct analyses to assess how characteristics of observations of ozone and its precursors affect air quality forecasting and research. To carry out this investigation, we use a photochemical box model and its adjoint integrated with a Lagrangian 4D-variational data assimilation system. Using this framework in conjunction with pseudo-observations, we perform an ozone precursor source inversion and estimate surface emissions. We then assess the resulting improvement in ozone air quality prediction. We use an analytical model to conduct uncertainty analyses. Using this analytical tool, we address some key questions regarding how the characteristics of observations affect ozone precursor emission inversion and in turn ozone prediction. These questions include what the effect is of choosing which species to observe, of varying amounts of observation noise, of changing the observing frequency and the observation time during the diurnal cycle, and of how these different scenarios interact with different photochemical regimes. In our investigation we use three observed species scenarios: CO and NO 2 ; ozone, CO, and NO 2 ; and HCHO, CO and NO 2 . The photochemical model was set up to simulate a range of summertime polluted environments spanning NO x -(NO and NO 2 )-limited to volatile organic compound (VOC)-limited conditions. We find that as the photochemical regime changes, here is a variation in the relative importance of trace gas observations to be able to constrain emission estimates and to improve the subsequent ozone forecasts. For example, adding ozone observations to an NO 2 and CO observing system is found to decrease ozone prediction error under NO x - and VOC-limited regimes, and complementing the NO 2 and CO system with HCHO observations would improve ozone prediction in the transitional regime and under VOC-limited conditions. We found that scenarios observing ozone and HCHO with a relative observing noise of lower than 33 % were able to achieve ozone prediction errors of lower than 5 ppbv (parts per billion by volume). Further, only observing intervals of 3 h or shorter were able to consistently achieve ozone prediction errors of 5 ppbv or lower across all photochemical regimes. Making observations closer to the prediction period and either in the morning or afternoon rush hour periods made greater improvements for ozone prediction: 0.2–0.3 ppbv for the morning rush hour and from 0.3 to 0.8 ppbv for the afternoon compared to only 0–0.1 ppbv for other times of the day. Finally, we made two complementary analyses that show that our conclusions are insensitive to the assumed diurnal emission cycle and to the choice of which VOC species emission to estimate using our framework. These questions will address how different types of observing platform, e.g. geostationary satellites or ground monitoring networks, could support future air quality research and forecasting.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-09-26
    Description: Use of North American and European air quality networks to evaluate global chemistry–climate modeling of surface ozone Atmospheric Chemistry and Physics, 15, 10581-10596, 2015 Author(s): J. L. Schnell, M. J. Prather, B. Josse, V. Naik, L. W. Horowitz, P. Cameron-Smith, D. Bergmann, G. Zeng, D. A. Plummer, K. Sudo, T. Nagashima, D. T. Shindell, G. Faluvegi, and S. A. Strode We test the current generation of global chemistry–climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model–measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfully matched. The observed summertime diurnal range (~ 25 ppb) is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb) is underestimated by about 5 ppb except in the most polluted regions, where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 % of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 ppb for larger-sized episodes. We conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-09-26
    Description: Satellite observations of changes in snow-covered land surface albedo during spring in the Northern Hemisphere The Cryosphere, 9, 1879-1893, 2015 Author(s): K. Atlaskina, F. Berninger, and G. de Leeuw Thirteen years of Moderate Resolution Imaging Spectroradiometer (MODIS) surface albedo data for the Northern Hemisphere during the spring months (March–May) were analyzed to determine temporal and spatial changes over snow-covered land surfaces. Tendencies in land surface albedo change north of 50° N were analyzed using data on snow cover fraction, air temperature, vegetation index and precipitation. To this end, the study domain was divided into six smaller areas, based on their geographical position and climate similarity. Strong differences were observed between these areas. As expected, snow cover fraction (SCF) has a strong influence on the albedo in the study area and can explain 56 % of variation of albedo in March, 76 % in April and 92 % in May. Therefore the effects of other parameters were investigated only for areas with 100 % SCF. The second largest driver for snow-covered land surface albedo changes is the air temperature when it exceeds a value between −15 and −10 °C, depending on the region. At monthly mean air temperatures below this value no albedo changes are observed. The Enhanced Vegetation Index (EVI) and precipitation amount and frequency were independently examined as possible candidates to explain observed changes in albedo for areas with 100 % SCF. Amount and frequency of precipitation were identified to influence the albedo over some areas in Eurasia and North America, but no clear effects were observed in other areas. EVI is positively correlated with albedo in Chukotka Peninsula and negatively in eastern Siberia. For other regions the spatial variability of the correlation fields is too high to reach any conclusions.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-09-29
    Description: The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols Atmospheric Chemistry and Physics, 15, 10723-10776, 2015 Author(s): M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano The Amazon Basin plays key roles in the carbon and water cycles, climate change, atmospheric chemistry, and biodiversity. It has already been changed significantly by human activities, and more pervasive change is expected to occur in the coming decades. It is therefore essential to establish long-term measurement sites that provide a baseline record of present-day climatic, biogeochemical, and atmospheric conditions and that will be operated over coming decades to monitor change in the Amazon region, as human perturbations increase in the future. The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine rain forest region in the central Amazon Basin, about 150 km northeast of the city of Manaus. Two 80 m towers have been operated at the site since 2012, and a 325 m tower is nearing completion in mid-2015. An ecological survey including a biodiversity assessment has been conducted in the forest region surrounding the site. Measurements of micrometeorological and atmospheric chemical variables were initiated in 2012, and their range has continued to broaden over the last few years. The meteorological and micrometeorological measurements include temperature and wind profiles, precipitation, water and energy fluxes, turbulence components, soil temperature profiles and soil heat fluxes, radiation fluxes, and visibility. A tree has been instrumented to measure stem profiles of temperature, light intensity, and water content in cryptogamic covers. The trace gas measurements comprise continuous monitoring of carbon dioxide, carbon monoxide, methane, and ozone at five to eight different heights, complemented by a variety of additional species measured during intensive campaigns (e.g., VOC, NO, NO 2 , and OH reactivity). Aerosol optical, microphysical, and chemical measurements are being made above the canopy as well as in the canopy space. They include aerosol light scattering and absorption, fluorescence, number and volume size distributions, chemical composition, cloud condensation nuclei (CCN) concentrations, and hygroscopicity. In this paper, we discuss the scientific context of the ATTO observatory and present an overview of results from ecological, meteorological, and chemical pilot studies at the ATTO site.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-10-01
    Description: Simulation of black carbon in snow and its climate impact in the Canadian Global Climate Model Atmospheric Chemistry and Physics, 15, 10887-10904, 2015 Author(s): M. Namazi, K. von Salzen, and J. N. S. Cole A new physically based parameterisation of black carbon (BC) in snow was developed and implemented in the Canadian Atmospheric Global Climate Model (CanAM4.2). Simulated BC snow mixing ratios and BC snow radiative forcings are in good agreement with measurements and results from other models. Simulations with the improved model yield considerable trends in regional BC concentrations in snow and BC snow radiative forcings during the time period from 1950–1959 to 2000–2009. Increases in radiative forcings for Asia and decreases for Europe and North America are found to be associated with changes in BC emissions. Additional sensitivity simulations were performed in order to study the impact of BC emission changes between 1950–1959 and 2000–2009 on surface albedo, snow cover fraction, and surface air temperature. Results from these simulations indicate that impacts of BC emission changes on snow albedos between these 2 decades are small and not significant. Overall, changes in BC concentrations in snow have much smaller impacts on the cryosphere than the net warming surface air temperatures during the second half of the 20th century.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-10-01
    Description: Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution Atmospheric Chemistry and Physics, 15, 10905-10924, 2015 Author(s): Y. Zhao, L. Zhang, Y. Pan, Y. Wang, F. Paulot, and D. K. Henze Rapid Asian industrialization has led to increased downwind atmospheric nitrogen deposition threatening the marine environment. We present an analysis of the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific, using the GEOS-Chem global chemistry model and its adjoint model at 1/2° × 2/3° horizontal resolution over East Asia and its adjacent oceans. We focus our analyses on the marginal seas: the Yellow Sea and the South China Sea. Asian nitrogen emissions in the model are 28.6 Tg N a −1 as NH 3 and 15.7 Tg N a −1 as NO x . China has the largest sources with 12.8 Tg N a −1 as NH 3 and 7.9 Tg N a −1 as NO x ; the high-NH 3 emissions reflect its intensive agricultural activities. We find Asian NH 3 emissions are a factor of 3 higher in summer than winter. The model simulation for 2008–2010 is evaluated with NH 3 and NO 2 column observations from satellite instruments, and wet deposition flux measurements from surface monitoring sites. Simulated atmospheric nitrogen deposition to the northwestern Pacific ranges 0.8–20 kg N ha −1 a −1 , decreasing rapidly downwind of the Asian continent. Deposition fluxes average 11.9 kg N ha −1 a −1 (5.0 as reduced nitrogen NH x and 6.9 as oxidized nitrogen NO y ) to the Yellow Sea, and 5.6 kg N ha −1 a −1 (2.5 as NH x and 3.1 as NO y ) to the South China Sea. Nitrogen sources over the ocean (ship NO x and oceanic NH 3 ) have little contribution to deposition over the Yellow Sea, about 7 % over the South China Sea, and become important (greater than 30 %) further downwind. We find that the seasonality of nitrogen deposition to the northwestern Pacific is determined by variations in meteorology largely controlled by the East Asian monsoon and in nitrogen emissions. The model adjoint further estimates that nitrogen deposition to the Yellow Sea originates from sources over China (92 % contribution) and the Korean peninsula (7 %), and by sectors from fertilizer use (24 %), power plants (22 %), and transportation (18 %). Deposition to the South China Sea shows source contribution from mainland China (66 %), Taiwan (20 %), and the rest (14 %) from the southeast Asian countries and oceanic NH 3 emissions. The adjoint analyses also indicate that reducing Asian NH 3 emissions would increase NO y dry deposition to the Yellow Sea (28 % offset annually), limiting the effectiveness of NH 3 emission controls on reducing nitrogen deposition to the Yellow Sea.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-10-01
    Description: Spatiotemporal variations of air pollutants (O 3 , NO 2 , SO 2 , CO, PM 10 , and VOCs) with land-use types Atmospheric Chemistry and Physics, 15, 10857-10885, 2015 Author(s): J.-M. Yoo, M.-J. Jeong, D. Kim, W. R. Stockwell, J.-H. Yang, H.-W. Shin, M.-I. Lee, C.-K. Song, and S.-D. Lee The spatiotemporal variations of surface air pollutants (O 3 , NO 2 , SO 2 , CO, and PM 10 ) with four land-use types, residence (R), commerce (C), industry (I) and greenbelt (G), have been investigated at 283 stations in South Korea during 2002–2013, using routinely observed data. The volatile organic compound (VOC) data at nine photochemical pollutant monitoring stations available since 2007 were utilized in order to examine their effect on the ozone chemistry. The land-use types, set by the Korean government, were generally consistent with the satellite-derived land covers and with the previous result showing anti-correlation between O 3 and NO 2 in diverse urban areas. The relationship between the two pollutants in the Seoul Metropolitan Area (SMA) residence land-use areas was substantially different from that outside of the SMA, probably due to the local differences in vehicle emissions. The highest concentrations of air pollutants in the diurnal, weekly, and annual cycles were found in industry for SO 2 and PMPM 10 , in commerce for NO 2 and CO, and in greenbelt for O 3 . The concentrations of air pollutants, except for O 3 , were generally higher in big cities during weekdays, while O 3 showed its peak in suburban areas or small cities during weekends. The weekly cycle and trends of O 3 were significantly out of phase with those of NO 2 , particularly in the residential and commercial areas, suggesting that vehicle emission was a major source in those areas. The ratios of VOCs to NO 2 for each of the land-use types were in the order of I (10.2) 〉 C (8.7) 〉 G (3.9) 〉 R (3.6), suggesting that most areas in South Korea were likely to be VOC-limited for ozone chemistry. The pollutants (NO 2 , SO 2 , CO, and PMPM 10 except for O 3 have decreased, most likely due to the effective government control. The total oxidant values (OX = O 3 + NO 2 ) with the land-use types were analyzed for the local and regional (or background) contributions of O 3 , respectively, and the order of OX (ppb) was C (57.4) 〉 R (53.6) 〉 I (50.7) 〉 G (45.4), indicating the greenbelt observation was close to the background.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-09-30
    Description: Chemical characterization of submicron aerosol and particle growth events at a national background site (3295 m a.s.l.) on the Tibetan Plateau Atmospheric Chemistry and Physics, 15, 10811-10824, 2015 Author(s): W. Du, Y. L. Sun, Y. S. Xu, Q. Jiang, Q. Q. Wang, W. Yang, F. Wang, Z. P. Bai, X. D. Zhao, and Y. C. Yang Atmospheric aerosols exert highly uncertain impacts on radiative forcing and also have detrimental effects on human health. While aerosol particles are widely characterized in megacities in China, aerosol composition, sources and particle growth in rural areas in the Tibetan Plateau remain less understood. Here we present the results from an autumn study that was conducted from 5 September to 15 October 2013 at a national background monitoring station (3295 m a.s.l.) in the Tibetan Plateau. The submicron aerosol composition and particle number size distributions were measured in situ with an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) and a Scanning Mobility Particle Sizer (SMPS). The average mass concentration of submicron aerosol (PM 1 ) is 11.4 μg m −3 (range: 1.0–78.4 μg m −3 ) for the entire study, which is much lower than observed at urban and rural sites in eastern China. Organics dominated PM 1 , accounting for 43 % on average, followed by sulfate (28 %) and ammonium (11 %). Positive Matrix Factorization analysis of ACSM organic aerosol (OA) mass spectra identified an oxygenated OA (OOA) and a biomass burning OA (BBOA). The OOA dominated OA composition, accounting for 85 % on average, 17 % of which was inferred from aged BBOA. The BBOA contributed a considerable fraction of OA (15 %) due to the burning of cow dung and straw in September. New particle formation and growth events were frequently observed (80 % of time) throughout the study. The average particle growth rate is 2.0 nm h −1 (range: 0.8–3.2 nm h −1 ). By linking the evolution of particle number size distribution to aerosol composition, we found an elevated contribution of organics during particle growth periods and also a positive relationship between the growth rate and the fraction of OOA in OA, which potentially indicates an important role of organics in particle growth in the Tibetan Plateau.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-11-20
    Description: Impact of particle shape on the morphology of noctilucent clouds Atmospheric Chemistry and Physics, 15, 12897-12907, 2015 Author(s): J. Kiliani, G. Baumgarten, F.-J. Lübken, and U. Berger Noctilucent clouds (NLCs) occur during summer in the polar region at altitudes around 83 km. They consist of ice particles with a typical size around 50 nm. The shape of NLC particles is less well known but is important both for interpreting optical measurements and modeling ice cloud characteristics. In this paper, NLC modeling of microphysics and optics is adapted to use cylindrical instead of spherical particle shape. The optical properties of the resulting ice clouds are compared directly to NLC three-color measurements by the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) Rayleigh/Mie/Raman (RMR) lidar between 1998 and 2014. Shape distributions including both needle- and disc-shaped particles are consistent with lidar measurements. The best agreement occurs if disc shapes are 60 % more common than needles, with a mean axis ratio of 2.8. Cylindrical particles cause stronger ice clouds on average than spherical shapes with an increase of backscatter at 532 nm by ≈ 30 % and about 20 % in ice mass density. This difference is less pronounced for bright than for weak ice clouds. Cylindrical shapes also cause NLCs to have larger but a smaller number of ice particles than for spherical shapes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-11-21
    Description: Feedbacks of dust and boundary layer meteorology during a dust storm in the eastern Mediterranean Atmospheric Chemistry and Physics, 15, 12909-12933, 2015 Author(s): S. Rémy, A. Benedetti, A. Bozzo, T. Haiden, L. Jones, M. Razinger, J. Flemming, R. J. Engelen, V. H. Peuch, and J. N. Thepaut Aerosols affect the atmosphere through direct interaction with short-wave and long-wave radiation and the microphysical properties of clouds. In this paper we report in detail on several mechanisms by which the short-term impact of dust on surface radiative fluxes can affect the dust loading of the atmosphere via modification of boundary-layer meteorology. This in turn affects the aerosol radiative forcing itself. Examples of these feedbacks between dust and boundary layer meteorology were observed during a series of dust storms in the Sahara and the eastern Mediterranean in April 2012. These case studies have been analysed using the Monitoring Atmospheric Composition and Climate – Interim Implementation (MACC-II) system. The radiative fluxes in the short-wave and long-wave spectra were both significantly affected by the prognostic aerosol–radiation interaction, which in turn impacted the meteorological simulation. Reduced incoming solar radiation below the aerosol layers led to a decrease in maximum surface temperatures and to a more stable thermal stratification of the lower atmosphere. This in turn forced weaker surface wind speeds and eventually smaller dust emissions. Moreover, we also observed a secondary impact of the aerosol radiative forcing, whereby horizontal gradients of surface temperature were increased at the edge of the dust plume, which led to local increases of surface wind speeds due to the thermal wind effect. The differentiated impact of the aerosol layer on surface pressure also contributed to the increase in surface wind speed and dust production in the same area. Enhanced long-wave radiative fluxes by the dust mass were associated with opposite processes. Less stable thermal stratification at night, brought mainly by higher minimum temperatures at the surface, caused stronger surface winds. At the edge of the dust storm, weaker horizontal temperature and pressure gradients forced lower winds and reduced dust production. Regarding dust emissions, short-wave radiative forcing had a larger impact than long-wave radiative forcing, corroborating several previous studies. For surface temperature, short-wave and long-wave contribution were close in intensity. These feedbacks were amplified when using data assimilation to build the aerosol analysis of the MACC-II global system. This led to an improvement in the short-term forecasts of thermal radiative fluxes and surface temperatures.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-11-23
    Description: Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors Atmospheric Chemistry and Physics, 15, 12935-12952, 2015 Author(s): X. Y. Zhang, J. Z. Wang, Y. Q. Wang, H. L. Liu, J. Y. Sun, and Y. M. Zhang Since there have been individual reports of persistent haze–fog events in January 2013 in central-eastern China, questions on factors causing the drastic differences in changes in 2013 from changes in adjacent years have been raised. Changes in major chemical components of aerosol particles over the years also remain unclear. The extent of meteorological factors contributing to such changes is yet to be determined. The study intends to present the changes in daily based major water-soluble constituents, carbonaceous species, and mineral aerosol in PM 10 at 13 stations within different haze regions in China from 2006 to 2013, which are associated with specific meteorological conditions that are highly related to aerosol pollution (parameterized as an index called Parameter Linking Aerosol Pollution and Meteorological Elements – PLAM). No obvious changes were found in annual mean concentrations of these various chemical components and PM 10 in 2013, relative to 2012. By contrast, wintertime mass of these components was quite different. In Hua Bei Plain (HBP), sulfate, organic carbon (OC), nitrate, ammonium, element carbon (EC), and mineral dust concentrations in winter were approximately 43, 55, 28, 23, 21, and 130 μg m −3 , respectively; these masses were approximately 2 to 4 times higher than those in background mass, which also exhibited a decline during 2006 to 2010 and then a rise till 2013. The mass of these concentrations and PM 10 , except minerals, respectively, increased by approximately 28 to 117 % and 25 % in January 2013 compared with that in January 2012. Thus, persistent haze–fog events occurred in January 2013, and approximately 60 % of this increase in component concentrations from 2012 to 2013 can be attributed to severe meteorological conditions in the winter of 2013. In the Yangtze River Delta (YRD) area, winter masses of these components, unlike HBP, have not significantly increase since 2010; PLAM were also maintained at a similar level without significant changes. In the Pearl River Delta (PRD) area, the regional background concentrations of the major chemical components were similar to those in the YRD, accounting for approximately 60–80 % of those in HBP. Since 2010, a decline has been found for winter concentrations, which can be partially attributable to persistently improving meteorological conditions and emission cutting with an emphasis on coal combustion in this area. In addition to the scattered and centralized coal combustion for heating, burning biomass fuels contributed to the large increase in concentrations of carbonaceous aerosol in major haze regions in winter, except in the PRD. No obvious changes were found for the proportions of each chemical components of PM 10 from 2006 to 2013. Among all of the emissions recorded in chemical compositions in 2013, coal combustion was still the largest anthropogenic source of aerosol pollution in various areas in China, with a higher sulfate proportion of PM 10 in most areas of China, and OC was normally ranked third. PM 10 concentrations increased by approximately 25 % in January of 2013 relative to 2012, which caused persistent haze–fog events in HBP; emissions also reduced by approximately 35 % in Beijing and its vicinity (BIV) in late autumn of 2014, thereby producing the Asia Pacific Economic Cooperation (APEC) blue (extremely good air quality); thus, one can expect that the persistent haze–fog events would be reduced significantly in the BIV, if approx. one-third of the 2013 winter emissions were reduced, which can also be viewed as the upper limit of atmospheric aerosol pollution capacity in this area.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2015-11-25
    Description: Instantaneous longwave radiative impact of ozone: an application on IASI/MetOp observations Atmospheric Chemistry and Physics, 15, 12971-12987, 2015 Author(s): S. Doniki, D. Hurtmans, L. Clarisse, C. Clerbaux, H. M. Worden, K. W. Bowman, and P.-F. Coheur Ozone is an important greenhouse gas in terms of anthropogenic radiative forcing (RF). RF calculations for ozone were until recently entirely model based, and significant discrepancies were reported due to different model characteristics. However, new instantaneous radiative kernels (IRKs) calculated from hyperspectral thermal IR satellites have been able to help adjudicate between different climate model RF calculations. IRKs are defined as the sensitivity of the outgoing longwave radiation (OLR) flux with respect to the ozone vertical distribution in the full 9.6 μm band. Previous methods applied to measurements from the Tropospheric Emission Spectrometer (TES) on Aura rely on an anisotropy approximation for the angular integration. In this paper, we present a more accurate but more computationally expensive method to calculate these kernels. The method of direct integration is based on similar principles to the anisotropy approximation, but it deals more precisely with the integration of the Jacobians. We describe both methods and highlight their differences with respect to the IRKs and the ozone longwave radiative effect (LWRE), i.e., the radiative impact in OLR due to absorption by ozone, for both tropospheric and total columns, from measurements of the Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp-A. Biases between the two methods vary from −25 to +20 % for the LWRE, depending on the viewing angle. These biases point to the inadequacy of the anisotropy method, especially at nadir, suggesting that the TES-derived LWREs are biased low by around 25 % and that chemistry–climate model OLR biases with respect to TES are underestimated. In this paper we also exploit the sampling performance of IASI to obtain first daily global distributions of the LWRE, for 12 days (the 15th of each month) in 2011, calculated with the direct integration method. We show that the temporal variation of global and latitudinal averages of the LWRE shows patterns which are controlled by changes in the surface temperature and ozone variation due to specific processes, such as the ozone hole in the polar regions and stratospheric intrusions into the troposphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2015-11-25
    Description: The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch Atmospheric Chemistry and Physics, 15, 12953-12969, 2015 Author(s): G. Lloyd, T. W. Choularton, K. N. Bower, M. W. Gallagher, P. J. Connolly, M. Flynn, R. Farrington, J. Crosier, O. Schlenczek, J. Fugal, and J. Henneberger During the winter of 2013 and 2014 measurements of cloud microphysical properties over a 5-week period at the high-alpine site Jungfraujoch, Switzerland, were carried out as part of the Cloud Aerosol Characterisation Experiments (CLACE) and the Ice Nucleation Process Investigation and Quantification project (INUPIAQ). Measurements of aerosol properties at a second, lower site, Schilthorn, Switzerland, were used as input for a primary ice nucleation scheme to predict ice nuclei concentrations at Jungfraujoch. Frequent, rapid transitions in the ice and liquid properties of the clouds at Jungfraujoch were identified that led to large fluctuations in ice mass fractions over temporal scales of seconds to hours. During the measurement period we observed high concentrations of ice particles that exceeded 1000 L −1 at temperatures around −15 °C, verified by multiple instruments. These concentrations could not be explained using the usual primary ice nucleation schemes, which predicted ice nucleus concentrations several orders of magnitude smaller than the peak ice crystal number concentrations. Secondary ice production through the Hallett–Mossop process as a possible explanation was ruled out, as the cloud was rarely within the active temperature range for this process. It is shown that other mechanisms of secondary ice particle production cannot explain the highest ice particle concentrations. We describe four possible mechanisms that could lead to high cloud ice concentrations generated from the snow-covered surfaces surrounding the measurement site. Of these we show that hoar frost crystals generated at the cloud enveloped snow surface could be the most important source of cloud ice concentrations. Blowing snow was also observed to make significant contributions at higher wind speeds when ice crystal concentrations were 〈 100 L −1 .
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2015-11-20
    Description: A process-based 222 radon flux map for Europe and its comparison to long-term observations Atmospheric Chemistry and Physics, 15, 12845-12865, 2015 Author(s): U. Karstens, C. Schwingshackl, D. Schmithüsen, and I. Levin Detailed 222 radon ( 222 Rn) flux maps are an essential pre-requisite for the use of radon in atmospheric transport studies. Here we present a high-resolution 222 Rn flux map for Europe, based on a parameterization of 222 Rn production and transport in the soil. The 222 Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water-table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. The implemented diffusion parameterization was tested against campaign-based 222 Rn soil profile measurements. Monthly 222 Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083° × 0.083° and compared to long-term direct measurements of 222 Rn exhalation rates in different areas of Europe. The two realizations of the 222 Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean 222 Rn flux from soils in Europe is estimated to be 10 mBq m −2 s −1 (ERA-Interim/Land soil moisture) or 15 mBq m −2 s −1 (GLDAS (Global Land Data Assimilation System) Noah soil moisture) for the period 2006–2010. The corresponding seasonal variations with low fluxes in winter and high fluxes in summer range in the two realizations from ca. 7 to ca. 14 mBq m −2 s −1 and from ca. 11 to ca. 20 mBq m −2 s −1 , respectively. These systematic differences highlight the importance of realistic soil moisture data for a reliable estimation of 222 Rn exhalation rates. Comparison with observations suggests that the flux estimates based on the GLDAS Noah soil moisture model on average better represent observed fluxes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-11-26
    Description: Some insights into the condensing vapors driving new particle growth to CCN sizes on the basis of hygroscopicity measurements Atmospheric Chemistry and Physics, 15, 13071-13083, 2015 Author(s): Z. J. Wu, L. Poulain, W. Birmili, J. Größ, N. Niedermeier, Z. B. Wang, H. Herrmann, and A. Wiedensohler New particle formation (NPF) and growth is an important source of cloud condensation nuclei (CCN). In this study, we investigated the chemical species driving new particle growth to the CCN sizes on the basis of particle hygroscopicity measurements carried out at the research station Melpitz, Germany. Three consecutive NPF events occurred during summertime were chosen as examples to perform the study. Hygroscopicity measurements showed that the (NH 4 ) 2 SO 4 -equivalent water-soluble fraction accounts for 20 and 16 % of 50 and 75 nm particles, respectively, during the NPF events. Numerical analysis showed that the ratios of H 2 SO 4 condensational growth to the observed particle growth were 20 and 13 % for 50 and 75 nm newly formed particles, respectively. Aerosol mass spectrometer measurements showed that an enhanced mass fraction of sulfate and ammonium in the newly formed particles was observed when new particles grew to the sizes larger than 30 nm shortly after the particle formation period. At a later time, the secondary organic species played a key role in the particle growth. Both hygroscopicity and aerosol mass spectrometer (AMS) measurements and numerical analysis confirmed that organic compounds were major contributors driving particle growth to CCN sizes. The critical diameters at different supersaturations estimated using AMS data and κ-Köhler theory increased significantly during the later course of NPF events. This indicated that the enhanced organic mass fraction caused a reduction in CCN efficiency of newly formed particles. Our results implied that the CCN production associated with atmospheric nucleation may be overestimated if assuming that newly formed particles can serve as CCN once they grow to a fixed particle size, an assumption made in some previous studies, especially for organic-rich environments. In our study, the enhancement in CCN number concentration associated with individual NPF events were 63, 66, and 69 % for 0.1, 0.4, and 0.6 % supersaturation, respectively.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-11-27
    Description: Enhanced internal gravity wave activity and breaking over the northeastern Pacific–eastern Asian region Atmospheric Chemistry and Physics, 15, 13097-13112, 2015 Author(s): P. Šácha, A. Kuchař, C. Jacobi, and P. Pišoft We have found a stratospheric area of anomalously low annual cycle amplitude and specific dynamics in the stratosphere over the northeastern Pacific–eastern Asia coastal region. Using GPS radio occultation density profiles from the Formosat Satellite Mission 3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC), we have discovered an internal gravity wave (IGW) activity and breaking hotspot in this region. Conditions supporting orographic wave sourcing and propagation were found. Other possible sources of wave activity in this region are listed. The reasons why this particular IGW activity hotspot was not discovered before as well as why the specific dynamics of this region have not been pointed out are discussed together with the weaknesses of using the mean potential energy as a wave activity proxy. Possible consequences of the specific dynamics in this region on the middle atmospheric dynamics and transport are outlined.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-11-19
    Description: Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland The Cryosphere, 9, 2163-2181, 2015 Author(s): C. Charalampidis, D. van As, J. E. Box, M. R. van den Broeke, W. T. Colgan, S. H. Doyle, A. L. Hubbard, M. MacFerrin, H. Machguth, and C. J. P. P. Smeets We present 5 years (2009–2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. – above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m −2 ) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt–albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-11-19
    Description: Comparison of a coupled snow thermodynamic and radiative transfer model with in situ active microwave signatures of snow-covered smooth first-year sea ice The Cryosphere, 9, 2149-2161, 2015 Author(s): M. C. Fuller, T. Geldsetzer, J. Yackel, and J. P. S. Gill Within the context of developing data inversion and assimilation techniques for C-band backscatter over sea ice, snow physical models may be used to drive backscatter models for comparison and optimization with satellite observations. Such modeling has the potential to enhance understanding of snow on sea-ice properties required for unambiguous interpretation of active microwave imagery. An end-to-end modeling suite is introduced, incorporating regional reanalysis data (NARR), a snow model (SNTHERM89.rev4), and a multilayer snow and ice active microwave backscatter model (MSIB). This modeling suite is assessed against measured snow on sea-ice geophysical properties and against measured active microwave backscatter. NARR data were input to the SNTHERM snow thermodynamic model in order to drive the MSIB model for comparison to detailed geophysical measurements and surface-based observations of C-band backscatter of snow on first-year sea ice. The NARR variables were correlated to available in situ measurements with the exception of long-wave incoming radiation and relative humidity, which impacted SNTHERM simulations of snow temperature. SNTHERM snow grain size and density were comparable to observations. The first assessment of the forward assimilation technique developed in this work required the application of in situ salinity profiles to one SNTHERM snow profile, which resulted in simulated backscatter close to that driven by in situ snow properties. In other test cases, the simulated backscatter remained 4–6 dB below observed for higher incidence angles and when compared to an average simulated backscatter of in situ end-member snow covers. Development of C-band inversion and assimilation schemes employing SNTHERM89.rev4 should consider sensitivity of the model to bias in incoming long-wave radiation, the effects of brine, and the inability of SNTHERM89.Rev4 to simulate water accumulation and refreezing at the bottom and mid-layers of the snowpack. These impact thermodynamic response, brine wicking and volume processes, snow dielectrics, and thus microwave backscatter from snow on first-year sea ice.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-11-19
    Description: From Doktor Kurowski's Schneegrenze to our modern glacier equilibrium line altitude (ELA) The Cryosphere, 9, 2135-2148, 2015 Author(s): R. J. Braithwaite Translated into modern terminology, Kurowski suggested in 1891 that the equilibrium line altitude (ELA) of a glacier is equal to the mean altitude of the glacier when the whole glacier is in balance between accumulation and ablation. Kurowski's method has been widely misunderstood, partly due to inappropriate use of statistical terminology by later workers, and has only been tested by Braithwaite and Müller in a 1980 paper (for 32 glaciers). I now compare Kurowski's mean altitude with balanced-budget ELA calculated for 103 present-day glaciers with measured surface mass-balance data. Kurowski's mean altitude is significantly higher (at 95 % level) than balanced-budget ELA for 19 outlet and 42 valley glaciers, but not significantly higher for 34 mountain glaciers. The error in Kurowski mean altitude as a predictor of balanced-budget ELA might be due to generally lower balance gradients in accumulation areas compared with ablation areas for many glaciers, as suggested by several workers, but some glaciers have higher gradients, presumably due to precipitation increase with altitude. The relatively close agreement between balanced-budget ELA and mean altitude for mountain glaciers (mean error – 8 m with standard deviation 59 m) may reflect smaller altitude ranges for these glaciers such that there is less room for effects of different balance gradients to manifest themselves.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-11-19
    Description: A prognostic model of the sea-ice floe size and thickness distribution The Cryosphere, 9, 2119-2134, 2015 Author(s): C. Horvat and E. Tziperman Sea ice exhibits considerable seasonal and longer-term variations in extent, concentration, thickness, and age, and is characterized by a complex and continuously changing distribution of floe sizes and thicknesses, particularly in the marginal ice zone (MIZ). Models of sea ice used in current climate models keep track of its concentration and of the distribution of ice thicknesses, but do not account for the floe size distribution and its potential effects on air–sea exchange and sea-ice evolution. Accurately capturing sea-ice variability in climate models may require a better understanding and representation of the distribution of floe sizes and thicknesses. We develop and demonstrate a model for the evolution of the joint sea-ice floe size and thickness distribution that depends on atmospheric and oceanic forcing fields. The model accounts for effects due to multiple processes that are active in the MIZ and seasonal ice zones: freezing and melting along the lateral side and base of floes, mechanical interactions due to floe collisions (ridging and rafting), and sea-ice fracture due to wave propagation in the MIZ. The model is then examined and demonstrated in a series of idealized test cases.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-11-25
    Description: Isotopic signatures of production and uptake of H 2 by soil Atmospheric Chemistry and Physics, 15, 13003-13021, 2015 Author(s): Q. Chen, M. E. Popa, A. M. Batenburg, and T. Röckmann Molecular hydrogen (H 2 ) is the second most abundant reduced trace gas (after methane) in the atmosphere, but its biogeochemical cycle is not well understood. Our study focuses on the soil production and uptake of H 2 and the associated isotope effects. Air samples from a grass field and a forest site in the Netherlands were collected using soil chambers. The results show that uptake and emission of H 2 occurred simultaneously at all sampling sites, with strongest emission at the grassland sites where clover (N 2 fixing legume) was present. The H 2 mole fraction and deuterium content were measured in the laboratory to determine the isotopic fractionation factor during H 2 soil uptake (α soil ) and the isotopic signature of H 2 that is simultaneously emitted from the soil (δD soil ). By considering all net-uptake experiments, an overall fractionation factor for deposition of α soil = k HD / k HH = 0.945 ± 0.004 (95 % CI) was obtained. The difference in mean α soil between the forest soil 0.937 ± 0.008 and the grassland 0.951 ± 0.026 is not statistically significant. For two experiments, the removal of soil cover increased the deposition velocity ( v d ) and α soil simultaneously, but a general positive correlation between v d and α soil was not found in this study. When the data are evaluated with a model of simultaneous production and uptake, the isotopic composition of H 2 that is emitted at the grassland site is calculated as δD soil = (−530 ± 40) ‰. This is less deuterium depleted than what is expected from isotope equilibrium between H 2 O and H 2 .
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-11-25
    Description: Does GOSAT capture the true seasonal cycle of carbon dioxide? Atmospheric Chemistry and Physics, 15, 13023-13040, 2015 Author(s): H. Lindqvist, C. W. O'Dell, S. Basu, H. Boesch, F. Chevallier, N. Deutscher, L. Feng, B. Fisher, F. Hase, M. Inoue, R. Kivi, I. Morino, P. I. Palmer, R. Parker, M. Schneider, R. Sussmann, and Y. Yoshida The seasonal cycle accounts for a dominant mode of total column CO 2 (XCO 2 ) annual variability and is connected to CO 2 uptake and release; it thus represents an important quantity to test the accuracy of the measurements from space. We quantitatively evaluate the XCO 2 seasonal cycle of the Greenhouse Gases Observing Satellite (GOSAT) observations from the Atmospheric CO 2 Observations from Space (ACOS) retrieval system and compare average regional seasonal cycle features to those directly measured by the Total Carbon Column Observing Network (TCCON). We analyse the mean seasonal cycle amplitude, dates of maximum and minimum XCO 2 , as well as the regional growth rates in XCO 2 through the fitted trend over several years. We find that GOSAT/ACOS captures the seasonal cycle amplitude within 1.0 ppm accuracy compared to TCCON, except in Europe, where the difference exceeds 1.0 ppm at two sites, and the amplitude captured by GOSAT/ACOS is generally shallower compared to TCCON. This bias over Europe is not as large for the other GOSAT retrieval algorithms (NIES v02.21, RemoTeC v2.35, UoL v5.1, and NIES PPDF-S v.02.11), although they have significant biases at other sites. We find that the ACOS bias correction partially explains the shallow amplitude over Europe. The impact of the co-location method and aerosol changes in the ACOS algorithm were also tested and found to be few tenths of a ppm and mostly non-systematic. We find generally good agreement in the date of minimum XCO 2 between ACOS and TCCON, but ACOS generally infers a date of maximum XCO 2 2–3 weeks later than TCCON. We further analyse the latitudinal dependence of the seasonal cycle amplitude throughout the Northern Hemisphere and compare the dependence to that predicted by current optimized models that assimilate in situ measurements of CO 2 . In the zonal averages, models are consistent with the GOSAT amplitude to within 1.4 ppm, depending on the model and latitude. We also show that the seasonal cycle of XCO 2 depends on longitude especially at the mid-latitudes: the amplitude of GOSAT XCO 2 doubles from western USA to East Asia at 45–50° N, which is only partially shown by the models. In general, we find that model-to-model differences can be larger than GOSAT-to-model differences. These results suggest that GOSAT/ACOS retrievals of the XCO 2 seasonal cycle may be sufficiently accurate to evaluate land surface models in regions with significant discrepancies between the models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-11-26
    Description: Black carbon aerosol in winter northeastern Qinghai–Tibetan Plateau, China: the source, mixing state and optical property Atmospheric Chemistry and Physics, 15, 13059-13069, 2015 Author(s): Q. Y. Wang, R.-J. Huang, J. J. Cao, X. X. Tie, H. Y. Ni, Y. Q. Zhou, Y. M. Han, T. F. Hu, C. S. Zhu, T. Feng, N. Li, and J. D. Li Black carbon (BC) aerosol at high altitudes of the Qinghai–Tibetan Plateau has potential effects on the regional climate and hydrological cycle. An intensive measurement campaign was conducted at Qinghai Lake (~ 3200 m above sea level) at the edge of the northeastern Qinghai–Tibetan Plateau during winter using a ground-based single particle soot photometer (SP2) and a photoacoustic extinctiometer (PAX). The average concentration of refractory BC (rBC) and number fraction of coated rBC were found to be 160 ± 190 ng m −3 and 59 % for the entire campaign, respectively. Significant enhancements of rBC loadings and number fraction of coated rBC were observed during a pollution episode, with an average value of 390 ng m −3 and 65 %, respectively. The mass size distribution of rBC particles showed log-normal distribution, with a peak diameter of ~ 187 nm regardless of the pollution level. Five-day backward trajectory analysis suggests that the air masses from north India contributed to the increased rBC loadings during the campaign. The potential source contribution function (PSCF) model combined with the fire counts map further proves that biomass burning from north India is an important potential source influencing the northeastern Qinghai–Tibetan Plateau during the pollution episode. The rBC mass absorption cross section (MAC rBC ) at λ = 532 nm was slightly larger in clean days (14.9 m 2 g −1 ) than during the pollution episode (9.3 m 2 g −1 ), likely due to the effects of brown carbon and the uncertainty of the MAC rBC calculation. The MAC rBC was positively correlated with number fraction of coated rBC during the pollution episode with an increasing rate of 0.18 (m 2 g −1 ) % −1 . The number fraction of coated rBC particles showed positive correlation with light absorption, suggesting that the increase of coated rBC particles will enhance the light absorption. Compared to rBC mass concentration, rBC mixing sate is more important in determining absorption during the pollution episode, estimated from the same percentage-wise increment of either rBC mass concentration or the number fraction of coated rBC. The estimated BC direct radiative forcing was +0.93 W m −2 for the pollution episode, which is 2 times larger than that in clean days. Our study provides insight into the potential climatic impacts of rBC aerosol transported to the Qinghai–Tibetan Plateau from south Asian regions, and is also useful for future modeling studies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-11-26
    Description: Signature of tropical fires in the diurnal cycle of tropospheric CO as seen from Metop-A/IASI Atmospheric Chemistry and Physics, 15, 13041-13057, 2015 Author(s): T. Thonat, C. Crevoisier, N. A. Scott, A. Chédin, R. Armante, and L. Crépeau Five years (July 2007 to June 2012) of CO tropospheric columns derived from the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) on-board Metop-A are used to study the impact of fires on the concentrations of CO in the troposphere. Following Chédin et al. (2005, 2008), who found a quantitative relation between the daily tropospheric excess of CO 2 and fire emissions, we show that tropospheric CO also displays a diurnal signal with a seasonality that agrees well with the seasonal evolution of fires given by Global Fire Emission Database version 3 (GFED3.1) and Global Fire Assimilation System version 1 (GFAS1.0) emissions and Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 burned area product. Unlike day- or night-time CO fields, which mix local emissions with nearby emissions transported to the region of study, the day–night difference of CO allows to highlight the CO signal due to local fire emissions. A linear relationship between CO fire emissions from the GFED3.1 and GFAS1.0 inventories and the diurnal difference of IASI CO was found over various regions in the tropics, with a better agreement with GFAS1.0 (correlation coefficient of R 2 ∼ 0.7) than GFED3.1 ( R 2 ∼ 0.6). Based on the specificity of the two main phases of the combustion (flaming vs. smoldering) and on the vertical sensitivity of the sounder to CO, the following mechanism is proposed to explain such a CO diurnal signal: at night, after the passing of IASI at 21:30 local time (LT), a large amount of CO emissions from the smoldering phase is trapped in the boundary layer before being uplifted the next morning by natural and pyroconvection up to the free troposphere, where it is seen by IASI at 09:30 LT. The results presented here highlight the need to take into account the specificity of both the flaming and smoldering phases of fire emissions in order to fully take advantage of CO observations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-08-26
    Description: Winter observations of CO 2 exchange between sea ice and the atmosphere in a coastal fjord environment The Cryosphere, 9, 1701-1713, 2015 Author(s): J. Sievers, L. L. Sørensen, T. Papakyriakou, B. Else, M. K. Sejr, D. Haubjerg Søgaard, D. Barber, and S. Rysgaard Eddy covariance observations of CO 2 fluxes were conducted during March–April 2012 in a temporally sequential order for 8, 4 and 30 days, respectively, at three locations on fast sea ice and on newly formed polynya ice in a coastal fjord environment in northeast Greenland. CO 2 fluxes at the sites characterized by fast sea ice (ICEI and DNB) were found to increasingly reflect periods of strong outgassing in accordance with the progression of springtime warming and the occurrence of strong wind events: F CO 2 ICE1 = 1.73 ± 5 mmol m −2 day −1 and F CO 2 DNB = 8.64 ± 39.64 mmol m −2 day −1 , while CO 2 fluxes at the polynya site (POLYI) were found to generally reflect uptake F CO 2 POLY1 = −9.97 ± 19.8 mmol m −2 day −1 . Values given are the mean and standard deviation, and negative/positive values indicate uptake/outgassing, respectively. A diurnal correlation analysis supports a significant connection between site energetics and CO 2 fluxes linked to a number of possible thermally driven processes, which are thought to change the p CO 2 gradient at the snow–ice interface. The relative influence of these processes on atmospheric exchanges likely depends on the thickness of the ice. Specifically, the study indicates a predominant influence of brine volume expansion/contraction, brine dissolution/concentration and calcium carbonate formation/dissolution at sites characterized by a thick sea-ice cover, such that surface warming leads to an uptake of CO 2 and vice versa, while convective overturning within the sea-ice brines dominate at sites characterized by comparatively thin sea-ice cover, such that nighttime surface cooling leads to an uptake of CO 2 to the extent permitted by simultaneous formation of superimposed ice in the lower snow column.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-08-27
    Description: Atmospheric isoprene ozonolysis: impacts of stabilised Criegee intermediate reactions with SO 2 , H 2 O and dimethyl sulfide Atmospheric Chemistry and Physics, 15, 9521-9536, 2015 Author(s): M. J. Newland, A. R. Rickard, L. Vereecken, A. Muñoz, M. Ródenas, and W. J. Bloss Isoprene is the dominant global biogenic volatile organic compound (VOC) emission. Reactions of isoprene with ozone are known to form stabilised Criegee intermediates (SCIs), which have recently been shown to be potentially important oxidants for SO 2 and NO 2 in the atmosphere; however the significance of this chemistry for SO 2 processing (affecting sulfate aerosol) and NO 2 processing (affecting NO x levels) depends critically upon the fate of the SCIs with respect to reaction with water and decomposition. Here, we have investigated the removal of SO 2 in the presence of isoprene and ozone, as a function of humidity, under atmospheric boundary layer conditions. The SO 2 removal displays a clear dependence on relative humidity, confirming a significant reaction for isoprene-derived SCIs with H 2 O. Under excess SO 2 conditions, the total isoprene ozonolysis SCI yield was calculated to be 0.56 (±0.03). The observed SO 2 removal kinetics are consistent with a relative rate constant, k (SCI + H 2 O) / k (SCI + SO 2 ), of 3.1 (±0.5) × 10 −5 for isoprene-derived SCIs. The relative rate constant for k (SCI decomposition) / k (SCI+SO 2 ) is 3.0 (±3.2) × 10 11 cm −3 . Uncertainties are ±2σ and represent combined systematic and precision components. These kinetic parameters are based on the simplification that a single SCI species is formed in isoprene ozonolysis, an approximation which describes the results well across the full range of experimental conditions. Our data indicate that isoprene-derived SCIs are unlikely to make a substantial contribution to gas-phase SO 2 oxidation in the troposphere. We also present results from an analogous set of experiments, which show a clear dependence of SO 2 removal in the isoprene–ozone system as a function of dimethyl sulfide concentration. We propose that this behaviour arises from a rapid reaction between isoprene-derived SCIs and dimethyl sulfide (DMS); the observed SO 2 removal kinetics are consistent with a relative rate constant, k (SCI + DMS) / k (SCI + SO 2 ), of 3.5 (±1.8). This result suggests that SCIs may contribute to the oxidation of DMS in the atmosphere and that this process could therefore influence new particle formation in regions impacted by emissions of unsaturated hydrocarbons and DMS.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-08-27
    Description: Quantifying the contribution of long-range transport to particulate matter (PM) mass loadings at a suburban site in the north-western Indo-Gangetic Plain (NW-IGP) Atmospheric Chemistry and Physics, 15, 9501-9520, 2015 Author(s): H. Pawar, S. Garg, V. Kumar, H. Sachan, R. Arya, C. Sarkar, B. P. Chandra, and B. Sinha Many sites in the densely populated Indo-Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m −3 for 24 h average PM 10 and 60 μg m −3 for 24 h average PM 2.5 mass loadings, exposing residents to hazardous levels of particulate matter (PM) throughout the year. We quantify the contribution of long-range transport to elevated PM levels and the number of exceedance events through a back-trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011–June 2013. Air masses arriving at the receptor site were classified into six clusters, which represent synoptic-scale air-mass transport patterns. Long-range transport from the west leads to significant enhancements in the average fine- and coarse-mode PM mass loadings during all seasons. The contribution of long-range transport from the west and south-west (source regions: Arabia, Thar Desert, Middle East and Afghanistan) to coarse-mode PM varied between 9 and 57 % of the total PM 10–2.5 mass. Local pollution episodes (wind speed 〈 1 m s −1 ) contributed to enhanced PM 2.5 mass loadings during both the winter and summer seasons and to enhanced coarse-mode PM only during the winter season. South-easterly air masses (source region: eastern IGP) were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air quality standard was controlled by long-range transport to a much lesser degree. For the local cluster, which represents regional air masses (source region: NW-IGP), the fraction of days during which the national ambient air quality standard (NAAQS) of 60 μg m −3 for 24 h average PM 2.5 was exceeded varied between 36 % of the days associated with this synoptic-scale transport during the monsoon, and 95 % during post-monsoon and winter seasons; the fraction of days during which the NAAQS of 100 μg m −3 for the 24 h average PM 10 was exceeded, varied between 48 % during the monsoon and 98 % during the post-monsoon season. Long-range transport was responsible for both, bringing air masses with a significantly lower fraction of exceedance days from the eastern IGP and air masses with a moderate increase in the fraction of exceedance days from the west (source regions: Arabia, Thar Desert, Middle East and Afghanistan). In order to bring PM mass loadings into compliance with the NAAQS and to reduce the number of exceedance days, mitigation of regional combustion sources in the NW-IGP needs to be given highest priority.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-08-28
    Description: Continental pollution in the western Mediterranean basin: vertical profiles of aerosol and trace gases measured over the sea during TRAQA 2012 and SAFMED 2013 Atmospheric Chemistry and Physics, 15, 9611-9630, 2015 Author(s): C. Di Biagio, L. Doppler, C. Gaimoz, N. Grand, G. Ancellet, J.-C. Raut, M. Beekmann, A. Borbon, K. Sartelet, J.-L. Attié, F. Ravetta, and P. Formenti In this study we present airborne observations of aerosol and trace gases obtained over the sea in the western Mediterranean basin during the TRAQA (TRansport and Air QuAlity) and SAFMED (Secondary Aerosol Formation in the MEDiterranean) campaigns in summer 2012 and 2013. A total of 23 vertical profiles were measured up to 5000 m above sea level over an extended area (40–45° N and 2° W–12° E) including the Gulf of Genoa, southern France, the Gulf of Lion, and the Spanish coast. During TRAQA and SAFMED the study area experienced a wide range of meteorological conditions which favoured pollution export from different sources located around the basin. Also, several events of dust outflows were measured during the campaigns. Observations from the present study show that continental pollution largely affects the western Mediterranean both close to coastal regions and in the open sea as far as ~ 250 km from the coastline. The measured aerosol scattering coefficient varies between ~ 20 and 120 Mm −1 , while carbon monoxide (CO) and ozone (O 3 ) mixing ratios are in the range of 60–165 and 30–85 ppbv, respectively. Pollution reaches 3000–4000 m in altitude and presents a very complex and highly stratified structure characterized by fresh and aged layers both in the boundary layer and in the free troposphere. Within pollution plumes the measured particle concentration in the Aitken (0.004–0.1 μm) and accumulation (0.1–1.0 μm) modes is between ~ 30 and 5000–6000 scm −3 (standard cm −3 ), which is comparable to the aerosol concentration measured in continental areas under pollution conditions. Additionally, our measurements indicate the presence of highly concentrated Aitken layers (10 000–15 000 scm −3 ) observed both close to the surface and in the free troposphere, possibly linked to the influence of new particle formation (NPF) episodes over the basin.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...