ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (56,518)
  • Journal of Cellular Physiology  (2,245)
  • Cellular and Molecular Life Sciences  (1,728)
  • 1832
  • 791
  • Medicine  (56,518)
  • Sociology
Collection
  • Articles  (56,518)
Publisher
Years
Topic
  • Medicine  (56,518)
  • Sociology
  • Biology  (56,518)
  • 1
  • 2
    Publication Date: 2020-07-09
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-08
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2020-07-10
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-08
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-06-30
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-07-02
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2007-02-13
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2007-02-13
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2007-03-19
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2007-01-12
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2007-02-13
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-11
    Description: Initiation of mRNA translation is a major checkpoint for regulating level and fidelity of protein synthesis. Being rate limiting in protein synthesis, translation initiation also represents the target of many post-transcriptional mechanisms regulating gene expression. The process begins with the formation of an unstable 30S pre-initiation complex (30S pre- IC ) containing initiation factors (IFs) IF1, IF2 and IF3, the translation initiation region of an mRNA and initiator fMet-tRNA whose codon and anticodon pair in the P-site following a first-order rearrangement of the 30S pre- IC produces a locked 30S initiation complex (30S IC ); this is docked by the 50S subunit to form a 70S complex that, following several conformational changes, positional readjustments of its ligands and ejection of the IFs, becomes a 70S initiation complex productive in initiation dipeptide formation. The first EF-G-dependent translocation marks the beginning of the elongation phase of translation. Here, we review structural, mechanistic and dynamical aspects of this process.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-11
    Description: Prostaglandin E 2 (PGE 2 ) and hypoxia-inducible factor-1α (HIF-1α) affect many mechanisms that have been involved in the pathogenesis of prostate cancer (PC). HIF-1α, which is up-regulated by PGE 2 in LNCaP cells and PC3 cells, has been shown to contribute to metastasis and chemo-resistance of castrate-resistant PC (a lethal form of PC) and to promote in PC cells migration, invasion, angiogenesis and chemoresistance. The selective blockade of PGE 2 -EP2 signaling pathway in PC3 cells results in inhibition of cancer cell proliferation and invasion. PGE 2 affects many mechanisms that have been shown to play a role in carcinogenesis such as proliferation, apoptosis, migration, invasion and angiogenesis. Recently, we have found in PC3 cells that most of these PGE 2 -induced cancer-related features are due to intracellular PGE 2 (iPGE 2 ). Here, we aimed to study in PC3 cells the role of iPGE 2 -intracellular EP2 (iEP2)-HIF-1α signaling in several events linked to PC progression using an experimental approach involving pharmacological inhibition of the prostaglandin uptake transporter and EGFR and pharmacological and genetic modulation of EP2 receptor and HIF-1α. We found that iPGE 2 increases HIF-1α expression through iEP2-dependent EGFR transactivation and that inhibition of any of the axis iEP2-EGFR-HIF-1α in cells treated with PGE 2 or EP2 agonist results in prevention of the increase in PC3 cell proliferation, adhesion, migration, invasion and angiogenesis in vitro. Of note, PGE 2 induced EP2 antagonist-sensitive DNA synthesis in nuclei isolated from PC3 cells, which indicates that they have functional EP2 receptors. These results suggest that PGE 2 -EP2 dependent intracrine mechanisms involving EGFR and HIF-1α play a role in PC.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-12
    Description: Phosphatidylinositol 4,5-bisphosphate (PIP2) represents about 1 % of plasma membrane phospholipids and behaves as a pleiotropic regulator of a striking number of fundamental cellular processes. In recent years, an increasing body of literature has highlighted an essential role of PIP2 in multiple aspects of leukocyte biology. In this emerging picture, PIP2 is envisaged as a signalling intermediate itself and as a membrane-bound regulator and a scaffold of proteins with specific PIP2 binding domains. Indeed PIP2 plays a key role in several functions. These include directional migration in neutrophils, integrin-dependent adhesion in T lymphocytes, phagocytosis in macrophages, lysosomes secretion and trafficking at immune synapse in cytolytic effectors and secretory cells, calcium signals and gene transcription in B lymphocytes, natural killer cells and mast cells. The coordination of these different aspects relies on the spatio-temporal organisation of distinct PIP2 pools, generated by the main PIP2 generating enzyme, phosphatidylinositol 4-phosphate 5-kinase (PIP5K). Three different isoforms of PIP5K, named α, β and γ, and different splice variants have been described in leukocyte populations. The isoform-specific coupling of specific isoforms of PIP5K to different families of activating receptors, including integrins, Fc receptors, toll-like receptors and chemokine receptors, is starting to be reported. Furthermore, PIP2 is turned over by multiple metabolising enzymes including phospholipase C (PLC) γ and phosphatidylinositol 3-kinase (PI3K) which, along with Rho family small G proteins, is widely involved in strategic functions within the immune system. The interplay between PIP2, lipid-modifying enzymes and small G protein-regulated signals is also discussed.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-12
    Description: Direct application of histone-deacetylase-inhibitors (HDACis) to dental pulp cells (DPCs) induces chromatin changes, promoting gene expression and cellular-reparative events. We have previously demonstrated that HDACis (Valproic acid, Trichostatin A) increase mineralization in dental papillae-derived cell-lines and primary DPCs by stimulation of dentinogenic gene expression. Here, we investigated novel genes regulated by the HDACi, suberoylanilide hydroxamic acid (SAHA), to identify new pathways contributing to DPC differentiation. SAHA significantly compromised DPC viability only at relatively high concentrations (5 μM); while low concentrations (1 μM) SAHA did not increase apoptosis. HDACi-exposure for 24 h induced mineralization-per-cell dose-dependently after 2 weeks; however, constant 14d SAHA-exposure inhibited mineralization. Microarray analysis (24 h and 14d) of SAHA exposed cultures highlighted that 764 transcripts showed a significant 〉2.0-fold change at 24 h, which reduced to 36 genes at 14d. 59% of genes were down-regulated at 24 h and 36% at 14d, respectively. Pathway analysis indicated SAHA increased expression of members of the matrix metalloproteinase (MMP) family. Furthermore, SAHA-supplementation increased MMP-13 protein expression (7d, 14 d) and enzyme activity (48 h, 14d). Selective MMP-13-inhibition (MMP-13i) dose-dependently accelerated mineralization in both SAHA-treated and non-treated cultures. MMP-13i-supplementation promoted expression of several mineralization-associated markers, however, HDACi-induced cell migration and wound healing were impaired. Data demonstrate that short-term low-dose SAHA-exposure promotes mineralization in DPCs by modulating gene pathways and tissue proteases. MMP-13i further increased mineralization-associated events, but decreased HDACi cell migration indicating a specific role for MMP-13 in pulpal repair processes. Pharmacological inhibition of HDAC and MMP may provide novel insights into pulpal repair processes with significant translational benefit. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-08-13
    Description: Locusts represent the excellent model of insect olfaction because the animals are equipped with an unusual olfactory system and display remarkable density-dependent olfactory plasticity. However, information regarding receptor molecules involved in the olfactory perception of locusts is very limited. On the basis of genome sequence and antennal transcriptome of the migratory locust, we conduct the identification and functional analysis of two olfactory receptor families: odorant receptors (ORs) and ionotropic receptors (IRs). In the migratory locust, there is an expansion of OR family (142 ORs) while distinctly lower number of IR genes (32 IRs) compared to the repertoires of other insects. The number of the locust OR genes is much less than that of glomeruli in antennal lobe, challenging the general principle of the “one glomerulus-one receptor” observed in other insects. Most OR genes are found in tandem arrays, forming two large lineage-specific subfamilies in the phylogenetic tree. The “divergent IR” subfamily displays a significant contraction, and most of the IRs belong to the “antennal IR” subfamily in the locust. Most ORs/IRs have olfactory-specific expression while some broadly- or internal-expressed members are also found. Differing from holometabolous insects, the migratory locust contains very similar expression profiles of ORs/IRs between nymph and adult stages. RNA interference and behavioral assays indicate that an OR-based signaling pathway, not IR-based, mediates the attraction of locusts to aggregation pheromones. These discoveries provide insights into the unusual olfactory system of locusts and enhance our understanding of the evolution of insect olfaction.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-08-13
    Description: A hallmark to decipher bioprocesses is to characterize protein–protein interactions in living cells. To do this, the development of innovative methodologies, which do not alter proteins and their natural environment, is particularly needed. Here, we report a method (LUCK, Laser UV Cross-linKing) to in vivo cross-link proteins by UV-laser irradiation of living cells. Upon irradiation of HeLa cells under controlled conditions, cross-linked products of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were detected, whose yield was found to be a linear function of the total irradiation energy. We demonstrated that stable dimers of GAPDH were formed through intersubunit cross-linking, as also observed when the pure protein was irradiated by UV-laser in vitro. We proposed a defined patch of aromatic residues located at the enzyme subunit interface as the cross-linking sites involved in dimer formation. Hence, by this technique, UV-laser is able to photofix protein surfaces that come in direct contact. Due to the ultra-short time scale of UV-laser-induced cross-linking, this technique could be extended to weld even transient protein interactions in their native context.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-08-05
    Description: The method of choice for the development of new vaccines is to target distinct dendritic cell subsets with antigen in vivo and to harness their function in situ to enhance cell-mediated immunity or induce tolerance to specific antigens. The innate functions of dendritic cells themselves may also be targeted by inhibitors or activators that would target a specific function such as interferon production, potentially important in autoimmune disease and chronic viral infections. Importantly targeting dendritic cells requires detailed knowledge of both the surface phenotype and function of each dendritic cell subset, including how they may respond to different types of vaccine adjuvants, their ability to produce soluble mediators and to process and present antigens and induce priming of naïve T cells. This review summarizes our knowledge of the functional attributes of the human dendritic cell subsets in the steady state and upon activation and their roles in human disease.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-08-05
    Description: Deficiency in the retinoblastoma protein (Rb) favors leanness and a healthy metabolic profile in mice largely attributed to activation of oxidative metabolism in white and brown adipose tissues. Less is known about Rb modulation of skeletal muscle metabolism. This was studied here by transiently knocking down Rb expression in differentiated C2C12 myotubes using small interfering RNAs. Compared with control cells transfected with non-targeting RNAs, myotubes silenced for Rb (by 80–90%) had increased expression of genes related to fatty acid uptake and oxidation such as Cd36 and Cpt1b (by 61% and 42%, respectively), increased Mitofusin 2 protein content (∼2.5-fold increase), increased mitochondrial to nuclear DNA ratio (by 48%), increased oxygen consumption (by 65%) and decreased intracellular lipid accumulation. Rb silenced myotubes also displayed up-regulated levels of glucose transporter type 4 expression (∼5-fold increase), increased basal glucose uptake, and enhanced insulin-induced Akt phosphorylation. Interestingly, exercise in mice led to increased Rb phosphorylation (inactivation) in skeletal muscle as evidenced by immunohistochemistry analysis. In conclusion, the silencing of Rb enhances mitochondrial oxidative metabolism and fatty acid and glucose disposal in skeletal myotubes, and changes in Rb status may contribute to muscle physiological adaptation to exercise. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-08-06
    Description: Human mesenchymal stem cells (MSC) are promising cell types in the field of regenerative medicine. Although many pathways have been dissected in the effort to better understand and characterize MSC potential, the impact of protein N- or O-glycosylation has been neglected. Deficient protein O-mannosylation is a pathomechanism underlying severe congenital muscular dystrophies (CMD) that start to develop at the embryonic developmental stage and progress in the adult, often in tissues where MSC exert their function. Here we show that O-mannosylation genes, many of which are putative or verified glycosyltransferases (GTs), are expressed in a similar pattern in MSC from adipose tissue, bone marrow, and umbilical cord blood and that their expression levels are retained constant during mesengenic differentiation. Inhibition of the first players of the enzymatic cascade, POMT1/2, resulted in complete abolishment of chondrogenesis and alterations of adipogenic and osteogenic potential together with a lethal effect during myogenic induction. Since to date, no therapy for CMD is available, we explored the possibility of using MSC extracellular vesicles (EVs) as molecular source of functional GTs mRNA. All MSC secrete POMT1 mRNA-containing EVs that are able to efficiently fuse with myoblasts which are among the most affected cells by CMD. Intriguingly, in a pomt1 patient myoblast line EVs were able to partially revert O-mannosylation deficiency and contribute to a morphology recovery. Altogether, these results emphasize the crucial role of protein O-mannosylation in stem cell fate and properties and open the possibility of using MSC vesicles as a novel therapeutic approach to CMD.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-08-08
    Description: The protein kinase D (PKD) family members, PKD1, PKD2 and PKD3 constitute a family of serine/threonine kinases that are essential regulators of cell migration, proliferation and protein transport. Multiple types of cancers are characterized by aberrant expression of PKD isoforms. In breast cancer PKD isoforms exhibit distinct expression patterns and regulate various oncogenic processes. In highly invasive breast cancer, the leading cause of cancer-associated deaths in females, the loss of PKD1 is thought to promote invasion and metastasis, while PKD2 and upregulated PKD3 have been shown to be positive regulators of proliferation, chemoresistance and metastasis. In this review, we examine the differential expression pattern, mechanisms of regulation and contributions made by each PKD isoform to the development and maintenance of invasive breast cancer. In addition, we discuss the potential therapeutic approaches for targeting PKD in this disease.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-21
    Description: MDA-9/Syntenin is a small PDZ domain containing scaffolding protein with diverse array of function regulating membrane trafficking, cell adhesion, neural and synaptic development, ubiquitination and exosome biogenesis. An appreciable number of studies also established a pivotal role of MDA-9/Syntenin in cancer development and progression. In this review, we will discuss the dynamic role of MDA-9/Syntenin in regulating normal and abnormal fate of various cellular processes. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-08-21
    Description: Because early-stage hepatocellular carcinoma (HCC) is difficult to diagnose using the existing techniques, identifying better biomarkers would likely improve the patients' prognoses. We performed a systematic review and meta-analysis of published studies to appraise the utility of microRNAs (miRNAs) for the early diagnosis of HCC. Pertinent literature was collected from the Medline, Embase, and Chinese National Knowledge Infrastructure databases. We analyzed 50 studies that included 3423 cases of HCC, 2403 chronic hepatic disease (CH) patients, and 1887 healthy controls in 16 articles. Summary receiver operating characteristic analyses of all miRNAs showed an area under the curve (AUC) of 0.82, with 75.8% sensitivity and 75.0% specificity in discriminating patients with HCC from healthy controls. miR-21 and miR-122 individually distinguished patients with HCC from healthy controls, with an AUC of 0.88 for miR-21 and 0.77 for miR-122. The sensitivity and specificity for miR-21 were 86.6% and 79.5%, respectively; those for miR-122 were 68.0% and 73.3%. We conclude that circulating miRNAs, particularly miR-21 and miR-122, are promising biomarkers for the early diagnosis of HCC. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-08-23
    Description: Hepatitis C virus (HCV) has infected over 170 million people worldwide. Phosphatidylinositol 4-phosphate (PI4P) is the organelle-specific phosphoinositide enriched at sites of HCV replication. Whether retromer, a PI4P-related host transport machinery, unloads its cargo at HCV replication sites remains inconclusive. We sought to characterize the role of retromer in HCV replication. Here, we demonstrated the interaction between retromer subunit Vps35 and HCV NS5A protein by immunoprecipitation and GST pulldown. Vps35 colocalized with NS5A and PI4P in both OR6 replicon and JFH1 infected Huh 7.5.1 cells. HCV replication was inhibited upon silencing retromer subunits. CIMPR, a typical retromer cargo, participated in HCV replication. Our data suggest that retromer component Vps35 is recruited by NS5A to viral replication sites where PI4P unloads CIMPR. These findings demonstrate a dependence role of retromer in HCV replication and identify retromer as a potential therapeutic target against HCV.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-08-23
    Description: The cellular prion protein (PrP C ) is a ubiquitously expressed protein of currently unresolved but potentially diverse function. Of putative relevance to normal biological activity, PrP C is recognized to undergo both α- and β-endoproteolysis, producing the cleavage fragment pairs N1/C1 and N2/C2, respectively. Experimental evidence suggests the likelihood that these processing events serve differing cellular needs. Through the engineering of a C-terminal c-myc tag onto murine PrP C , as well as the selective use of a far-C-terminal anti-PrP antibody, we have identified a new PrP C fragment, nominally ‘C3’, and elaborating existing nomenclature, ‘γ-cleavage’ as the responsible proteolysis. Our studies indicate that this novel γ-cleavage event can occur during transit through the secretory pathway after exiting the endoplasmic reticulum, and after PrP C has reached the cell surface, by a matrix metalloprotease. We found that C3 is GPI-anchored like other C-terminal and full length PrP C species, though it does not localize primarily at the cell surface, and is preferentially cleaved from an unglycosylated substrate. Importantly, we observed that C3 exists in diverse cell types as well as mouse and human brain tissue, and of possible pathogenic significance, γ-cleavage may increase in human prion diseases. Given the likely relevance of PrP C processing to both its normal function, and susceptibility to prion disease, the potential importance of this previously underappreciated and overlooked cleavage event warrants further consideration.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-08-12
    Description: We have synthesized a novel derivative of Digitoxin, termed “MonoD”, which demonstrates cytotoxic effects in lung cancer cells with much higher potency as compared to Digitoxin. Our data show that within one hour of MonoD treatment, H460 cells showed increased oxidative stress, increased formation of autophagic vacuoles and increased expression of pro-autophagic markers Beclin-1 and LC3-II. Cells pretreated with MnTBAP, a superoxide scavenger not only lowered superoxide production, but also had lower levels of LC3-II and Beclin-1. Prolonged treatment with MonoD induced apoptosis in lung cancer cells. We investigated MonoD-dependent regulation of Akt and Bcl2, proteins that are known regulators of both autophagy and apoptosis. Molecular and pharmacologic inhibitors of Bcl2 and Akt, when combined with MonoD, led to higher expression of LC3-II and Beclin-1 as compared to MonoD alone, suggesting a repressive effect for these proteins in MonoD-dependent autophagy. Pretreatment of cells with an autophagy inhibitor repressed the apoptotic potential of MonoD, confirming that early autophagic flux is important to drive apoptosis. Therapeutic entities such as MonoD that target multiple pathways such as autophagy and apoptosis may prove advantageous over current therapies that have unimodal basis for action and may drive sustained tumor regression, which is highly desirable. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-08-04
    Description: To overcome the drug resistance phenomenon induced by Imatibib (IM), in clinical practice, are often used second generation of tyrosine kinase inhibitors as Nilotinib (NIL) a such potent inhibitor of the BCR/ABL kinase and Dasatinib (DAS) a inhibitor of BCR/ABL kinase and inhibitor SrC family kinase. In this study we evaluated the in vivo effect of DAS, NIL and IM on intracellular calcium concentration, oxidative stress and apoptosis in peripheral blood leukocytes of 45 newly diagnosed patients with chronic myeloid leukaemia (CML-PBM). Our data demonstrated that treatment with DAS and NIL showed an higher modulating potential than IM on intracellular calcium concentration by inhibiting the thapsigargin, a sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor and Lithium (Li) an inositol 1,4,5-triphosphate (InsP3) receptor inhibitor activities. Moreover our data demonstrated that NIL and DAS have significantly increased apoptosis more than IM by involving both intracellular calcium signaling as well as oxidative stress. The acquisition of the oxidative stress and calcium channels receptors values data could help the hematologist to modulate and improve the treatment of chronic myeloid leukaemia (CML) pathology. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-08-04
    Description: Fucoidan, a natural component of seaweeds, is reported to have immunomodulatory and anti-tumor effects. The mechanisms underpinning these activities remain poorly understood. In this study, the cytotoxicity and anti-tumor activities of fucoidan were investigated in acute myeloid leukemia (AML) cells. The human AML cell lines NB4, KG1a, HL60 and K562 were treated with fucoidan and cell cycle, cell proliferation and expression of apoptotic pathways molecules were analyzed. Fucoidan suppressed the proliferation and induced apoptosis through the intrinsic and extrinsic pathways in the acute promyelocytic leukemia (APL) cell lines NB4 and HL60, but not in KG1a and K562 cells. In NB4 cells, apoptosis was caspase-dependent as it was significantly attenuated by pre-treatment with a pan-caspase inhibitor. P21/WAF1/CIP1 was significantly up-regulated leading to cell cycle arrest. Fucoidan decreased the activation of ERK1/2 and down-regulated the activation of AKT through hypo-phosphorylation of Thr(308) residue but not Ser(473). In vivo , a xenograft model using the NB4 cells was employed. Mice were fed with fucoidan and tumor growth was measured following inoculation with NB4 cells. Subsequently, splenic natural killer (NK) cell cytotoxic activity was also examined. Oral doses of fucoidan significantly delayed tumor growth in the xenograft model and increased cytolytic activity of NK cells. Taken together, these data suggest that the selective inhibitory effect of fucoidan on APL cells and its protective effect against APL development in mice warrant further investigation of fucoidan as a useful agent in treatment of certain types of leukemia. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-08-05
    Description: Virtual Reality (VR), a computer-generated virtual environment, has been increasingly used in the entertainment world becoming a very new evolving field, but VR technology has also found a variety of applications in the biomedical field. VR can offer to subjects a safe environment within which to carry on different interventions ranging from the rehabilitation of discharged patients directly at home, to the support of hospitalized patients during different procedures and also of oncological inpatient subjects. VR appears as a promising tool for support and monitoring treatments in cancer patients influencing psychological and physiological functions. The aim of this systematic review is to provide an overview of all the studies that used VR intervention on cancer patients and analyze their main findings. Nineteen studies across nearly a thousand articles were identified that explored effects of VR interventions on cancer patients. Although these studies varied greatly in setting and design, this review identified some overarching themes. Results found that VR improved patients' emotional well-being, and diminished cancer related psychological symptoms. The studies explored various relevant variables including different types of settings (i.e. during chemotherapy, during pain procedures, during hospitalization). Here, we point to the need of a global and multi-disciplinary approach aimed at analyzing the effects of VR taking advantage of the new technology systems like bio sensors as well as electroencephalogram monitoring pre-during and after intervention. Devoting more attention to bio physiological variables, standardized procedures, extending duration to longitudinal studies and adjusting for motion sickness related to VR treatment need to become standard of this research field. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2015-08-06
    Description: Despite intensive research, it is still unclear how an immediate and profound acceleration of exocytosis is triggered by appropriate Ca 2+ -stimuli in presynaptic terminals. This is due to the fact that the molecular mechanisms of “docking” and “priming” reactions, which set up secretory vesicles to fuse at millisecond time scale, are extremely hard to study. Yet, driven by a fruitful combination of in vitro and in vivo analyses, our mechanistic understanding of Ca 2+ -triggered vesicle fusion has certainly advanced in the past few years. In this review, we aim to highlight recent progress and emerging views on the molecular mechanisms, by which constitutively forming SNAREpins are organized in functional, tightly regulated units for synchronized release. In particular, we will focus on the role of the small regulatory factor complexin whose function in Ca 2+ -dependent exocytosis has been controversially discussed for more than a decade. Special emphasis will also be laid on the functional relationship of complexin and synaptotagmin, as both proteins possibly act as allies and/or antagonists to govern SNARE-mediated exocytosis.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-08-06
    Description: Galectins, a family of soluble β-galactoside-binding proteins, serve as mediators of fundamental biological processes, such as cell growth, differentiation, adhesion, migration, survival, and death. The purpose of this review is to summarize the current knowledge regarding the ways in which the expression of individual galectins differs in normal and transformed human cells exposed to various stimuli mimicking physiological and pathological microenvironmental stress conditions. A conceptual point is being made and grounded that the modulation of galectin expression profiles is a key aspect of cellular stress responses. Moreover, this modulation might be precisely regulated at transcriptional and post-transcriptional levels in the context of non-overlapping transcription factors and miRNAs specific to galectins.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-06-04
    Description: Oncogenic mutants of c-Kit are often found in mastocytosis, gastrointestinal stromal tumors and acute myeloid leukemia. The activation mechanism of the most commonly occurring mutation, D816V in exon 17 of c-Kit, has been well-studied while other mutations remain fairly uncharacterized in this respect. In this study, we show that the constitutive activity of the exon 11 mutant V560D is weaker than the D816V mutant. Phosphorylation of downstream signaling proteins induced by the ligand for c-Kit, stem cell factor, was stronger in c-Kit/V560D expressing cells than in cells expressing c-kit/D816V. Although cells expressing c-Kit/V560D showed increased ligand-independent proliferation and survival compared to wild-type c-Kit-expressing cells, these biological effects were weaker than in c-Kit/D816V-expressing cells. In contrast to cells expressing wild-type c-Kit, cells expressing c-Kit/V560D were independent of Src family kinases for downstream signaling. However, the independence of Src family kinases was not due to a Src-like kinase activity that c-Kit/D816V displayed. Point mutations that selectively block the association of PI3 kinase with c-Kit/V560D inhibited ligand-independent activation of the receptor, while inhibition of the kinase activity of PI3 kinase with pharmacological inhibitors did not affect the kinase activity of the receptor. This suggests a lipid kinase-independent key role of PI3 kinase in c-Kit/V560D-mediated oncogenic signal transduction. Thus, PI3 kinase is an attractive therapeutic target in malignancies induced by c-Kit mutations independent of its lipid kinase activity.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-06-05
    Description: Germ cells must transmit genetic information across generations, and produce gametes while also maintaining the potential to form all cell types after fertilization. Preventing the activation of somatic programs is, therefore, crucial to the maintenance of germ cell identity. Studies in Caenorhabditis elegans , Drosophila melanogaster , and mouse have revealed both similarities and differences in how somatic gene expression is repressed in germ cells, thereby preventing their conversion into somatic tissues. This review will focus on recent developments in our understanding of how global or gene-specific transcriptional repression, chromatin regulation, and translational repression operate in the germline to maintain germ cell identity and repress somatic differentiation programs.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-06-05
    Description: Local and long-distance transport of cytoskeletal proteins is vital to neuronal maintenance and growth. Though recent progress has provided insight into the movement of microtubules and neurofilaments, mechanisms underlying the movement of actin remain elusive, in large part due to rapid transitions between its filament states and its diverse cellular localization and function. In this work, we integrated live imaging of rat sensory neurons, image processing, multiple regression analysis, and mathematical modeling to perform the first quantitative, high-resolution investigation of GFP-actin identity and movement in individual axons. Our data revealed that filamentous actin densities arise along the length of the axon and move short but significant distances bidirectionally, with a net anterograde bias. We directly tested the role of actin and microtubules in this movement. We also confirmed a role for actin densities in extension of axonal filopodia, and demonstrated intermittent correlation of actin and mitochondrial movement. Our results support a novel mechanism underlying slow component axonal transport, in which the stability of both microtubule and actin cytoskeletal components influence the mobility of filamentous actin.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-06-09
    Description: Fabry disease (FD) is a hereditary X-linked metabolic lysosomal storage disorder due to insufficient amounts or a complete lack of the lysosomal enzyme α -galactosidase A ( α  − GalA). The loss of α -GalA activity leads to an abnormal accumulation of globotriaosylceramide (Gb3) in lysosomes and other cellular components of different tissues and cell types, affecting the cell function. However, whether these biochemical alterations also modify functional processes associated to the cell mitotic ability is still unknown. The goal of the present study was to characterize lineages of human dermal fibroblasts (HDFs) of FD patients and healthy controls focusing on Gb3 accumulation, expression of chloride channels that regulate proliferation, and proliferative activity. The biochemical and functional analyses indicate the existence of quantitative differences in some but not all the parameters of cytoskeletal organization, proliferation and differentiation processes. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-08-04
    Description: Mucopolysaccharidosis type I (MPS I) is a rare autosomal recessive disease caused by alpha-L-iduronidase deficiency in which heparan and dermatan sulfate degradation is compromised. Besides primary lysosomal glycosaminoglycan accumulation, further changes in cellular functions have also been described in several murine MPS models. Herein, we evaluated alterations in hematopoiesis and its implications on the production of mature progeny in a MPS I murine model. Despite the significant increase in hematopoietic stem cells, a reduction in common myeloid progenitors and granulocyte-macrophage progenitor cells was observed in Idua -/- mice bone marrow. Furthermore, no alterations in number, viability nor activation of cell death mechanisms were observed in Idua -/- mice mature macrophages but they presented higher sensitivity to apoptotic induction after staurosporine treatment. In addition, changes in Ca 2+ signaling and a reduction in phagocytosis ability were also found. In summary, our results revealed significant intracellular changes in mature Idua -/- macrophages related to alterations in Idua -/- mice hematopoiesis, revealing a disruption in cell homeostasis. These results provide new insights into physiopathology of MPS I. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-08-05
    Description: Radiotherapy, a major treatment modality against cancer, can lead to secondary malignancies but it is uncertain as to whether tumor cells that survive ionizing radiation (IR) treatment undergo epithelial–mesenchymal transition (EMT) and eventually become invasive or metastatic. Here, we have tested the hypothesis that the application of IR (10 MeV photon beams, 2–20 Gy) to lung and pancreatic carcinoma cells induces a migratory/invasive phenotype in these cells by hyperactivation of TGF-β and/or activin signaling. In accordance with this assumption, IR induced gene expression patterns and migratory responses consistent with an EMT phenotype. Moreover, in A549 cells, IR triggered the synthesis and secretion of both TGF-β1 and activin A as well as activation of intracellular TGF-β/activin signaling as evidenced by Smad phosphorylation and transcriptional activation of a TGF-β-responsive reporter gene. These responses were sensitive to SB431542, an inhibitor of type I receptors for TGF-β and activin. Likewise, specific antibody-mediated neutralization of soluble TGF-β, or dominant-negative inhibition of the TGF-β receptors, but not the activin type I receptor, alleviated IR-induced cell migration. Moreover, the TGF-β-specific approaches also blocked IR-dependent TGF-β1 secretion, Smad phosphorylation, and reporter gene activity, collectively indicating that autocrine production of TGF-β(s) and subsequent activation of TGF-β rather than activin signaling drives these changes. IR strongly sensitized cells to further increase their migration in response to recombinant TGF-β1 and this was accompanied by upregulation of TGF-β receptor expression. Our data raise the possibility that hyperactivation of TGF-β signaling during radiotherapy contributes to EMT-associated changes like metastasis, cancer stem cell formation and chemoresistance of tumor cells.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-08-10
    Description: Microorganisms and the viruses that infect them are the most numerous biological entities on Earth and enclose its greatest biodiversity and genetic reservoir. With strength in their numbers, these microscopic organisms are major players in the cycles of energy and matter that sustain all life. Scientists have only scratched the surface of this vast microbial world through culture-dependent methods. Recent developments in generating metagenomes, large random samples of nucleic acid sequences isolated directly from the environment, are providing comprehensive portraits of the composition, structure, and functioning of microbial communities. Moreover, advances in metagenomic analysis have created the possibility of obtaining complete or nearly complete genome sequences from uncultured microorganisms, providing important means to study their biology, ecology, and evolution. Here we review some of the recent developments in the field of metagenomics, focusing on the discovery of genetic novelty and on methods for obtaining uncultured genome sequences, including through the recycling of previously published datasets. Moreover we discuss how metagenomics has become a core scientific tool to characterize eco-evolutionary patterns of microbial ecosystems, thus allowing us to simultaneously discover new microbes and study their natural communities. We conclude by discussing general guidelines and challenges for modeling the interactions between uncultured microorganisms and viruses based on the information contained in their genome sequences. These models will significantly advance our understanding of the functioning of microbial ecosystems and the roles of microbes in the environment.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-08-11
    Description: The crucial role of chemokines in the initiation and progression of atherosclerosis has been widely recognized. Through essential functions in leukocyte recruitment, chemokines govern the infiltration with mononuclear cells and macrophage accumulation in atherosclerotic lesions. Beyond recruitment, chemokines also provide homeostatic functions supporting cell survival and mediating the mobilization and homing of progenitor cells. As a new regulatory layer, several microRNAs (miRNAs) have been found to modulate the function of endothelial cells (ECs), smooth muscle cells and macrophages by controlling the expression levels of chemokines and thereby affecting different stages in the progression of atherosclerosis. For instance, the expression of CXCL1 can be down-regulated by miR-181b, which inhibits nuclear factor-κB activation in atherosclerotic endothelium, thus attenuating the adhesive properties of ECs and exerting early atheroprotective effects. Conversely, CXCL12 expression can be induced by miR-126 in ECs through an auto-amplifying feedback loop to facilitate endothelial regeneration, thus limiting atherosclerosis and mediating plaque stabilization. In contrast, miR-155 plays a pro-atherogenic role by promoting the expression of CCL2 in M1-type macrophages, thereby enhancing vascular inflammation. Herein, we will review novel aspects of chemokines and their regulation by miRNAs during atherogenesis. Understanding the complex cross-talk of miRNAs controlling chemokine expression may open novel therapeutic options to treat atherosclerosis.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-08-11
    Description: Somatosensory neurons mediate our sense of touch. They are critically involved in transducing pain and itch sensations under physiological and pathological conditions, along with other skin-resident cells. Tissue damage and inflammation can produce a localized or systemic sensitization of our senses of pain and itch, which can facilitate our detection of threats in the environment. Although acute pain and itch protect us from further damage, persistent pain and itch are debilitating. Recent exciting discoveries have significantly advanced our knowledge of the roles of membrane-bound G protein-coupled receptors and ion channels in the encoding of information leading to pain and itch sensations. This review focuses on molecular and cellular events that are important in early stages of the biological processing that culminates in our senses of pain and itch.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-08-11
    Description: Microtubule-based distribution of organelles/vesicles is crucial for the function of many types of eukaryotic cells and the molecular motor cytoplasmic dynein is required for transporting a variety of cellular cargos toward the microtubule minus ends. Early endosomes represent a major cargo of dynein in filamentous fungi, and dynein regulators such as LIS1 and the dynactin complex are both required for early endosome movement. In fungal hyphae, kinesin-3 and dynein drive bi-directional movements of early endosomes. Dynein accumulates at microtubule plus ends; this accumulation depends on kinesin-1 and dynactin, and it is important for early endosome movements towards the microtubule minus ends. The physical interaction between dynein and early endosome requires the dynactin complex, and in particular, its p25 component. The FTS-Hook-FHIP (FHF) complex links dynein–dynactin to early endosomes, and within the FHF complex, Hook interacts with dynein–dynactin, and Hook-early endosome interaction depends on FHIP and FTS.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-08-11
    Description: Toll-like receptors (TLRs) are membrane-bound microbial sensors that mediate important host-to-microbe responses. Cell biology aspects of TLR function have been intensively studied in professional immune cells, in particular the macrophages and dendritic cells, but not well explored in other specialized epithelial cell types. The adult intestinal epithelial cells are in close contact with trillions of enteric microbes and engage in lifelong immune surveillance. Mature intestinal epithelial cells, in contrast to immune cells, are highly polarized. Recent studies suggest that distinct mechanisms may govern TLR traffic and compartmentalization in these specialized epithelial cells to establish and maintain precise signaling of individual TLRs. We, using immune cells as references, discuss here the shared and/or unique molecular machineries used by intestinal epithelial cells to control TLR transport, localization, processing, activation, and signaling. A better understanding of these mechanisms will certainly generate important insights into both the mechanism and potential intervention of leading digestive disorders, in particular inflammatory bowel diseases.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-08-11
    Description: Stem-loop SL2 is a self-interacting palindromic sequence that has been identified within the hepatitis C virus genome (HCV). While, RNA dimerization of the HCV genome has been observed in vitro with short RNA sequences, the role of a putative RNA dimerization during viral replication has not been elucidated. To determine the effect of genomic dimerization on viral replication, we introduced mutations into SL2 predicted to disrupt genomic dimerization. Using surface plasmon resonance, we show that mutations within the SL2 bulge impact dimerization in vitro. Transfection of Huh7 cells with luciferase-encoding full-length genomes containing SL2 mutations abolishes viral replication. Luciferase expression indicates that viral translation is not or slightly affected and that the viral RNA is properly encapsidated. However, RT-qPCR analysis demonstrates that viral RNA synthesis is drastically decreased. In vitro synthesis experiments using the viral recombinant polymerase show that modifications of intra-molecular interactions have no effect on RNA synthesis, while impairing inter-molecular interactions decreases polymerase activity. This confirms that dimeric templates are preferentially replicated by the viral polymerase. Altogether, these results indicate that the dimerization of the HCV genomic RNA is a crucial step for the viral life cycle especially for RNA replication. RNA dimerization could explain the existence of HCV recombinants in cell culture and patients reported recently in other studies.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-09-13
    Description: Chondrogenesis subtends the development of most skeletal elements and involves mesenchymal cell condensations differentiating into growth plate chondrocytes that proliferate, undergo hypertrophy and are replaced by bone. In the pediatric disorder Hereditary Multiple Exostoses, however, chondrogenesis occurs also at ectopic sites and causes formation of benign cartilaginous tumors –exostoses- near the growth plates. No treatment is currently available to prevent or reverse exostosis formation. Here, we asked whether chondrogenesis could be stopped by targeting the hedgehog pathway, one of its major regulators. Micromass cultures of limb mesenchymal cells were treated with increasing amounts of the hedgehog inhibitor HhAntag or vehicle. The drug effectively blocked chondrogenesis and did so in a dose-dependent manner as monitored by: alcian blue-positive cartilage nodule formation; gene expression of cartilage marker genes; and reporter activity in Gli1-LacZ cell cultures. HhAntag blocked chondrogenesis even when the cultures were co-treated with bone morphogenetic protein 2 (rhBMP-2), a strong pro-chondrogenic factor. Immunoblots showed that HhAntag action included modulation of canonical (pSmad1/5/8) and non-canonical (pp38) BMP signaling. In cultures co-treated with HhAntag plus rhBMP-2, there was a surprising strong up-regulation of pp38 levels. Implantation of rhBMP-2-coated beads near metacarpal elements in cultured forelimb explants induced formation of ectopic cartilage that however, was counteracted by HhAntag co-treatment. Collectively, our data indicate that HhAntag inhibits not only hedgehog signaling, but also modulates canonical and non-canonical BMP signaling and blocks basal and rhBMP2-stimulated chondrogenesis, thus representing a potentially powerful drug-based strategy to counter ectopic cartilage growth or induce its involution. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-09-12
    Description: ABSTRACT Cholangiocarcinoma (CCAs) may be defined as tumors that derived from the biliary tree with the differentiation in the biliary epithelial cells. This tumor is malignant, extremely aggressive with a poor prognosis. It can be treated surgically and its pathogenesis is poorly understood. The tumor microenvironment (TME) is a very important factor in the regulation of tumor angiogenesis, invasion, and metastasis. Besides cancer stem cells (CSCs) can modulate tumor growth, stroma formation and migratory capability. The initial stage of tumorigenesis is characterized by genetic mutations and epigenetic alterations due to intrinsic factors which lead to the generation of oncogenes thus inducing tumorigenesis. CSCs may result from precancerous stem cells, cell de-differentiation, normal stem cells or an epithelial-mesenchymal transition (EMT). CSCs have been found in the cancer niche, and EMT may occur early within the tumor microenvironment. Previous studies have demonstrated evidence of cholangiocarcinoma stem cells (CD133, CD24, EpCAM, CD44, and others) and the presence of these markers has been associated with malignant potential. The interaction between TME and cholangiocarcinoma stem cells via signaling mediators may create an environment that accommodates tumor growth, yielding resistance to cytotoxic insults (chemotherarapeutic). While progress has been made in the understanding of the mechanisms, the interactions in the tumorigenic process still remain a major challenge. Our review, addresses recent concepts of TME-CSCs interaction and will emphasize the importance of early detection with the use of novel diagnostic mechanisms such as CCA-CSC biomarkers and the importance of tumor stroma to define new treatments. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-09-17
    Description: Paracaspases and metacaspases are two families of caspase-like proteins identified in 2000. Up until now paracaspases were considered a single gene family with one known non-metazoan paracaspase in the slime mold Dictyostelium and a single animal paracaspase called MALT1. Human MALT1 is a critical signaling component in many innate and adaptive immunity pathways that drive inflammation, and when it is overly active, it can also cause certain forms of cancer. Here, we report the identification and functional analysis of two new vertebrate paracaspases, PCASP2 and PCASP3. Functional characterization indicates that both scaffold and protease functions are conserved across the three vertebrate paralogs. This redundancy might explain the loss of two of the paralogs in mammals and one in Xenopus . Several of the vertebrate paracaspases currently have incorrect or ambiguous annotations. We propose to annotate them accordingly as PCASP1, PCASP2, and PCASP3 similar to the caspase gene nomenclature. A comprehensive search in other metazoans and in non-metazoan species identified additional new paracaspases. We also discovered the first animal metacaspase in the sponge Amphimedon . Comparative analysis of the active site suggests that paracaspases constitute one of the several subclasses of metacaspases that have evolved several times independently.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-09-18
    Description: ABSTRACT Early detection of colorectal cancer (CRC) remains a challenge. It has been highlighted that the pathological alterations within an organ and tissues might be reflected in serum or plasma proteomic/peptidic patterns. The aim of the study was to follow the changes in the plasma peptides associated to colorectal cancer progression by mass spectrometry. This study included 27 adenoma, 67 CRC (n = 33 I-II stage and n = 34 III-IV stage), 23 liver metastasis from CRC patients and 34 subjects disease-free as controls. For plasma peptides analysis, samples purification was performed on the Nanoporous Silica Chips technology followed by matrix-assisted laser desorption/ionisation-time of flight analysis. Since the high complexity of the obtained dataset, multivariate statistical analysis and discriminant pattern recognition were performed for study groups classification. Forty-four of 88 ionic species were successfully identified as fragments of peptides and proteins physiologically circulating in the blood and belonging to immune and coagulation systems and inflammatory mediators. Many peptides clustered into sets of overlapping sequences with ladder-like truncation clearly associated to proteolytic processes of both endo- and exoproteases activity. Comparing to controls, a different median ion intensity of the group-type fragments distribution was observed. Moreover, the degradation pattern obtained by proteolytic cleavage was different into study groups. This pattern was specific and characteristic of each group: controls, colon tumour disease (including adenoma and CRC) and liver metastasis, revealing a role as biomarker in early diagnosis and prognosis. Our findings highlighted peculiar changes in protease activity characteristic of CRC progression from pre-cancer lesion to metastatic disease. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-09-19
    Description: ABSTRACT The aim of this study was to verify the effects of running overtraining protocols performed in downhill, uphill and without inclination on the proteins related to hypertrophy signaling pathway in extensor digitorum longus (EDL) and soleus of C57BL/6 mice. We also performed histological and stereological analyses. Rodents were divided into control (CT; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up) and overtrained by running without inclination (OTR). The incremental load, exhaustive and grip force tests were used as performance evaluation parameters. 36h after the grip force test, EDL and soleus were removed and immediately used for immunoblotting analysis or stored at -80 ° C for histological and stereological analyses. For EDL, OTR/down decreased the protein kinase B (Akt) and tuberous sclerosis protein 2 (TSC2) phosphorylation (p), and increased myostatin, receptor-activated Smads (pSMAD2-3) and insulin receptor substrate-1 (pIRS-1; Ser307/636). OTR/down also presented low and high relative proportions of cytoplasm and connective tissue, respectively. OTR/up increased the mammalian target of rapamycin (pmTOR), 70-kDa ribosomal protein S6 kinase 1 (pS6K1) and pSMAD2-3, and decreased pTSC2. OTR decreased pTSC2 and increased pIRS-1 (Ser636). For soleus, OTR/down increased S6 ribosomal protein (pS6RP) and pSMAD2-3, and decreased pIRS-1 (Ser639). OTR/up decreased pS6K1, pS6RP and pIRS-1 (Ser639), and increased pTSC2 (Ser939) and pSMAD2-3. OTR increased pS6RP, 4E-binding protein-1 (p4E-BP1), pTSC2 (Ser939), and pSMAD2-3, and decreased pIRS-1 (Ser639). In summary, OTR/down inhibited the skeletal muscle hypertrophy with concomitant signs of atrophy in EDL. The effects of OTR/up and OTR depended on the analyzed skeletal muscle type. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-09-21
    Description: Recent studies have revealed that the members of an ancient family of nonheme Fe 2+ /2-oxoglutarate-dependent dioxygenases (2-OGDO) are involved in the functions associated with the aging process. 2-Oxoglutarate and O 2 are the obligatory substrates and Fe 2+ a cofactor in the activation of 2-OGDO enzymes, which can induce the hydroxylation of distinct proteins and the demethylation of DNA and histones. For instance, ten-eleven translocation 1-3 (TET1-3) are the demethylases of DNA, whereas Jumonji C domain-containing histone lysine demethylases (KDM2-7) are the major epigenetic regulators of chromatin landscape, known to be altered with aging. The functions of hypoxia-inducible factor (HIF) prolyl hydroxylases (PHD1-3) as well as those of collagen hydroxylases are associated with age-related degeneration. Moreover, the ribosomal hydroxylase OGFOD1 controls mRNA translation, which is known to decline with aging. 2-OGDO enzymes are the sensors of energy metabolism, since the Krebs cycle intermediate 2-oxoglutarate is an activator whereas succinate and fumarate are the potent inhibitors of 2-OGDO enzymes. In addition, O 2 availability and iron redox homeostasis control the activities of 2-OGDO enzymes in tissues. We will briefly elucidate the catalytic mechanisms of 2-OGDO enzymes and then review the potential functions of the above-mentioned 2-OGDO enzymes in the control of the aging process.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-09-23
    Description: Pain can vary over the estrous cycle as a result of changes in estradiol concentration but the mechanism causing this variation is unclear. Because the thalamus is important in pain control, gene expression in the lateral thalamus (ventral posteromedial, ventral posterolateral, reticular thalamic nuclei) was screened at different phases of the estrous cycle. Gene expression changes in Sprague-Dawley rats were further analyzed by real-time PCR and ELISA and plasma estradiol levels were measured by RIAs at different phases of the estrous cycle. Our results indicated that both the RNA and protein expression of glutamate decarboxylase 1 and 2 (GAD1, GAD2), GABA(A) receptor-associated protein like 1 (GABARAPL1) and vesicular GABA transporter (VGAT) significantly increased in the lateral thalamus when plasma estradiol levels were elevated. Estradiol levels were elevated during the proestrus and estrus phases of the estrous cycle. Estrogen receptor α (ERα) was observed to be co-localized in thalamic cells and thalamic infusion of an ERα antagonist significantly reduced GAD1 and VGAT transcript. GAD1, GAD2 GABARAPL1 and VGAT have been shown to effect neuronal responses suggesting that modulation of pain during the estrous cycle can be dependent, in part, through estradiol induced changes in thalamic gene expression. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-09-24
    Description: Generation of fully functional hematopoietic multipotent progenitor (MPP) cells from human pluripotent stem cells (hPSCs) has a great therapeutic potential to provide an unlimited cell source for treatment of hematological disorders. We previously demonstrated that CD34 + CD31 + CD144 + population derived from hPSCs contain hemato-endothelial progenitors (HEPs) that give rise to hematopoietic and endothelial cells. Here, we report a differentiation system to generate definitive hematopoietic MPP cells from HEPs via endothelial monolayer. In the presence of angiogenic factors, HEPs formed an endothelial monolayer, from which hematopoietic clusters emerged through the process of endothelial-to-hematopoietic transition (EHT). EHT was significantly enhanced by hematopoietic growth factors. The definitive MPP cells generated from endothelial monolayer were capable of forming multilineage hematopoietic colonies, giving rise to T lymphoid cells, and differentiating into enucleated erythrocytes. Emergence of hematopoietic cells from endothelial monolayer occurred transiently. Hematopoietic potential was lost during prolonged culture of HEPs in endothelial growth conditions. Our study demonstrated that CD34 + CD31 + CD144 + HEPs gave rise to hematopoietic MPP cells via hemogenic endothelial cells that exist transiently. The established differentiation system provides a platform for future investigation of regulatory factors involved in de novo generation of hematopoietic MPP cells and their applications in transplantation. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-09-24
    Description: Epididymal sperm binding protein 1 (ELSPBP1) is secreted by the epididymal epithelium via epididymosomes and is specifically transferred to dead spermatozoa during epididymal transit. We identified biliverdin reductase A (BLVRA) as a partner of ELSPBP1 by immunoprecipitation followed by tandem mass spectrometry. Pull down assays showed that these two proteins interact in the presence of zinc ions. The BLVRA enzyme is known to convert biliverdin to bilirubin, both of which possess antioxidant activity. Assessment by real-time RT-PCR showed that BLVRA is highly expressed in the caput and the corpus epididymis, but is expressed at lower levels in the testis and the cauda epididymis. It is primarily found in the soluble fraction of the caput epididymal fluid, is barely detectable in the cauda fluid, and is detectable to a lesser extent in the epididymosome fraction of both caput and cauda fluids. Immunocytometry on epididymal sperm showed that BLVRA is found on all sperm recovered from the caput region, whereas it is undetectable on cauda sperm. biliverdin and bilirubin are found in higher concentrations in the caput epididymal fluid, as measured by mass spectrometry. Lipid peroxidation was limited by 1 μM of biliverdin, but not bilirubin when caput spermatozoa were challenged with 500 μM H 2 O 2 . Since immature spermatozoa are a source of reactive oxygen species, BLVRA may be involved in the protection of maturing spermatozoa. It is also plausible that BLVRA is implicated in haemic protein catabolism in the epididymal luminal environment. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2015-09-29
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-11-21
    Description: Oxygen levels range from 2-9% in vivo . Atmospheric O 2 levels (21%) are known to induce cell proliferation defects and cellular senescence in primary cell cultures. However, the mechanistic basis of the deleterious effects of higher O 2 levels is not fully understood. On the other hand, immortalized cells including cancer cell lines, which evade cellular senescence are normally cultured at 21% O 2 and the effects of higher O 2 on these cells are understudied. Here we addressed this problem by culturing immortalized human bronchial epithelial (BEAS-2B) cells at ambient atmospheric, 21% O 2 and lower, 10% O 2 . Our results show increased inflammatory response at 21% O 2 but not at 10% O 2 . We found higher RelA binding at the NF-κB1/RelA target gene promoters as well as upregulation of several pro-inflammatory cytokines in cells cultured at 21% O 2 . RelA knockdown prevented the upregulation of the pro-inflammatory cytokines at 21% O 2 , suggesting NF-κB1/RelA as a major mediator of inflammatory response in cells cultured at 21% O 2 . Interestingly, unlike the 21% O 2 cultured cells, exposure of 10% O 2 cultured cells to H 2 O 2 did not elicit inflammatory response, suggesting increased ability to tolerate oxidative stress in cells cultured at lower O 2 levels. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-11-21
    Description: Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 minutes twice daily reduced inflammation and improved pain, two weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch vs. no stretch for 48 hours, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-11-24
    Description: Bone morphogenetic proteins 2 and 4 (BMP2/4) are essential for osteoblast differentiation and osteogenesis. Generation of a BMP2/4 dual knock out ( ko/ko ) osteoblastic cell line is a valuable asset for studying effects of BMP2/4 on skeletal development. In this study, our goal was to create immortalized mouse deleted BMP2/4 osteoblasts by infecting adenoviruses with Cre recombinase and green fluorescent protein genes into immortalized murine floxed BMP2/4 osteoblasts. Transduced BMP2/4 ko/ko cells were verified by green immunofluorescence and PCR. BMP2/4 ko/ko osteoblasts exhibited small size, slow cell proliferation rate and cell growth was arrested in G1 and G2 phases. Expression of bone-relate genes was reduced in the BMP2/4 ko/ko cells, resulting in delay of cell differentiation and mineralization. Importantly, extracellular matrix remodeling was impaired in the BMP2/4 ko/ko osteoblasts as reflected by decreased Mmp-2 and Mmp-9 expressions. Cell differentiation and mineralization were rescued by exogenous BMP2 and/or BMP4. Therefore, we for the first time described establishment of an immortalized deleted BMP2/4 osteoblast line useful for study of mechanisms in regulating osteoblast lineages. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-11-19
    Description: Voltage-gated potassium Kv1.2 channels play pivotal role in maintaining of resting membrane potential and, consequently, regulation of cellular excitability of neurons. Endogenously generated electric field (EF) have been proven as an important regulator for cell migration and tissue repair. The mechanisms of ion channel involvement in EF-induced cell responses are extensively studied but largely are poorly understood. In this study we generated three COS-7 clones with different expression levels of Kv1.2 channel, and confirmed their functional variations with patch clamp analysis. Time-lapse imaging analysis showed that EF-induced cell migration response was Kv1.2 channel expression level depended. Inhibition of Kv1.2 channels with charybdotoxin (ChTX) constrained the sensitivity of COS-7 cells to EF stimulation more than their motility. Immunocytochemistry and pull-down analyses demonstrated association of Kv1.2 channels with actin-binding protein cortactin and its re-localization to the cathode-facing membrane at EF stimulation, which confirms the mechanism of EF-induced directional migration. This study displays that Kv1.2 channels represent an important physiological link in EF-induced cell migration. The described mechanism suggests a potential application of EF which may improve therapeutic performance in curing injuries of neuronal and/or cardiac tissue repair, post operational therapy and various degenerative syndromes. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-11-24
    Description: Dentin matrix protein 1 (DMP1) is found abundantly in the extracellular matrices of bone and dentin. Secretory DMP1 begins with a tripeptide of leucine-proline-valine (LPV) after the endoplasmic reticulum (ER)-entry signal peptide is cleaved. The goal of this study was to determine the role of the LPV motif in the secretion of DMP1. A series of DNA constructs was generated to express various forms of DMP1 with or without the LPV motif. These constructs were transfected into a preosteoblast cell line, the MC3T3-E1 cells, and the subcellular localization and secretion of various forms of DMP1 were examined by immunofluorescent staining and Western-blotting analyses. Immunofluorescent staining showed that the LPV-containing DMP1 variants were primarily localized in the Golgi complex, whereas the LPV-lacking DMP1 variants were found abundantly within the ER. Western-blotting analyses demonstrated that the LPV-containing DMP1 variants were rapidly secreted from the transfected cells, as they did not accumulate within the cells, and the amounts increased in the conditioned media over time. In contrast, the LPV-lacking DMP1 variants were predominantly retained within the cells, and only small amounts were secreted out of the cells over time. These results suggest that the LPV motif is essential for the efficient export of secretory DMP1 from the ER to the Golgi complex. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2015-11-24
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-08-27
    Description: Although 〉90 of the human genome is transcribed, only 〈2% is transcribed into protein-coding RNA (messenger RNA, mRNA). Many thousands of noncoding RNAs are transcribed and recognized as functional RNAs with diverse sizes, structures and biological functions. Based on size, noncoding RNA can be generally divided into two subgroups: short noncoding RNA (〈 200 nucleotides including microRNA or miRNA) and long noncoding RNA (lncRNA, 〉 200 nucleotides). It is now clear that these RNAs fulfil critical roles as transcriptional and post-transcriptional regulators and as guides of chromatin-modifying complexes. Although not translated into protein, noncoding RNAs can regulate cardiac function through diverse mechanisms and their dysregulation is increasingly linked with cardiovascular pathophysiology. Furthermore, a series of recent studies have discovered that noncoding RNAs can be found in the bloodstream and some species are remarkably stable. This has raised the possibility that such noncoding RNAs may be measured in body fluids and serve as novel diagnostic biomarkers. Here, we summarize the current knowledge of noncoding RNAs' function and biomarker potential in cardiac diseases, concentrating mainly on circulating miRNAs and lncRNAs. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-08-29
    Description: Increasing evidence indicates that long noncoding RNAs (lncRNAs) are involved in diverse biological process. Mouse maternal expressed gene 3 (Meg3), is an imprinted gene and essential for development. Here, we explored the relationship between Meg3 and the function of mouse beta cells in vitro and vivo . Real-time PCR analyses revealed Meg3 was more abundantly expressed in Balb/c mouse islets than exocrine glands. Moreover, the expression of Meg3 in islets was decreased in T1DM (NOD female mice) and T2DM (db/db mice) models. Meg3 expression was modulated dynamically by glucose in Min6 cells and isolated mouse islets. The function role of Meg3 was investigated in Min6 cells and normal mouse by knockdown of Meg3 using small interfering RNA. After suppression of Meg3 expression in vitro , insulin synthesis and secretion were impaired and the rate of beta cells apoptosis was increased. Moreover, knockdown of Meg3 in vivo led to the impaired glucose tolerance and decreased insulin secretion, consisted with the reduction of insulin positive cells areas by immunochemistry assays. Notably, islets from Meg3 interference groups showed significant decrease of Pdx-1 and MafA expression in mRNA and protein levels. These results indicate that Meg3 may function as a new regulator of maintaining beta cells identity via affecting insulin production and cell apoptosis. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-05-31
    Description: Interleukin-24 (IL-24) is a unique IL-10 family cytokine that could selectively induce apoptosis in cancer cells without harming normal cells. Previous research demonstrated that intracellular IL-24 protein induces an endoplasmic reticulum (ER) stress response only in cancer cells, culminating in apoptosis. In this study, we developed a novel recombinant fusion protein to penetrate into cancer cells and locate on ER. It is composed of three distinct functional domains, IL-24, and the targeting domain of transactivator of transcription (TAT) and an ER retention four-peptide sequence KDEL (Lys-Asp-Glu-Leu) that link at its NH 2 and COOH terminal, respectively. The in vitro results indicated that TAT-IL-24-KDEL inhibited growth in bladder cancer cells, as well as in non-small cell lung cancer cell line and breast cancer cell line, but the normal human lung fibroblast cell line was not affected, indicating the cancer specificity of TAT-IL-24-KDEL. Western blot analysis showed that apoptosis activation was induced by TAT-IL-24-KDEL through the ER stress-mediated cell death pathway. Treatment with TAT-IL-24-KDEL significantly inhibited the growth of human H460 xenografts in nude mice, and the tumor growth inhibition was correlated with increased hematoxylin and eosin (H&E) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. These findings suggest that the artificially designed recombinant fusion protein TAT-IL-24-KDEL may be highly effective in cancer therapy and worthy of further evaluation and development. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-05-31
    Description: MicroRNAs (miRNAs) are a group of small non-coding RNAs that are involved in regulating a range of developmental and physiological processes; their dysregulation has been associated with development of diseases including cancer. Circulating miRNAs and exosomal miRNAs have also been proposed as being useful in diagnostics as biomarkers for diseases and different types of cancer. In this review, miRNAs are discussed as biomarkers for cancer and other diseases, including viral infections, nervous system disorders, cardiovascular disorders, and diabetes. We summarize some of the clinical evidence for the use of miRNAs as biomarkers in diagnostics and provide some general perspectives on their use in clinical situations. The analytical challenges in using miRNAs in cancer and disease diagnostics are evaluated and discussed. Validation of specific miRNA signatures as biomarkers is a critical milestone in diagnostics. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-05-31
    Description: ABSTRACT Bacterial lipopolysaccharide (LPS)-stimulated hepatic stellate cells (HSCs) produce many cytokines including IFNβ, TNFα and IL6, strongly inhibit DNA synthesis, but induce apoptosis of a small number of hepatocytes. In vivo administration of LPS (up to 10 mg/ml) causes modest inflammation and weight loss in rats but not mortality. We determined whether LPS-stimulated HSCs instigate mechanisms of hepatocyte survival. Rats received 10 mg/kg LPS (i.p.) and determinations were made at 6h. In vitro , HSCs were treated with 100 ng/ml LPS till 24h. The medium was transferred to hepatocytes, and determinations were made at 0-12h. Controls were HSC-conditioned medium or medium-containing LPS. LPS treatment of rats caused autophagy in hepatocytes, a physiological process for clearance of undesirable material including injured or damaged organelles. This was accompanied by activation of c-Jun NH2 terminal kinase (JNK) and apoptosis of ∼4-5% of hepatocytes. In vitro , LPS-conditioned HSC medium (LPS/HSC) induced autophagy in hepatocytes but apoptosis of only ∼10% of hepatocytes. While LPS/HSC stimulated activation of JNK (associated with cell death), it also activated NFkB and ERK1/2 (associated with cell survival). LPS-stimulated HSCs produced IFNβ, and LPS/HSC-induced autophagy in hepatocytes and their apoptosis were significantly inhibited by anti-IFNβ antibody. Blockade of autophagy, on the other hand, strongly augmented hepatocyte apoptosis. While LPS-stimulated HSCs cause apoptosis of a subpopulation of hepatocytes by producing IFNβ, they also induce cell survival mechanisms, which may be of critical importance in resistance to liver injury during endotoxemia. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-05-31
    Description: ABSTRACT In cancer therapy, it is imperative to increase the efficacy and reduce side effects of chemotherapeutic drugs. Nanotechnology offers the unique opportunity to overcome these barriers. In particular, in the last few years DNA nanostructures have gained attention for their biocompatibility, easy customized synthesis and ability to deliver drugs to cancer cells. Here, an open-caged pyramidal DNA@Doxorubicin ( Py-Doxo ) nanostructure was constructed with 10 DNA sequences of 26–28 nucleotides for drug delivery to cancer cells. The synthesized DNA nanostructures are sufficiently stable in biological medium. Py-Doxo exhibited significantly enhanced cytotoxicity of the delivered doxorubicin to breast and liver cancer cells up to two fold compared to free doxorubicin. This study demonstrates the importance of the shape and structure of the designed transporter DNA nanostructures for biomedical applications. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-05-31
    Description: ABSTRACT Preserving the integrity of the DNA double helix is crucial for the maintenance of genomic stability. Therefore, DNA double-strand breaks represent a serious threat to cells. In this review, we describe the two major strategies used to repair double strand breaks: non-homologous end joining and homologous recombination, emphasizing the mutagenic aspects of each. We focus on emerging evidence that homologous recombination, long thought to be an error-free repair process, can in fact be highly mutagenic, particularly in contexts requiring large amounts of DNA synthesis. Recent investigations have begun to illuminate the molecular mechanisms by which error-prone double-strand break repair can create major genomic changes, such as translocations and complex chromosome rearrangements. We highlight these studies and discuss proposed models that may explain some of the more extreme genetic changes observed in human cancers and congenital disorders. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-05-31
    Description: As regulators in gene expression, microRNAs take part in most biological processes including cell differentiation, apoptosis, cell cycle and epithelial-to-mesenchymal transition (EMT). In order to evaluate their roles in EMT process, microRNA expression profile changes induced by EGF or TGF-β treatment on nasopharyngeal carcinoma cell HK-1 were analyzed, and miR-21, miR-148a, miR-505 and miR-1207-5p were found to be upregulated in growth factors-induced EMT process. miR-21 is already known as an oncogenic miRNA to promote metastasis, however, the exact functions of other three miRNAs in EMT are unclear. To our surprise, we found that miR-148a, miR-505 and miR-1207-5p can suppress EMT and metastasis phenotypes in HK-1 cells both in vitro and in vivo , which may relate to their inhibition on EMT and Wnt signaling molecules. MiRNAs confer robustness to biological processes by posttranscriptional repression of key transcriptional programs that are related to previous developmental stages or to alternative cell fates. Our findings indicate that miRNA feedback circuit is tuned to respond to growth factors-induced EMT, and we suggested a new negative feedback loop which may be an important element of the EMT process and confer biological robustness. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2015-05-31
    Description: Regulation is at the heart of biology. What bioregulatory mechanisms finely tune and coordinate our cell's numerous complicated biochemical processes, maintaining constancy of the cell internal environment when external conditions change and it differentiates during development? Knowledge of the biochemistry of small molecules in normal cells progressed greatly in the early 1900s. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-05-31
    Description: ABSTRACT Previous work has shown that acidosis prevents bone nodule formation by osteoblasts in vitro by inhibiting mineralisation of the collagenous matrix. The ratio of phosphate (P i ) to pyrophosphate (PP i ) in the bone microenvironment is a fundamental regulator of bone mineralisation. Both P i and PP i , a potent inhibitor of mineralisation, are generated from extracellular nucleotides by the actions of ecto-nucleotidases. This study investigated the expression and activity of ecto-nucleotidases by osteoblasts under normal and acid conditions. We found that osteoblasts express mRNA for a number of ecto-nucleotidases including NTPdase 1-6 (ecto-nucleoside triphosphate diphosphohydrolase) and NPP1-3 (ecto-nucleotide pyrophosphatase/phosphodiesterase). The rank order of mRNA expression in differentiating rat osteoblasts (day 7) was Enpp1  〉  NTPdase 4  〉  NTPdase 6  〉  NTPdase 5  〉 alkaline phosphatase 〉 ecto-5-nucleotidase 〉  Enpp3  〉  NTPdase 1  〉  NTPdase 3  〉  Enpp2  〉  NTPdase 2 . Acidosis (pH 6.9) upregulated NPP1 mRNA (2.8-fold) and protein expression at all stages of osteoblast differentiation compared to physiological pH (pH 7.4); expression of other ecto-nucleotidases was unaffected. Furthermore, total NPP activity was increased up to 53% in osteoblasts cultured in acid conditions (p 〈 0.001). Release of ATP, one of the key substrates for NPP1, from osteoblasts, was unaffected by acidosis. Further studies showed that mineralised bone formation by osteoblasts cultured from NPP1 knockout mice was increased compared with wildtypes (2.5-fold, p 〈 0.001) and was partially resistant to the inhibitory effect of acidosis. These results indicate that increased NPP1 expression and activity might contribute to the decreased mineralisation observed when osteoblasts are exposed to acid conditions. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-05-31
    Description: Connexin43 (Cx43) has been shown to regulate cell proliferation and its down-regulation is correlated with poor prognosis and survival in several types of human cancer. Cx43 expression levels are frequently down-regulated in human ovarian cancer, suggesting a potential role for Cx43 in regulating the progression of this disease. Epidermal growth factor (EGF) is a well-characterized hormone that stimulates ovarian cancer cell proliferation. Although EGF is able to regulate Cx43 expression in other cell types, it is unclear whether EGF can regulate Cx43 expression in ovarian cancer cells. Additionally, it remains unknown whether Cx43 is involved in EGF-stimulated ovarian cancer cell proliferation. In the present study, we demonstrate that treatment with EGF up-regulates Cx43 expression in two ovarian cancer cell lines, SKOV3 and OVCAR4. Although treatment with EGF activates both ERK1/2 and Akt signaling pathways, pharmacological inhibition and siRNA-mediated knockdown suggest that only the activation of Akt1 is required for EGF-induced Cx43 up-regulation. Functionally, Cx43 knockdown enhanced basal and EGF-induced cell proliferation, whereas the proliferative effects of EGF were reduced by Cx43 overexpression. Co-treatment with the gap junction inhibitor carbenoxolone did not alter the suppressive effects of Cx43 overexpression on EGF-induced cell proliferation, suggesting a gap junction-independent mechanism. This study reveals an important role for Cx43 as a negative regulator of EGF-induced human ovarian cancer cell proliferation. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-05-31
    Description: p53 and Notch-1 play important roles in breast cancer biology. Notch-1 inhibits p53 activity in cervical and breast cancer cells. Conversely, p53 inhibits Notch activity in T-cells but stimulates it in human keratinocytes. Notch co-activator MAML1 binds p53 and functions as a p53 co-activator. We studied the regulation of Notch signaling by p53 in MCF-7 cells and normal human mammary epithelial cells (HMEC). Results show that overexpression of p53 or activation of endogenous p53 with Nutlin-3 inhibits Notch-dependent transcriptional activity and Notch target expression in a dose-dependent manner. This effect could be partially rescued by transfection of MAML1 but not p300. Standard and quantitative co-immunoprecipitation experiments readily detected a complex containing p53 and Notch-1 in MCF-7 cells. Formation of this complex was inhibited by dominant negative MAML1 (DN-MAML1) and stimulated by wild-type MAML1. Standard and quantitative far-Western experiments showed a complex including p53, Notch-1 and MAML1. Chromatin immunoprecipitation (ChIP) experiments showed that p53 can associate with Notch-dependent HEY1 promoter and this association is inhibited by DN-MAML1 and stimulated by wild-type MAML1. Our data support a model in which p53 associates with the Notch transcriptional complex (NTC) in a MAML1-dependent fashion, most likely through a p53-MAML1 interaction. In our cellular models, the effect of this association is to inhibit Notch-dependent transcription. Our data suggest that p53-null breast cancers may lack this Notch-modulatory mechanism, and that therapeutic strategies that activate wild-type p53 can indirectly cause inhibition of Notch transcriptional activity. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-06-02
    Description: Glutamate is the predominant excitatory neurotransmitter in the central nervous system. Excitatory amino acid transporter 2 (EAAT2) is primarily responsible for clearance of extracellular glutamate to prevent neuronal excitotoxicity and hyperexcitability. EAAT2 plays a critical role in regulation of synaptic activity and plasticity. In addition, EAAT2 has been implicated in the pathogenesis of many central nervous system disorders. In this review, we summarize current understanding of EAAT2, including structure, pharmacology, physiology, and functions, as well as disease relevancy, such as in stroke, Parkinson’s disease, epilepsy, amyotrophic lateral sclerosis, Alzheimer’s disease, major depressive disorder, and addiction. A large number of studies have demonstrated that up-regulation of EAAT2 protein provides significant beneficial effects in many disease models suggesting EAAT2 activation is a promising therapeutic approach. Several EAAT2 activators have been identified. Further understanding of EAAT2 regulatory mechanisms could improve development of drug-like compounds that spatiotemporally regulate EAAT2.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-06-03
    Description: MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression by altering the translation efficiency and/or stability of targeted mRNAs. In vertebrates, more than 50 % of all protein-coding RNAs are assumed to be subject to miRNA-mediated control, but current high-throughput methods that reliably measure miRNA–mRNA interactions either require prior knowledge of target mRNAs or elaborate preparation procedures. Consequently, experimentally validated interactions are relatively rare. Furthermore, in silico prediction based on sequence complementarity of miRNAs and their corresponding target sites suffers from extremely high false positive rates. Apparently, sequence complementarity alone is often insufficient to reflect the complex post-transcriptional regulation of mRNAs by miRNAs, which is especially true for animals. Therefore, combined analysis of small non-coding and protein-coding RNAs is indispensable to better understand and predict the complex dynamics of miRNA-regulated gene expression. Single-nucleotide polymorphisms (SNPs) and alternative polyadenylation (APA) can affect miRNA binding of a given transcript from different individuals and tissues, and especially APA is currently emerging as a major factor that contributes to variations in miRNA–mRNA interplay in animals. In this review, we focus on the influence of APA and SNPs on miRNA-mediated gene regulation and discuss the computational approaches that take these mechanisms into account.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-06-03
    Description: Actin filaments (F-actin) are the major structural component of excitatory synapses, being present in presynaptic terminals and in postsynaptic dendritic spines. In the last decade, it has been appreciated that actin dynamics, the assembly and disassembly of F-actin, is crucial not only for the structure of excitatory synapses, but also for pre- and postsynaptic physiology. Hence, regulators of actin dynamics take a central role in mediating neurotransmitter release, synaptic plasticity, and ultimately behavior. Actin depolymerizing proteins of the ADF/cofilin family are essential regulators of actin dynamics, and a number of recent studies highlighted their crucial functions in excitatory synapses. In dendritic spines, ADF/cofilin activity is required for spine enlargement during initial long-term potentiation (LTP), but needs to be switched off during spine stabilization and LTP consolidation. Conversely, active ADF/cofilin is needed for spine pruning during long-term depression (LTD). Moreover, ADF/cofilin controls activity-induced synaptic availability of glutamate receptors, and exocytosis of synaptic vesicles. These data show that the activity of ADF/cofilin in synapses needs to be spatially and temporally tightly controlled through several upstream regulatory pathways, which have been identified recently. Hence, ADF/cofilin-controlled actin dynamics emerged as a critical and central regulator of synapse physiology. In this review, I will summarize and discuss our current knowledge on the roles of ADF/cofilin in synapse physiology and behavior, by focusing on excitatory synapses of the mammalian central nervous system.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2015-05-27
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-05-28
    Description: ABSTRACT Aims Type 1 diabetes mellitus is associated with a high risk for bone fractures. Although bone mass is reduced, bone quality is also dramatically altered in this disorder. However, recent evidences suggest a beneficial effect of the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) pathways on bone quality. The aims of the present study were to conduct a comprehensive investigation of bone strength at the organ and tissue level; and to ascertain whether enzyme resistant GIP or GLP-1 mimetic could be beneficial in preventing bone fragility in type 1 diabetes mellitus. Materials and methods Streptozotocin-treated mice were used as a model of type 1 diabetes mellitus. Control and streptozotocin-diabetic animals were treated for 21 days with an enzymatic-resistant GIP peptide ([D-Ala 2 ]GIP) or with liraglutide (each at 25 nmol/kg bw, ip). Bone quality was assessed at the organ and tissue level by microCT, qXRI, 3-point bending, qBEI, nanoindentation and Fourier-transform infrared microspectroscopy. Results [D-Ala 2 ]GIP and liraglutide treatment did prevent loss of whole bone strength and cortical microstructure in the STZ-injected mice. However, tissue material properties were significantly improved in STZ-injected animals following treatment with [D-Ala 2 ]GIP or liraglutide. Conclusions Treatment of STZ-diabetic mice with [D-Ala 2 ]GIP or liraglutide was capable of significantly preventing deterioration of the quality of the bone matrix. Further studies are required to further elucidate the molecular mechanisms involved and to validate whether these findings can be translated to human patients. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-06-13
    Description: Patients suffering from tauopathies including frontotemporal dementia (FTD) and Alzheimer’s disease (AD) present with intra-neuronal aggregation of microtubule-associated protein Tau. During the disease process, Tau undergoes excessive phosphorylation, dissociates from microtubules and aggregates into insoluble neurofibrillary tangles (NFTs), accumulating in the soma. While many aspects of the disease pathology have been replicated in transgenic mouse models, a region-specific non-transgenic expression model is missing. Complementing existing models, we here report a novel region-specific approach to modelling Tau pathology. Local co-administration of the pore-former polymeric 1,3-alkylpyridinium salts (Poly-APS) extracted from marine sponges, and synthetic full-length 4R recombinant human Tau (hTau) was performed in vitro and in vivo. At low doses, Poly-APS was non-toxic and cultured cells exposed to Poly-APS (0.5 µg/ml) and hTau (1 µg/ml; ~22 µM) had normal input resistance, resting-state membrane potentials and Ca 2+ transients induced either by glutamate or KCl, as did cells exposed to a low concentration of the phosphatase inhibitor Okadaic acid (OA; 1 nM, 24 h). Combined hTau loading and phosphatase inhibition resulted in a collapse of the membrane potential, suppressed excitation and diminished glutamate and KCl-stimulated Ca 2+ transients. Stereotaxic infusions of Poly-APS (0.005 µg/ml) and hTau (1 µg/ml) bilaterally into the dorsal hippocampus at multiple sites resulted in hTau loading of neurons in rats. A separate cohort received an additional 7-day minipump infusion of OA (1.2 nM) intrahippocampally. When tested 2 weeks after surgery, rats treated with Poly-APS+hTau+OA presented with subtle learning deficits, but were also impaired in cognitive flexibility and recall. Hippocampal plasticity recorded from slices ex vivo was diminished in Poly-APS+hTau+OA subjects, but not in other treatment groups. Histological sections confirmed the intracellular accumulation of hTau in CA1 pyramidal cells and along their processes; phosphorylated Tau was present only within somata. This study demonstrates that cognitive, physiological and pathological symptoms reminiscent of tauopathies can be induced following non-mutant hTau delivery into CA1 in rats, but functional consequences hinge on increased Tau phosphorylation. Collectively, these data validate a novel model of locally infused recombinant hTau protein as an inducer of Tau pathology in the hippocampus of normal rats; future studies will provide insights into the pathological spread and maturation of Tau pathology.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-07-13
    Description: Testicular germ cell tumors (TGCTs) are frequent solid malignant tumors and cause of death in men between 20–40 years of age. Genetic and environmental factors play an important role in the origin and development of TGCTs. Although the majority of TGCTs are responsive to chemotherapy, about 20% of patient presents incomplete response or tumors relapse. In addition, the current treatments cause acute toxicity and several chronic collateral effects, including sterility. The present mini-review collectively summarize the most recent findings on the new discovered molecular biomarkers such as tyrosine kinases, HMGAs, Aurora B kinase, and GPR30 receptor predictive of TGCTs and as emerging new possible molecular targets for therapeutic strategies. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-07-13
    Description: ABSTRACT Atrogin-1, an E3 ligase present in skeletal, cardiac and smooth muscle, down-regulates myocardin protein during skeletal muscle differentiation. Myocardin, the master regulator of smooth muscle cell (SMC) differentiation, induces expression of smooth muscle marker genes through its association with serum response factor (SRF), which binds to the CArG box in the promoter. Myocardin undergoes ubiquitylation and proteasomal degradation. Evidence suggests that proteasomal degradation of myocardin is critical for myocardin to exert its transcriptional activity, but there is no report about the E3 ligase responsible for myocardin ubiquitylation and subsequent transactivation. Here, we showed that overexpression of atrogin-1 increased contractility of cultured SMCs and mouse aortic tissues in organ culture. Overexpression of dominant-negative myocardin attenuated the increase in SMC contractility induced by atrogin-1. Atrogin-1 overexpression increased expression of the SM contractile markers while downregulated expression of myocardin protein but not mRNA. Atrogin-1 also ubiquitylated myocardin for proteasomal degradation in vascular SMCs. Deletion studies showed that atrogin-1 directly interacted with myocardin through its amino acids 284-345. Immunostaining studies showed nuclear localization of atrogin-1, myocardin and the Rpt6 subunit of the 26S proteasome. Atrogin-1 overexpression not only resulted in degradation of myocardin but also increased recruitment of RNA Polymerase II onto the promoters of myocardin target genes. In summary, our results have revealed the roles for atrogin-1 in the regulation of smooth muscle contractility through enhancement of myocardin ubiquitylation/degradation and its transcriptional activity. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-07-13
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-07-14
    Description: Autism spectrum disorder (ASD) is one of the most heritable neuropsychiatric conditions. The complex genetic landscape of the disorder includes both common and rare variants at hundreds of genetic loci. This marked heterogeneity has thus far hampered efforts to develop genetic diagnostic panels and targeted pharmacological therapies. Here, we give an overview of the current literature on the genetic basis of ASD, and review recent human brain transcriptome studies and their role in identifying convergent pathways downstream of the heterogeneous genetic variants. We also discuss emerging evidence on the involvement of non-coding genomic regions and non-coding RNAs in ASD.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-07-15
    Description: Cholesterol is an important component for cell physiology. It regulates the fluidity of cell membranes and determines the physical and biochemical properties of proteins. In the central nervous system, cholesterol controls synapse formation and function and supports the saltatory conduction of action potential. In recent years, the role of cholesterol in the brain has caught the attention of several research groups since a breakdown of cholesterol metabolism has been associated with different neurodevelopmental and neurodegenerative diseases, and interestingly also with psychiatric conditions. The aim of this review is to summarize the current knowledge about the connection between cholesterol dysregulation and various neurologic and psychiatric disorders based on clinical and preclinical studies. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-07-20
    Description: Genomic instability drives cancer progression by promoting genetic abnormalities that allow for the multi-step clonal selection of cells with growth advantages. We previously reported that the IL-9-dependent TS1 cell line sequentially acquired activating substitutions in JAK1 and JAK3 upon successive selections for growth factor independent and JAK inhibitor-resistant cells, suggestive of a defect in mutation avoidance mechanisms. In the first part of this paper, we discovered that the gene encoding mutL homolog-1 (MLH1), a key component of the DNA mismatch repair system, is silenced by promoter methylation in TS1 cells. By means of stable ectopic expression and RNA interference methods, we showed that the high frequencies of growth factor-independent and inhibitor-resistant cells with activating JAK mutations can be attributed to the absence of MLH1 expression. In the second part of this paper, we confirm the clinical relevance of our findings by showing that chronic myeloid leukemia relapses upon ABL-targeted therapy correlated with a lower expression of MLH1 messenger RNA. Interestingly, the mutational profile observed in our TS1 model, characterized by a strong predominance of T:A〉C:G transitions, was identical to the one described in the literature for primitive cells derived from chronic myeloid leukemia patients. Taken together, our observations demonstrate for the first time a causal relationship between MLH1-deficiency and incidence of oncogenic point mutations in tyrosine kinases driving cell transformation and acquired resistance to kinase-targeted cancer therapies.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-07-20
    Description: Research in the last decade has shown that hematopoietic stem cells (HSCs) interact with and are modulated by a complex multicellular microenvironment in the bone marrow, which includes both the HSC progeny and multiple non-hematopoietic cell types. Intense work is gradually throwing light on the composition of the HSC niche and the molecular cues exchanged between its components, which has implications for HSC production, maintenance and expansion. In addition, it has become apparent that bidirectional interactions between leukemic cells and their niche play a previously unrecognized role in the initiation and development of hematological malignancies. Consequently, targeting of the malignant niche holds considerable promise for more specific antileukemic therapies. Here we summarize the latest insights into HSC niche biology and recent work showing multiple connections between hematological malignancy and alterations in the bone marrow microenvironment.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-07-21
    Description: ABSTRACT Nestin (+) -cardiomyocytes were identified in the ischemically damaged human/rodent heart, albeit the cellular source and signaling events implicated in the appearance of the intermediate filament protein remained undefined. Expression of the enhanced green fluorescent protein (EGFP) driven by the second intron of the nestin gene identified a subpopulation of EGFP/nestin (+) cells that differentiated to a vascular phenotype in the peri-infarct/infarct region of post-MI mice albeit the transgene was not detected in nestin (+) -cardiomyocytes. α-MHC-driven expression of the reporter mCherry was detected in troponin-T (+) - and nestin (+) -cardiomyocytes in the peri-infarct/infarct region of post-MI mice. However, the cell cycle re-entry of nestin/mCherry (+) -cardiomyocytes was not observed. Nestin staining was identified in a paucity of neonatal rat ventricular cardiomyocytes (NNVM). Exposure to phorbol 12, 13-dibutyrate (PDBu) induced NNVM hypertrophy but did not promote nestin expression or Brdu incorporation. PDBu treatment of NNVMs phosphorylated p38 MAPK and HSP27 and HSP27 phosphorylation was abrogated by the p38 MAPK inhibitor SB203580. PDBu/SB203580 co-treatment significantly increased the percentage of NNVMs that expressed nestin and incorporated Brdu. In the heart of embryonic 10.5 day mice, nestin was detected in cycling troponin-T (+) -cardiomyocytes. Nestin was also detected in embryonic rat ventricular cardiomyocytes and depletion of the intermediate filament protein attenuated cell cycle re-entry. Thus, nestin expressed by pre-existing cardiomyocytes following ischemic damage recapitulated in part an embryonic phenotype and may provide the requisite phenotype to initiate cell cycle re-entry. However, the overt activation of the p38 MAPK pathway post-MI may in part limit the appearance and inhibit the cell cycle re-entry of nestin (+) -cardiomyocytes. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-07-26
    Description: Alkaptonuria (AKU) is an ultra-rare autosomal genetic disorder caused by a defect in the activity of the enzyme homogentisate 1,2-dioxygenase (HGD) that leads to the accumulation of homogentisic acid (HGA) and its oxidized product, benzoquinone acetic acid (BQA), in the connective tissues causing a pigmentation called “ochronosis”. The consequent progressive formation of ochronotic aggregates generate a severe condition of oxidative stress and inflammation in all the affected areas. Experimental evidences have also proved the presence of serum amyloid A (SAA) in several AKU tissues and it allowed classifying AKU as a secondary amyloidosis. Although AKU is a multisystemic disease, the most affected system is the osteoarticular one and articular cartilage is the most damaged tissue. In this work, we have analyzed for the first time the cytoskeleton of AKU chondrocytes by means of immunofluorescence staining. We have shown the presence of SAA within AKU chondrocytes and finally we have demonstrated the co-localization of SAA with three cytoskeletal proteins: actin, vimentin and β-tubulin. Furthermore, in order to observe the ultrastructural features of AKU chondrocytes we have performed TEM analysis, focusing on the Golgi apparatus structure and, to demonstrate that pigmented areas in AKU cartilage are correspondent to areas of oxidation, 4-HNE presence has been evaluated by means of immunofluorescence. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-07-27
    Description: In this report, we present an analysis of several recycling protocols based on labeling of membrane proteins with specific monoclonal antibodies (mAbs). We analyzed recycling of membrane proteins that are internalized by clathrin-dependent endocytosis, represented by the transferrin receptor, and by clathrin-independent endocytosis, represented by the Major Histocompatibility Class I molecules. Cell surface membrane proteins were labeled with mAbs and recycling of mAb:protein complexes was determined by several approaches. Our study demonstrates that direct and indirect detection of recycled mAb:protein complexes at the cell surface underestimate the recycling pool, especially for clathrin-dependent membrane proteins that are rapidly reinternalized after recycling. Recycling protocols based on the capture of recycled mAb:protein complexes require the use of the Alexa Fluor 488 conjugated secondary antibodies or FITC-conjugated secondary antibodies in combination with inhibitors of endosomal acidification and degradation. Finally, protocols based on the capture of recycled proteins that are labeled with Alexa Fluor 488 conjugated primary antibodies and quenching of fluorescence by the anti-Alexa Fluor 488 displayed the same quantitative assessment of recycling as the antibody-capture protocols. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-07-28
    Description: In the kidney, vitamin C is reabsorbed from the glomerular ultrafiltrate by sodium-vitamin C cotransporter isoform 1 (SVCT1) located in the brush border membrane of the proximal tubules. Although we know that vitamin C levels decrease with age, the adaptive physiological mechanisms used by the kidney for vitamin C reabsorption during aging remain unknown. In this study, we used an animal model of accelerated senescence (SAMP8 mice) to define the morphological alterations and aging-induced changes in the expression of vitamin C transporters in renal tissue. Aging induced significant morphological changes, such as periglomerular lymphocytic infiltrate and glomerular congestion, in the kidneys of SAMP8 mice, although no increase in collagen deposits was observed using 2-photon microscopy analysis and second harmonic generation. The most characteristic histological alteration was the dilation of intracellular spaces in the basolateral region of proximal tubule epithelial cells. Furthermore, a combination of laser microdissection, qRT-PCR and immunohistochemical analyses allowed us to determine that SVCT1 expression specifically increased in the proximal tubules from the outer strip of the outer medulla (segment S3) and cortex (segment S2) during aging and that these tubules also express GLUT1. We conclude that aging modulates vitamin C transporter expression and that renal over-expression of SVCT1 enhances vitamin C reabsorption in aged animals that may synthesize less vitamin C. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-07-29
    Description: Electrochemotherapy (ECT) is a medical strategy that allows an increased efficacy of chemotherapy agents after the application of permeabilizing electric pulses having appropriate characteristics (form, voltage, frequency). In the past ten years, the clinical efficacy of this therapeutic approach in several spontaneous models of tumors in animals has been shown. Moreover, some of the molecular and cellular mechanisms responsible for this phenomenon have been elucidated. Our group has been deeply involved in the development of new ECT protocols for companion animals, implementing the use of the technique as first line treatment, and evaluating different chemotherapy agents in laboratory animals as well as pets. This article summarizes the most important advances in veterinary ECT, including the development of novel equipment, therapeutic protocols and their translation to humans. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-08-03
    Description: ABSTRACT Conjugated linoleic acid (CLA) has been reported to improve muscle hypertrophy, steroidogenesis, physical activity, and endurance capacity in mice, although the molecular mechanisms of its actions are not completely understood. The aim of the present study was to identify whether CLA alters the expression of any of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) isoforms, and to evaluate the possible existence of fibre-type-specific hypertrophy in the gastrocnemius and plantaris muscles. Mice were randomly assigned to one of four groups: placebo sedentary, CLA sedentary, placebo trained, or CLA trained. The CLA groups were gavaged with 35 µl per day of Tonalin® FFA 80 food supplement containing CLA throughout the 6-week experimental period, whereas the placebo groups were gavaged with 35 µl sunflower oil each day. Each administered dose of CLA corresponded to approximately 0.7 g/kg or 0.5%, of the dietary daily intake. Trained groups ran 5 days per week on a Rota-Rod for 6 weeks at increasing speeds and durations. Mice were sacrificed by cervical dislocation and hind limb posterior muscle groups were dissected and used for histological and molecular analyses. Endurance training stimulated mitochondrial biogenesis by PGC1α isoforms (tot, α1, α2 and α3) but CLA supplementation did not stimulate PGC1α isoforms or mitochondrial biogenesis in trained or sedentary mice. In the plantaris muscle, CLA supplementation induced a fibre-type-specific hypertrophy of type IIx muscle fibres, which was associated with increased capillary density and was different from the fibre-type-specific hypertrophy induced by endurance exercise (of type I and IIb muscle fibres). This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-08-03
    Description: Diabetic macular edema (DME), characterized by an increase of thickness in the eye macular area, is due to breakdown of the blood-retinal barrier (BRB). Hypoxia plays a key role in the progression of this pathology by activating the hypoxia-inducible factors. In the last years, various studies have put their attention on the role of pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) in retinal dysfunction. However, until now, no study has investigated their protective role against the harmful combined effect of both hyperglycemia and hypoxia on outer BRB. Therefore, in the present study, we have analyzed the role of these peptides on permeability, restoration of tight junctions expression and inhibition of hyperglycemia/hypoxia-induced apoptosis, in an experimental in vitro model of outer BRB. Our results have demonstrated that the peptides' treatment have restored the integrity of outer BRB induced by cell exposure to hyperglycemia/hypoxia. Their effect is mediated through the activation of phosphoinositide 3 kinase (PI3K)/Akt and mammalian mitogen activated protein kinase/Erk kinase (MAPK/ERK) signaling pathways. In conclusion, our study further clarifies the mechanism through which PACAP and VIP perform the beneficial effect on retinal damage induced by hyperglycemic/hypoxic insult, responsible of DME progression. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-08-06
    Description: Dendritic cells (DC) play a pivotal role in the tumor microenvironment (TME). As the primary antigen-presenting cells in the tumor, DCs modulate anti-tumor responses by regulating the magnitude and duration of infiltrating cytotoxic T lymphocyte responses. Unfortunately, due to the immunosuppressive nature of the TME, as well as the inherent plasticity of DCs, tumor DCs are often dysfunctional, a phenomenon that contributes to immune evasion. Recent progresses in our understanding of tumor DC biology have revealed potential molecular targets that allow us to improve tumor DC immunogenicity and cancer immunotherapy. Here, we review the molecular mechanisms that drive tumor DC dysfunction. We discuss recent advances in our understanding of tumor DC ontogeny, tumor DC subset heterogeneity, and factors in the tumor microenvironment that affect DC recruitment, differentiation, and function. Finally, we describe potential strategies to optimize tumor DC function in the context of cancer therapy.
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer on behalf of Birkhäuser.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-07-13
    Description: ABSTRACT Vimentin (Vim), a cytoskeletal intermediate filament, is part of a naturally occurring reversible program, the Epithelial-Mesenchymal Transition (EMT), which converts epithelial cells into mesenchymal-like derivatives. Based on previous results showing that epithelial cells co-express Vim and keratin (Krt) as part of a cytoskeletal network which confers them a highly motile phenotype, we explored the role of Vim in rabbit corneal epithelial cells or RCE1(5T5) cells, an established model of corneal epithelial differentiation. Vim and keratin filaments were co-expressed in cells localized at the proliferative/migratory rim of the growing colonies, but not in basal cells from the center of the colonies nor at suprabasal cell layers. Flow cytometry and qPCR demonstrated that there was a decrease in Krt + /Vim + cell number and ΔNp63α expression when cells reached confluence and formed a 4-5 layered epithelium, while there was a concomitant increase of both Pax-6 expression and Krt + /Vim - cells. Inhibition of cell proliferation with mitomycin C did not modify cell motility nor the expression of Vim. We studied the distribution and expression of α6 integrin, a protein also involved in cell migration. The results demonstrated that α6 integrin had a distribution which was, in part, co-linear with Vim at the proliferative/migratory rim of cell colonies, suggesting an indirect interaction between these proteins. Immunoprecipitation and immunostaining assays indicated that plectin might be mediating such interaction. These data suggest that Vim expression in corneal epithelium is found in a cell population composed of highly motile cells with a Vim + /Krt + /ΔNp63α + /Pax-6 low /α6 integrin + phenotype. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-07-13
    Description: DNA methylation has emerged as a crucial regulator of chondrocyte dedifferentiation, which severely compromises the outcome of autologous chondrocyte implantation (ACI) treatment for cartilage defects. However, the full -scale DNA methylation profiling in chondrocyte dedifferentiation remains to be determined. Here, we performed a genome-wide DNA methylation profiling of dedifferentiated chondrocytes in monolayer culture and chondrocytes treated with DNA methylation inhibitor 5-azacytidine (5-AzaC). This research revealed that the general methylation level of CpG was increased while the COL-1A1 promoter methylation level was decreased during the chondrocyte dedifferentiation. 5-AzaC could reduce general methylation levels and reverse the chondrocyte dedifferentiation. Surprisingly, the DNA methylation level of COL-1A1 promoter was increased after 5-AzaC treatment. The COL-1A1 expression level was increased while that of SOX-9 was decreased during the chondrocyte dedifferentiation. 5-AzaC treatment up-regulated the SOX-9 expression while down-regulated the COL-1A1 promoter activity and gene expression. Taken together, these results suggested that differential regulation of the DNA methylation level of cartilage-specific genes might contribute to the chondrocyte dedifferentiation. Thus, the epigenetic manipulation of these genes could be a potential strategy to counteract the chondrocyte dedifferentiation accompanying in vitro propagation. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-07-13
    Description: Angiogenesis is associated with changes in endothelial cell (EC) proliferation and tube formation, controlled by extracellular receptor-activated kinase (ERK)/mitogen activated protein kinase (MAPK) and Akt signaling. Important regulators of these systems include hormones acting on G-protein-coupled receptors, such as beta 2-adrenoceptors (β2-ARs). In central nervous system (CNS) trauma, the importance of β2-AR modulation has been highlighted, although the effects on revascularization remain unclear. Vascular protection and revascularization are, however, key to support regeneration. We have investigated the angiogenic capacity of the specific β2-AR agonist terbutaline on ECs derived from the CNS, namely bEnd.3-cells. As angiogenesis is a multistep process involving increased proliferation and tube formation of ECs, we investigated the effects of terbutaline on these processes. We show that terbutaline significantly induced bEnd.3 tube formation in a matrigel in vitro assay. Moreover, administration of specific inhibitors of ERK and Akt signaling both inhibited terbutaline-induced tube formation. The proliferation rate of the ECs was not affected. In order to investigate the general effects of terbutaline in an organotypic system, we have used the chick chorioallantoic membrane (CAM)-assay. Most importantly, terbutaline increased the number of blood vessels in this in ovo setting. Although we observed a positive trend, the systemic administration of terbutaline did not significantly improve the functional outcome, nor did it affect revascularization in our spinal cord injury model. In conclusion, these data indicate that terbutaline is promising to stimulate blood vessel formation, underscoring the importance of further research into the angiotherapeutic relevance of terbutaline and β2-AR signaling after CNS-trauma. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-07-13
    Description: Extracellular ATP and other nucleotides induce autocrine and/or paracrine purinergic signalling via activation of the P2 receptors on the cell surface, which represents one of the most common signalling mechanisms. Mesenchymal stem cells (MSC) are a type of multipotent adult stem cells that have many promising applications in regenerative medicine. There is increasing evidence to show that extracellular nucleotides regulate MSC functions and P2 receptor-mediated purinergic signalling plays an important role in such functional regulation. P2 receptors comprise ligand-gated ion channel P2X receptors and G-protein-coupled P2Y receptors. In this review, we provide an overview of the current understanding with respect to expression of the P2X and P2Y receptors in MSC and their roles in mediating extracellular nucleotide regulation of MSC proliferation, migration and differentiation. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-07-15
    Description: Endometrioid adenocarcinomas represent 80% of endometrial carcinomas 1 . Molecular features, including microsatellite instability, mutations of the PTEN, PIK3CA, K-Ras and β-catenin genes 1 and dysregulations in sncRNAs (small non coding RNAs) are described for this disease. However, mechanisms and molecules that determine cell survival and response/resistance to therapy in different subtypes of this tumour are not fully clarified 1 . This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...