ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (614)
  • 2015-2019  (614)
  • Frontiers of Chemical Science and Engineering  (239)
  • 158792
  • Process Engineering, Biotechnology, Nutrition Technology  (614)
  • 1
    Publication Date: 2015-08-14
    Description: Ti 3+ -doped TiO 2 nanosheets with tunable phase composition (doped TiO 2 (A/R)) were synthesized via a hydrothermal method with high surface area anatase TiO 2 nanosheets TiO 2 (A) as a substrate, structure directing agent, and inhibitor; the activity was evaluated using a probe reaction-photocatalytic CO 2 conversion to methane under visible light irradiation with H 2 as an electron donor and hydrogen source. High-resolution transmission electron microscope (HRTEM), field emission scanning electron microscope, UV-Vis diffuse reflectance spectra, and X-ray diffraction (XRD) etc., were used to characterize the photocatalysts. XRD and HRTEM measurements confirmed the existence of anatase-rutile phase junction, while Ti 3+ and single-electron-trapped oxygen vacancy in the doped TiO 2 (A/R) photocatalyst were revealed byelectron paramagnetic resonance (EPR) measurements. Effects of hydrothermal synthesis temperature and the amount of added anatase TiO 2 on the photocatalytic activity were elucidated. Significantly enhanced photocatalytic activity of doped TiO 2 (A/R) was observed; under the optimized synthesis conditions, CH 4 generation rate of doped TiO 2 (A/R) was 2.3 times that of Ti 3+ -doped rutile TiO 2 .
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-14
    Description: Butanol is a promising biofuel with high energy intensity and can be used as gasoline substitute. It can be produced as a sustainable energy by microorganisms (such as Clostridia) from low-value biomass. However, the low productivity, yield and selectivity in butanol fermentation are still big challenges due to the lack of an efficient butanol-producing host strain. In this article, we systematically review the host cell engineering of Clostridia, focusing on (1) various strategies to rebalance metabolic flux to achieve a high butanol production by regulating the metabolism of carbon, redox or energy, (2) the challenges in pathway manipulation, and (3) the application of proteomics technology to understand the intracellular metabolism. In addition, the process engineering is also briefly described. The objective of this review is to summarize the previous research achievements in the metabolic engineering of Clostridium and provide guidance for future novel strain construction to effectively produce butanol.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-24
    Description: This study presents a novel nanostructural electrode made of 20-nm-diameter nanoparticles, which orderly decorated with 2-µm TiO 2 particles, deposited by a new gel process. The decorated electrode (DE) is better than the non-decorated electrode (NE) in both light scattering and light harvesting, as confirmed by diffuse reflectance spectroscopy. X-ray diffraction reveals that both electrodes have a mixture of anatase and rutile phases. The dye-sensitized solar cell based on the decorated electrode shows the highest power conversion efficiency of 7.80% as a result of less recombination demonstrated by electrochemical impedance spectroscopy. From internal power conversion efficiency measurement, the external quantum efficiency of DE cell at 530 nm is 89%, which is higher than that of NE cell (77%).
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-24
    Description: Biological application of conjugates derived from oligonucleotides and quinone methides have previously been limited by the slow exchange of their covalent self-adducts and subsequent alkylation of target nucleic acids. To enhance the rates of these processes, a new quinone methide precursor with an electron donating substituent has been prepared. Additionally, this substituent has been placed para to the nascent exo-methylene group of the quinone methide for maximum effect. A conjugate made from this precursor and a 5'-aminohexyloligonucleotide accelerates formation of its reversible self-adduct and alkylation of its complementary DNA as predicted from prior model studies.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-24
    Description: Galvanic replacement, co-impregnation and sequential impregnation have been employed to prepare Pd-Cu bimetallic catalysts with less than 1 wt-% Cu and ca. 0.03 wt-% Pd for selective hydrogenation of acetylene in excess ethylene. High angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) and H 2 chemisorption results confirmed that Pd-Cu singleatom alloy structures were constructed in all three bimetallic catalysts. Catalytic tests indicated that when the conversion of acetylene was above 99%, the selectivity of ethylene of these three single atom alloy catalysts was still more than 73%. Furthermore, the single atom alloy catalyst prepared by sequential incipient wetness impregnation was found to have the best stability among the three procedures used.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-24
    Description: β -Glucuronidase from Penicillium purpurogenum Li-3 (PGUS) can efficiently hydrolyze glycyrrhizin into the more valuable glycyrrhetic acid monoglucuronide. However, a low productivity of PGUS and the lack of an effective separation strategy have significantly limited its industrial applications. Therefore, the production of PGUS has been improved by optimizing both the fermentation and purification strategies. A two-stage fermentation strategy was developed where PGUS was first grown with glucose and then PGUS was produced in the presence of glycyrrhizin as an inducer. By using this strategy, the biomass was increased 1.5 times and the PGUS activity increased 5.4 times compared to that when glycyrrhizin was used as the sole carbon source. The amount of PGUS produced was increased another 16.6% when the fermentation was expanded to a 15-L fermenter. An effective protocol was also established to purify the PGUS using a sequential combination of hydrophobic, strong anionexchange and gel filtration chromatography. This protocol had a recovery yield of 6% and gave PGUS that was 39 times purer than the crude PGUS. The purified PGUS had a specific activity of 350 U•mg –1 .
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-05-28
    Description: A coupled reaction-solvent extraction process was used to remove HCl from a simulated distiller waste. The extraction performances of various extractants and diluents were compared and the apparent basicity of N235 (a mixture of tertiary amines) in various diluents was determined. The best results were obtained using N235 and isoamyl alcohol as the extractant and diluent, respectively. The yield of HCl from the coupled extraction was 75% with this extraction system. The mechanisms for the removal of HCl in both the direct and coupled extractions were investigated. For the coupled extraction, the formation of an R 3 NHCl ion-pair complex was involved in the HCl removal. For the direct extraction, the mechanism involved the formation of hydrogen bonds at high concentrations of HCl.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-10
    Description: Two dimensional (2D) nanocrystals of noble metals (e.g., Au, Ag, Pt) often have unique structural and environmental properties which make them useful for applications in electronics, optics, sensors and biomedicines. In recent years, there has been a focus on discovering the fundamental mechanisms which govern the synthesis of the diverse geometries of these 2D metal nanocrystals (e.g., shapes, thickness, and lateral sizes). This has resulted in being able to better control the properties of these 2D structures for specific applications. In this review, a brief historical survey of the intrinsic anisotropic properties and quantum size effects of 2D noble metal nanocrystals is given and then a summary of synthetic approaches to control their shapes and sizes is presented. The unique properties and fascinating applications of these nanocrystals are also discussed.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-22
    Description: Foamable high melt strength polypropylene (HMSPP) was prepared by grafting styrene (St) onto polypropylene (PP) and simultaneously introducing polydimethylsiloxane (PDMS) through a one-step melt extrusion process. The effect of PDMS viscosity on the foaming behavior of HMSPP was systematically investigated using supercritical CO 2 as the foaming agent. The results show that the addition of PDMS has little effect on the grafting reaction of St and HMSPP exhibits enhanced elastic response and obvious strain hardening effect. Though the CO 2 solubility of HMSPP with PDMS (PDMS-HMSPP) is lower than that of HMSPP without PDMS, especially for PDMS with low viscosity, the PDMS-HMSPP foams exhibit narrow cell size distribution and high cell density. The fracture morphology of PDMS-HMSPP shows that PDMS with low viscosity disperses more easily and uniformly in HMSPP matrix, leading to form small domains during the extrusion process. These small domains act as bubble nucleation sites and thus may be responsible for the improved foaming performance of HMSPP.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-08-06
    Description: Cardanol is a biobased raw material derived from cashew nut shell liquid. In order to extend its utility, new derivatives and additional applications are useful. In this work cardanol was first epoxidized, and a novel aniline derivative prepared from it under mild reaction conditions with the help of an ionic liquid catalyst. The reaction chemistry was studied by using nuclear magnetic resonance. The resulting aminohydrin adduct showed antioxidant property and should also be a useful synthon for further reactions. As an example, the aminohydrin was shown to undergo a condensation reaction with formaldehyde to form a prepolymer, which could be further reacted to form thermosetting resins.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-08-06
    Description: Silver nanoparticles (AgNPs) have been synthesized in the presence of polyacrylate through the reduction of silver nitrate by sodium borohydride in aqueous solution. The AgNO3 and polyacrylate carboxylate group concentrations were kept constant at 2.0 × 10 –4 and 1.0 × 10 –2 mol·L –1 , respectively, while the ratio of [NaBH 4 ]/[AgNO 3 ] was varied from 1 to 100. The ultraviolet-visible plasmon resonance spectra of these solutions were found to vary with time prior to stabilizing after 27 d, consistent with changes of AgNP size and distribution within the polyacrylate ensemble occurring. These observations, together with transmission electron microscopic results, show this rearrangement to be greatest among the samples at the lower ratios of [NaBH 4 ]/[AgNO 3 ] used in the preparation, whereas those at the higher ratios showed a more even distribution of smaller AgNP. All ten of the AgNP samples, upon a one thousand-fold dilution, catalyze the reduction of 4-nitrophenol to 4-aminophenol in the temperature range 283.2–303.2 K with a substantial induction time being observed at the lower temperatures.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-07-09
    Description: While drug resistance appears to be an inevitable problem of an increasing number of anticancer drugs in monotherapy, combination drug therapy has become a prosperous method to reduce the administered total drug dosages as well as overcome the drug resistance of carcinoma cells. Curcumin, considered to possess multifaceted roles in cancer treatment according to its multiple anti-neoplastic mechanisms as a depressor of chemoresistance, can significantly facilitate its anti-cancer functions and improve therapeutic effects via combination usage with a variety of other drugs with different reaction mechanisms. To explore this possibility, four anti-cancer chemotherapeutic agents that all possess a certain degree of drug resistance problems, including three tyrosine kinase inhibitors (erlotinib, sunitinib and sorafenib) that are acting on different cell pathways and a typical anticancer drug doxorubicin, were combined with curcumin individually to examine the synergistic anti-tumor effect both in vitro and in vivo . Results revealed that sunitinib combined with curcumin at the molar ratio of 0.46 yielded the most potent synergistic effect in vitro , and was therefore chosen for further animal evaluation. To further enhance the anticancer effect, bovine serum albumin (BSA) nanoparticles were utilized as a carrier to deliver the selected drug combination in situ . Preliminary in vivo findings confirmed our hypothesis of being able to maintain a similar injected drug ratio for prolonged time periods in tested animals by our approach, thereby maximizing the therapeutic potency yet minimizing the toxicity of these drugs. This work could open up a new avenue on combination drug therapy and realization the clinical utility of such drugs.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-05-12
    Description: Modeling structural and thermodynamic properties of nucleic acids has long been a challenge in the development of force fields. Polarizable force fields are a new generation of potential functions to take charge redistribution and induced dipole into account, and have been proved to be reliable to model small molecules, polypeptides and proteins, but their use on nucleic acids is still rather limited. In this article, the interactions between nucleic acids and a small molecule or ion were modeled by AMOEBAbio09, a modern polarizable force field, and conventional non-polarizable AMBER99sb and CHARMM36 force fields. The resulting intermolecular interaction energies were compared with those calculated by ab initio quantum mechanics methods. Although the test is not sufficient to prove the reliability of the polarizable force field, the results at least validate its capability in modeling energetics of static configurations, which is one basic component in force field parameterization.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-07-28
    Description: A sol-gel technique has been developed for the synthesis of a magnetite-silica-titania (Fe 3 O 4 -SiO 2 -TiO 2 ) tertiary nanocomposite with improved photocatalytic properties based on the use of inexpensive titania and silica precursors. The exceptional photocatalytic activity of the resulting materials was demonstrated by using them to photocatalyze the degradation of methylene blue solution. The best formulation achieved 98% methylene blue degradation. An interesting feature of the present work was the ability to magnetically separate and reuse the catalyst. The efficiency of the catalyst remained high during two reuses. The synthesized nanomaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, ultra-violet-visible spectroscopy, diffuse reflectance spectroscopy, and thermogravimetric analysis. XRD analysis revealed the formation of multicrystalline systems of cubic magnetite and anatase titania crystals. SEM and TEM characterization revealed well-developed and homo-geneously dispersed particles of size less than 15 nm. FTIR spectra confirmed the chemical interaction of titania and silica. It was further noticed that the optical properties of the prepared materials were dependent on the relative contents of their constituent metal oxides.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-07-28
    Description: Amphiphilic block copolymers (ABCs) assemble into a spherical nanoscopic supramolecular core/shell nanostructure termed a polymeric micelle that has been widely researched as an injectable nanocarrier for poorly water-soluble anticancer agents. The aim of this review article is to update progress in the field of drug delivery towards clinical trials, highlighting advances in polymeric micelles used for drug solubilization, reduced off-target toxicity and tumor targeting by the enhanced permeability and retention (EPR) effect. Polymeric micelles vary in stability in blood and drug release rate, and accordingly play different but key roles in drug delivery. For intravenous (IV) infusion, polymeric micelles that disassemble in blood and rapidly release poorly water-soluble anticancer agent such as paclitaxel have been used for drug solubilization, safety and the distinct possibility of toxicity reduction relative to existing solubilizing agents, e.g., Cremophor EL. Stable polymeric micelles are long-circulating in blood and reduce distribution to non-target tissue, lowering off-target toxicity. Further, they participate in the EPR effect in murine tumor models. In summary, polymeric micelles act as injectable nanocarriers for poorly water-soluble anticancer agents, achieving reduced toxicity and targeting tumors by the EPR effect.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-03-28
    Description: Membrane distillation (MD) is a thermal, vapor-driven transportation process through micro porous hydrophobic membranes that is increasingly being applied to seawater and brine desalination processes. Two types of hydrophobic microporous polyethersulfone flat sheet membranes, namely, annealed polyethersulfone and a polyethersulfone/tetraethoxysilane (PES/TEOS) blend were prepared by a phase inversion process. The membranes were characterized and their performances were investigated using the vacuum membrane distillation of an aqueous NaCl solution. The performances of the prepared membranes were also compared with two commercially available hydrophobic membranes, polytetrafluorethylene and polyvinylidene fluoride. The influence of operational parameters such as feed temperature (25–65 °C), permeate vacuum pressure (200–800 mbar), feed flow rate (8–22 mL/s) and feed salt concentration (3000 to 35000 mg/L) on the MD permeation flux were investigated for the four membranes. The hydrophobic PES/TEOS membrane had the highest salt rejection (99.7%) and permeate flux (86 kg/(m 2 ·h)) at 65 °C, with a feed of 7000 ppm and a pressure of 200 mbar.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-12-30
    Description: Heteropoly compounds with the general formula Cs 1 M 0.5 x + H 3‒0.5 x P 1.2 Mo 11 VO 40 (M = Fe, Co, Ni, Cu or Zn) and Cs 1 Cu y H 3‒2 y P 1.2 Mo 11 VO 40 ( y = 0.1, 0.3 or 0.7) were synthesized and then used as catalysts for the selective oxidation of methacrolein to methacrylic acid. The effects of the transition metals on the structure and activity of the catalysts were investigated. FTIR spectra showed that the transition metal-doped catalysts maintained the Keggin structure of the undoped catalysts. X-ray diffraction results indicated that before calcination, the catalysts doped with Fe and Cu had cubic secondary structures, while the catalysts doped with Co, Ni or Zn had both triclinic and cubic phases and the Co-doped catalyst had the highest content of the triclinic form. Thermal treatment can decrease the content of the triclinic phase. NH 3 temperature-programmed desorption and H 2 temperature- programmed reduction results showed that the transition metals changed the acid and redox properties of the catalysts. The addition of Fe or Cu had positive effects on the activities of the catalyst which is due to the improvement of the electron transfer between the Fe or Cu and the Mo. The effects of the copper content on structure and catalytic activity were also investigated. The Cs 1 Cu 0.3 H 2 P 1.2 Mo 11 VO 40 catalyst had the best performance for the selective oxidation of methacrolein to methacrylic acid.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Controlled growth of Bi〈sub〉2〈/sub〉WO〈sub〉6〈/sub〉 nanorods with exposed [0 0 1] facets and the fabrication of an Fe〈sub〉3〈/sub〉O〈sub〉4〈/sub〉-Bi〈sub〉2〈/sub〉WO〈sub〉6〈/sub〉 magnetic composite by a microwave-assisted polyol process, were achieved in this study. The adsorptivity and photocatalytic performance of the composite toward sunset yellow dye degradation were greatly enhanced by the 〈em〉β〈/em〉-cyclodextrin cavities on its surface, firmly anchored through a cetyltrimethylammonium bromide linkage. A series of examinations and characterizations were carried out to determine the influence of various factors on the morphological modulation-photocatalytic behavior of the pure Bi〈sub〉2〈/sub〉WO〈sub〉6〈/sub〉 prior to final functionalization. Changing the pH of the precursor solution impacted the formation of 0D, 2D, and 3D structures; however, the presence of hexamethylenetetramine surfactant induced the development of 1D nanorod structure. A reasonable crystal growth mechanism was proposed to elucidate the formation process. Conversely, the mechanism of the activity enhancement of 〈em〉β〈/em〉-cyclodextrin functionalized Fe〈sub〉3〈/sub〉O〈sub〉4〈/sub〉-Bi〈sub〉2〈/sub〉WO〈sub〉6〈/sub〉, compared to that of the non-functionalized samples, could be realized with the assistance of chemical trapping experiments on sunset yellow, and was confirmed on the colorless antibiotic (sulfamethoxazole). The high performance and durability of this composite can be attributed to the facet-dependent activity, large adsorption capacity due to inclusion interactions, enhanced visible light absorption, and efficient charge separation.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1808_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉In the production of lithium-ion batteries (LIBs) and recycling of spent LIBs, a large amount of low-concentration lithium-containing wastewater (LCW) is generated. The recovery of Li from this medium has attracted significant global attention from both the environmental and economic perspectives. To achieve effective Li recycling, the features of impurity removal and the interactions among different ions must be understood. However, it is generally difficult to ensure highly efficient removal of impurity ions while retaining Li in the solution for further recovery. In this study, the removal of typical impurity ions from LCW and the interactions between these species were systematically investigated from the thermodynamic and kinetics aspects. It was found that the main impurities (e.g., Fe〈sup〉3+〈/sup〉, Al〈sup〉3+〈/sup〉, Ca〈sup〉2+〈/sup〉, and Mg〈sup〉2+〈/sup〉) could be efficiently removed with high Li recovery by controlling the ionic strength of the solution. The mechanisms of Fe〈sup〉3+〈/sup〉, Al〈sup〉3+〈/sup〉, Ca〈sup〉2+〈/sup〉, and Mg〈sup〉2+〈/sup〉 removal were investigated to identify the controlling steps and reaction kinetics. It was found that the precipitates are formed by a zero-order reaction, and the activation energies tend to be low with a sequence of fast chemical reactions that reach equilibrium very quickly. Moreover, this study focused on Li loss during removal of the impurities, and the corresponding removal rates of Fe〈sup〉3+〈/sup〉, Al〈sup〉3+〈/sup〉, Ca〈sup〉2+〈/sup〉, and Mg〈sup〉2+〈/sup〉 were found to be 99.8%, 99.5%, 99%, and 99.7%, respectively. Consequently, high-purity Li〈sub〉3〈/sub〉PO〈sub〉4〈/sub〉 was obtained via one-step precipitation. Thus, this research demonstrates a potential route for the effective recovery of Li from low-concentration LCW and for the appropriate treatment of acidic LCW.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1806_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Bis-alkylsulfonic acid and polyethylene glycol (PEG)-substituted BF〈sub〉2〈/sub〉 azadipyrromethenes have been synthesized by an adaptable and versatile route. Only four synthetic stages were required to produce the penultimate fluorophore compounds, containing either two alcohol or two terminal alkyne substituents. The final synthetic step introduced either sulfonic acid or polyethylene glycol groups to impart aqueous solubility. Sulfonic acid groups were introduced by reaction of the bis-alcohol-substituted fluorophore with sulfur trioxide, and a double Cu(I)-catalyzed cycloaddition reaction between the bis-alkyne fluorophore and methoxypolyethylene glycol azide yielded a neutral bis-pegylated derivative. Both fluorophores exhibited excellent near-infrared (NIR) photophysical properties in methanol and aqueous solutions. Live cell microscopy imaging revealed efficient uptake and intracellular labelling of cells for both fluorophores. Their simple synthesis, with potential for last-step structural modifications, makes the present NIR-active azadipyrromethene derivatives potentially useful as NIR fluorescence imaging probes for live cells.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1828_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉This paper compares the techno-economic performances of three technologies for CO〈sub〉2〈/sub〉 capture from a lignite-based IGCC power plant located in the Czech Republic: (1) Physical absorption with a Rectisol-based process; (2) Polymeric CO〈sub〉2〈/sub〉-selective membrane-based capture; (3) Low-temperature capture. The evaluations show that the IGCC plant with CO〈sub〉2〈/sub〉 capture leads to costs of electricity between 91 and 120 € · MWh〈sup〉−1〈/sup〉, depending on the capture technology employed, compared to 65 € · MWh〈sup〉−1〈/sup〉 for the power plant without capture. This results in CO〈sub〉2〈/sub〉 avoidance costs ranging from 42 to 84 € · 〈span〉 〈span〉\({\text{t}_{{\text{CO}_2},\text{avoided}}}^{ - 1}\)〈/span〉 〈/span〉, mainly linked to the losses in net power output. From both energy and cost points of view, the low-temperature and Rectisol based CO〈sub〉2〈/sub〉 capture processes are the most efficient capture technologies. Furthermore, partial CO〈sub〉2〈/sub〉 capture appears as a good mean to ensure early implementation due to the limited increase in CO〈sub〉2〈/sub〉 avoidance cost when considering partial capture. To go beyond the two specific CO〈sub〉2〈/sub〉-selective membranes considered, a cost/membrane property map for CO〈sub〉2〈/sub〉-selective membranes was developed. This map emphasise the need to develop high performance membrane to compete with solvent technology. Finally, the cost of the whole CCS chain was estimated at 54 € · 〈span〉 〈span〉\({\text{t}_{{\text{CO}_2},\text{avoided}}}^{ - 1}\)〈/span〉 〈/span〉 once pipeline transport and storage are taken into consideration. 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1870_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉〈/p〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉In traditional ceramic processing techniques, high sintering temperature is necessary to achieve fully dense microstructures. But it can cause various problems including warpage, overfiring, element evaporation, and polymorphic transformation. To overcome these drawbacks, a novel processing technique called “cold sintering process (CSP)” has been explored by Randall et al. CSP enables densification of ceramics at ultra-low temperature (⩽300°C) with the assistance of transient aqueous solution and applied pressure. In CSP, the processing conditions including aqueous solution, pressure, temperature, and sintering duration play critical roles in the densification and properties of ceramics, which will be reviewed. The review will also include the applications of CSP in solid-state rechargeable batteries. Finally, the perspectives about CSP is proposed.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1832_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Carbon molecular sieve membrane (CMSM)/paper-like stainless steel fibers (PSSF) has been manufactured by pyrolyzing poly (furfuryl alcohol) (PFA) coated on the metal fibers. PFAwas synthesized using oxalic acid dihydrate as a catalyst and coated on microfibers by dip coating method. For the purpose of investigating the effects of final carbonization temperature, the composites were carbonized between 400°C and 800°C under flowing nitrogen. The morphology and microstructure were examined by X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, N〈sub〉2〈/sub〉 adsorption and desorption, Raman spectra and X-ray photoelectron spectra. The consequences of characterization showed that the CMSM containing mesopores of 3.9 nm were manufactured. The specific surface area of the CMSM/PSSF fabricated in different pyrolysis temperature varies from 26.5 to 169.1 m〈sup〉2〈/sup〉·g〈sup〉-1〈/sup〉 and pore volume varies from 0.06 to 0.23 cm〈sup〉3〈/sup〉·g〈sup〉-1〈/sup〉. When pyrolysis temperature exceeds 600°C, the specific surface, pore diameter and pore volume decreased as carbonization temperature increased. Besides, the degree of graphitization in carbon matrix increased with rising pyrolysis temperature. Toluene adsorption experiments on different structured fixed bed that was padded by CMSM/PSSF and granular activated carbon (GAC) were conducted. For the sake of comparison, adsorption test was also performed on fixed bed packed with GAC. The experimental results indicated that the rate constant κ’ was dramatically increased as the proportion of CMCM/PSSF composites increased on the basis of Yoon-Nelson model, which suggested that structured fixed bed padded with CMSM/PSSF composite offered higher adsorption rate and mass transfer efficiency. 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1827_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉〈/p〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Hydrodesulfurization (HDS) of thiophene, as a gasoline model oil, over an industrial Ni-Mo/Al〈sub〉2〈/sub〉O〈sub〉3〈/sub〉 catalyst was investigated in a continuous system under microwave irradiation. The HDS efficiency was much higher (5%–14%) under microwave irradiation than conventional heating. It was proved that the reaction was enhanced by both microwave thermal and non-thermal effects. Microwave selective heating caused hot spots inside the catalyst, thus improved the reaction rate. From the analysis of the non-thermal effect, the molecular collisions were significantly increased under microwave irradiation. However, instead of being reduced, the apparent activation energy increased. This may be due to the microwave treatment hindering the adsorption though upright S-bind (η〈sup〉1〈/sup〉) and enhancing the parallel adsorption (η〈sup〉5〈/sup〉), both adsorptions were considered to favor to the direct desulfurization route and the hydrogenation route respectively. Therefore, the HDS process was considered to proceed along the hydrogenation route under microwave irradiation. 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1839_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉〈/p〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Solar powered steam generation is an emerging area in the field of energy harvest and sustainable technologies. The nano-structured photothermal materials are able to harvest energy from the full solar spectrum and convert it to heat with high efficiency. Moreover, the materials and structures for heat management as well as the mass transportation are also brought to the forefront. Several groups have reported their materials and structures as solutions for high performance devices, a few creatively coupled other physical fields with solar energy to achieve even better results. This paper provides a systematic review on the recent developments in photothermal nanomaterial discovery, material selection, structural design and mass/heat management, as well as their applications in seawater desalination and fresh water production from waste water with free solar energy. It also discusses current technical challenges and likely future developments. This article will help to stimulate novel ideas and new designs for the photothermal materials, towards efficient, low cost practical solar-driven clean water production. 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1824_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉〈/p〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The work studied a non-catalytic upgrading of fast pyrolysis bio-oil by blending under supercritical conditions using methanol, ethanol and isopropanol as solvent and hydrogen donor. Characterisation of the bio-oil and the upgraded bio-oils was carried out including moisture content, elemental content, pH, heating value, gas chromatography-mass spectrometry (GCMS), Fourier transform infrared radiation, 〈sup〉13〈/sup〉C nuclear magnetic resonance spectroscopy, and thermogravimetric analysis to evaluate the effects of blending and supercritical reactions. The GCMS analysis indicated that the supercritical methanol reaction removed the acids in the bio-oil consequently the pH increased from 2.39 in the crude bio-oil to 4.04 after the supercritical methanol reaction. The ester contents increased by 87.49% after the supercritical methanol reaction indicating ester formation could be the major deacidification mechanism for reducing the acidity of the bio-oil and improving its pH value. Simply blending crude bio-oil with isopropanol was effective in increasing the C and H content, reducing the O content and increasing the heating value to 27.55 from 17.51 MJ·kg〈sup〉−1〈/sup〉 in the crude bio-oil. After the supercritical isopropanol reaction, the heating value of the liquid product slightly further increased to 28.85 MJ·kg〈sup〉−1〈/sup〉. 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1861_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉〈/p〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The utilization of materials with a hierarchical porous structure as multi-functional additives is highly attractive in the preparation of hybrid membranes. In this study, novel hybrid membranes are designed by embedding hierarchical porous Santa Barbara Amorphous 15 (SBA-15) with a dual-pore architecture (micropores and mesopores) for pervaporation desulfurization. The SBA-15 with cylindrical mesopores provides molecular transport expressways to ensure improved permeability, while micropores on the wall have molecular sieving effects that are essential for the enhancement of permselectivity of thiophene molecules. Considering thiophene/〈em〉n〈/em〉-octane mixture as a model system, the hybrid membrane with embedded 6 wt-% SBA-15 exhibits optimal pervaporation desulfurization performance with a permeation flux of 22.07 kg·m〈sup〉−2〈/sup〉·h〈sup〉−1〈/sup〉 and an enrichment factor of 6.76. Moreover, the detailed structure and properties of hybrid membranes are systematically characterized. This study demonstrates the immense potential of hierarchical porous materials as additives in membranes to simultaneously increase permeability and permselectivity.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1830_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Despite all major breakthroughs in recent years of research, we are still unsuccessful to effectively diagnose and treat cancer that has express and metastasizes. Thus, the development of a novel approach for cancer detection and treatment is crucial. Recent progress in Glyconanotechnology has allowed the use of glycans and lectins as bio-functional molecules for many biological and biomedical applications. With the known advantages of quantum dots (QDs) and versatility of carbohydrates and lectins, Glyco-functionalised QD is a new prospect in constructing biomedical imaging platform for cancer behaviour study as well as treatment. In this review, we aim to describe the current utilisation of Glyco-functionalised QDs as well as their future prospective to interpret and confront cancer.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1863_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉SSZ-39 zeolite with AEI framework structure is a good catalyst candidate for the methanol-to-olefins (MTO) reaction. However, the diffusion limitation and coke formation often results in fast deactivation of the SSZ-39 zeolite catalyst. One solution for this challenge is to introduce mesoporosity in the SSZ-39 zeolite. Herein, we report the synthesis of mesoporous SSZ-39 zeolite using an organosilane surfactant, 〈em〉N〈/em〉,〈em〉N〈/em〉-dimethyl-〈em〉N〈/em〉-(3-(trimethoxysilyl)propyl)octan-1-aminium chloride, as a mesopore template and 〈em〉N〈/em〉,〈em〉N〈/em〉-dimethyl-〈em〉cis〈/em〉-2,6-dimethylpiperidinium as a micropore template. The obtained zeolites were characterized by X-ray diffraction, N〈sub〉2〈/sub〉 sorption, scanning electron microscopy, temperature programmed desorption of ammonia, and magic angle spinning nuclear magnetic resonance of 〈sup〉27〈/sup〉Al. The results show that the mesoporous SSZ-39 zeolite has high crystallinity, meso/microporosity, high surface area, cuboid morphology, and abundant acidic sites. More importantly, this mesoporous SSZ-39 zeolite exhibits enhanced catalyst lifetime in the MTO reaction due to the presence of mesoporosity for fast mass transfer, compared with a conventional SSZ-39 zeolite without mesoporosity.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1845_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The hierarchical HZSM-5 was prepared via dealumination and desilication of commercial Al-rich HZSM-5, and characterized by X-ray diffraction, 27Al magic-angle spinning nuclear magnetic resonance, inductively coupled plasma mass spectrometry, scanning electron microscope, transmission electron microscope, N〈sub〉2〈/sub〉 adsorption-desorption, NH〈sub〉3〈/sub〉 temperature-programmed desorption, performed thermogravimetric and Raman spectrum. The results showed that partial framework of HZSM-5 was removed after steam treatment at 0.15 MPa, 500°C for 3 h. HZSM-5 with high specific surface area and much mesoporosity was obtained by the subsequent alkaline treatment. The regulation of acid quantity was achieved by altering the concentration of alkaline. Dealumination and desilication of Al-rich HZSM-5 zeolites became more effective using a combination of steam and alkaline treatments than using alkaline treatment alone. Methanol aromatization reaction was employed to evaluate the catalytic performance of treated HZSM-5 at 0.15 MPa, 450°C and MHSV of 1.5 h–1. The results indicated that after steam treatment, HZSM-5 further treated with 0.2 mol/L NaOH exhibits the best catalytic performance: the selectivity of aromatics reached 42.1% and the lifetime of catalyst attained 212 h, which are much better than untreated HZSM-5.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1778_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉In recent years, nanostructured oxide films on titanium alloy surfaces have gained significant interest due to their electrical, catalytic and biological properties. In literature, there is variety of different approaches to fabricate nanostructured oxide films. Among these methods, anodization technique, which allows fine-tuning of oxide film thickness, feature size, topography and chemistry, is one of the most popular approaches to fabricate nanostructured oxide films on titanium alloys, and it has been widely investigated for orthopedic applications. Briefly, anodization is the growth of a controlled oxide film on a metallic component attached to the anode of an electrochemical cell. This review provides an overview of the anodization technique to grow nanostructured oxide films on titanium and titanium alloys and summarizes the interactions between anodized titanium alloy surfaces with cells in terms of cellular adhesion, proliferation and differentiation. It will start with summarizing the mechanism of nanofeatured oxide fabrication on titanium alloys and then switch its focus on the latest findings for anodization of titanium alloys, including the use of fluoride free electrolytes and anodization of 3D titanium foams. The review will also highlight areas requiring further research to successfully translate anodized titanium alloys to clinics for orthopedic applications.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1759_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉A simple dual analyte fluorescein-based probe (〈strong〉PF3-Glc〈/strong〉) was synthesised containing 〈em〉β〈/em〉-glucosidase (〈em〉β〈/em〉-glc) and hydrogen peroxide (H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉) trigger units. The presence of 〈em〉β〈/em〉-glc, resulted in fragmentation of the parent molecule releasing glucose and the slightly fluorescent mono-boronate fluorescein (〈strong〉PF3〈/strong〉). Subsequently, in the presence of glucose oxidase (GOx), the released glucose was catalytically converted to D-glucono-δ-lactone, which produced H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉 as a by-product. The GOx-produced H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉, resulted in classic H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉-mediated boronate oxidation and the release of the highly emissive fluorophore, fluorescein. This unique cascade reaction lead to an 80-fold increase in fluorescence intensity. 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1785_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉〈/p〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉A response surface method was used to optimize the purification and concentration of gluconic acid from fermentation broth using an integrated membrane system. 〈em〉Gluconobacter oxydans〈/em〉 was used for the bioconversion of the glucose in sugarcane juice to gluconic acid (concentration 45 g∙L〈sup〉–1〈/sup〉) with a yield of 0.9 g∙g〈sup〉–1〈/sup〉. The optimum operating conditions, such as trans-membrane pressure (TMP), pH, cross-flow rate (CFR) and initial gluconic acid concentration, were determined using response surface methodology. Five different types of polyamide nanofiltration membranes were screened and the best performing one was then used for downstream purification of gluconic acid in a flat sheet cross-flow membrane module. Under the optimum conditions (TMP = 12 bar and CFR = 400 L∙h〈sup〉–1〈/sup〉), this membrane retained more than 85% of the unconverted glucose from the fermentation broth and had a gluconic acid permeation rate of 88% with a flux of 161 L∙m〈sup〉–2〈/sup〉∙h〈sup〉–1〈/sup〉. Using response surface methods to optimize this green nanofiltration process is an effective way of controlling the production of gluconic acid so that an efficient separation with high flux is obtained.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1721_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Poly(D,L-lactic-co-glycolic acid) (PLGA)/poly (lactic acid) (PLA) microspheres/nanoparticles are one of the most successful drug delivery systems (DDS) in lab and clinic. Because of good biocompatibility and biodegradability, they can be used in various areas, such as long-term release system, vaccine adjuvant, tissue engineering, etc. There have been 15 products available on the US market, but the system still has many problems during development and manufacturing, such as wide size distribution, drug stability issues, and so on. Recently, many new and modified methods have been developed to overcome the above problems. Some of the methods are easy to scale up, and have been available on the market to achieve pilot scale or even industrial production scale. Furthermore, the relevant FDA guidance on the DDS is still incomplete, especially for abbreviated new drug application. In this review, we present some recent achievement of the PLGA/PLA microspheres/nanoparticles, and discuss some promising manufacturing methods. Finally, we focus on the current FDA guidance on the DDS. The review provides an overview on the development of the system in pharmaceutical industry.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1729_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-07-18
    Description: Heat Integration has been established over the last decades as a proven chemical engineering methodology. Two design implementations are often used in the industry: grassroots and retrofit. Although various methods have been developed for retrofit, it still needs more development to ensure simultaneously thermodynamic feasibility and economic viability. In this paper, a novel graphical approach has been developed to facilitate the understanding of the current situation and scope of improvement. The Retrofit Tracing Grid Diagram presents all streams and heat exchangers in temperature scale and the heat exchangers are clearly separated from each other, enabling clear visualisation of the current state. The tool incorporates the previously developed Cross-Pinch Analysis as well as path approach for retrofit. Additionally, the non-vertical heat transfer can be evaluated. The application of the developed tool has been validated on an oil refinery case study. The applicability of the tool is evident as it can reveal additional options for modification that none of the previous methods considered.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-07-18
    Description: A co-expressing system of DsbA-DsbA mut was suggested for the first time to enhance the soluble expression of human trypsin-1. As a control, leaderless DsbA chaperone was also co-expressed with human trypsin-1. Vectors pET39b-trypsin and pET28a-DsbADsbA mut -trypsin with the above two DsbA fusion tag were constructed. The strain with vector pET39b-trypsin expressed fusion protein DsbA-trypsin in form of inclusion bodies. While in E. coli BL21 (DE3) strain with vector pET28a-DsbA-DsbA mut -trypsin, the soluble expression of trypsin fusion protein was achieved. Under the optimized expression conditions, the soluble fraction accounted for about 49.43% of total DsbA-DsbA mut -trypsin proteins in crude supernatant. The purification yield was 4.15% by nickel chelating chromatography and 3.3 mg activated trypsin with a purity of 88.68% was obtained from 1 L LB broth. To detect the possible functions of DsbA series chaperons in trypsin fusion protein, we analyzed the primary three-dimensional structure of fusion proteins, mainly focusing on the compatibleness between trypsin and fusion chaperons. The results suggested that (1) besides the primary function in periplasm, leaderless DsbA or DsbA mut may also act as a signal sequences-like leader targeted to periplasm that partly relieved the pressure from fusion protein overexpression and inclusion body formation, and (2) as there was significant soluble expression of DsbA-DsbA mut -trypsin compared with DsbA-trypsin, DsbA mut may function as charge or hydrophobic balance in recombinant protein DsbA-DsbA mut -trypsin.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-06-28
    Description: A palladium catalyst supported on 2-aminopyridine functionalized cellulose was synthesized and fully characterized by inductively coupled plasma atomic emission spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectrometry. This catalyst can be applied in the Suzuki cross-coupling reaction of aryl halides with arylboronic acids in 50% ethanol to afford biaryls in good yields, and easily recycled by simple filtration after reaction without the loss of metal Pd.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-08-18
    Description: Great interests have arisen over the last decade in the development of hierarchically porous materials. The hierarchical structure enables materials to have maximum structural functions owing to enhanced accessibility and mass transport properties, leading to improved performances in various applications. Hierarchical porous materials are in high demand for applications in catalysis, adsorption, separation, energy and biochemistry. In the present review, recent advances in synthesis routes to hierarchically porous materials are reviewed together with their catalytic contributions.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-08-26
    Description: The effect of thermal pretreatment on the active sites and catalytic performances of PtSn/SiO 2 catalyst in acetic acid (AcOH) hydrogenation was investigated in this article. The catalysts were characterized by N 2 physical adsorption, X-ray diffraction, transmission electron microscopy, pyridine Fourier-transform infrared spectra, and H 2 -O 2 titration on its physicochemical properties. The results showed that Pt species were formed primarily in crystalline structure and no PtSn x alloy was observed. Meanwhile, with the increment of thermal pretreatment temperature, Pt dispersion showed a decreasing trend due to the aggregation of Pt particles. Simultaneously, the amount of Lewis acid sites was remarkably influenced by such thermal pretreatment owning to the consequent physicochemical property variation of Sn species. Interestingly, the catalytic activity showed the similar variation trend with that of Lewis acid sites, confirming the important roles of Lewis acid sites in AcOH hydrogenation. Moreover, a balancing effect between exposed Pt and Lewis acid sites was obtained, resulting in the superior catalytic performance in AcOH hydrogenation.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-10-13
    Description: Dry yeast cells (DYC) were used as a cheap nitrogen source to replace expensive yeast extract (YE) for L-lactic acid production by thermophilic Bacillus coagulans . Cassava starch (200 g·L –1 ) was converted to L-lactic acid by simultaneous saccharification and fermentation using Bacillus coagulans WCP10-4 at 50 °C in the presence of 20 g·L –1 of DYC, giving 148.1 g·L –1 of Llactic acid at 27 h with a productivity of 5.5 g·L –1 ·h –1 and a yield of 92%. In contrast, 154.4 g·L –1 of lactic acid was produced at 24 h with a productivity of 6.4 g·L –1 ·h –1 and a yield of 96% when equal amount of YE was used under the same conditions. Use of pre-autolyzed DYC at 50 °C for overnight slightly improved the lactic acid titer (154.5 g·L –1 ) and productivity (7.7 g·L –1 ·h –1 ) but gave the same yield (96%).
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-10-13
    Description: Protein-rich waste is an abundantly available resource that is currently used mainly as animal feed and fertilizers. Valorisation of protein waste to higher value products, particularly commodity chemicals such as precursors for polymers, has attracted significant research efforts. Enzyme-based approaches, being environmentallyfriendly compared to their chemical counterparts, promise sustainable processes for conversion of protein waste to valuable chemicals. This review provides a general overview on valorisation of protein waste and then further summarises the use of enzymes in different stages of the valorisation process—protein extraction and hydrolysis, separation of individual amino acids and their ultimate conversion into chemicals. Case studies of enzymatic conversion are presented for different amino acids including glutamic acid, lysine, phenylalanine, tyrosine, arginine and aspartic acid. The review compares the different enzyme reactors and operation modes for amino acid conversion. The emerging opportunities and challenges in the field are discussed: engineering powerful enzymes and integrating innovative processes for industrial application at a low cost.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-10-13
    Description: Compared to small molecule process analytical technology (PAT) applications, biotechnology product PAT applications have certain unique challenges and opportunities. Understanding process dynamics of bioreactor cell culture process is essential to establish an appropriate process control strategy for biotechnology product PAT applications. Inline spectroscopic techniques for real time monitoring of bioreactor cell culture process have the distinct potential to develop PAT approaches in manufacturing biotechnology drug products. However, the use of inline Fourier transform infrared (FTIR) spectroscopic techniques for bioreactor cell culture process monitoring has not been reported. In this work, real time inline FTIR Spectroscopy was applied to a lab scale bioreactor mAb IgG3 cell culture fluid biomolecular dynamic model. The technical feasibility of using FTIR Spectroscopy for real time tracking and monitoring four key cell culture metabolites (including glucose, glutamine, lactate, and ammonia) and protein yield at increasing levels of complexity (simple binary system, fully formulated media, actual bioreactor cell culture process) was evaluated via a stepwise approach. The FTIR fingerprints of the key metabolites were identified. The multivariate partial least squares (PLS) calibration models were established to correlate the process FTIR spectra with the concentrations of key metabolites and protein yield of in-process samples, either individually for each metabolite and protein or globally for all four metabolites simultaneously. Applying the 2nd derivative pre-processing algorithm to the FTIR spectra helps to reduce the number of PLS latent variables needed significantly and thus simplify the interpretation of the PLS models. The validated PLS models show promise in predicting the concentration profiles of glucose, glutamine, lactate, and ammonia and protein yield over the course of the bioreactor cell culture process. Therefore, this work demonstrated the technical feasibility of real time monitoring of the bioreactor cell culture process via FTIR spectroscopy. Its implications for enabling cell culture PAT were discussed.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-10-13
    Description: A one-step synthesized Ni-Mo-S catalyst supported on SiO 2 was prepared and used for hydrodesulphurization (HDS) of dibenzothiophene (DBT), and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT), and for hydrogenation of tetralin. The catalyst showed relatively high HDS activity with complete conversion of DBT and 4,6-DMDBT at temperature of 280 °C and a constant pressure of 435 psi. The HDS conversions of DBTand 4,6-DMDBT increased with increasing temperature and pressure, and decreasing liquid hourly space velocity (LHSV). The HDS of DBT proceeded mostly through the direct desulphurization (DDS) pathway whereas that of 4,6-DMDBT occurred mainly through the hydrogenationdesulphurization (HYD) pathway. Although the catalyst showed up to 24% hydrogenation/dehydrogenation conversion of tetralin, it had low conversion and selectivity for ring opening and contraction due to the competitive adsorption of DBTand 4,6-DMDBT and insufficient acidic sites on the catalyst surface.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-10-13
    Description: The Chinese Hamster Ovary (CHO K1) cell was used to express a targeted anti-cancer monoclonal antibody by optimizing the platform of the construction of production cell line in this study. The adherent CHO K1 was first adapted to suspension culture in chemical defined medium. Then the glutamine synthetase (GS) vector was applied to construct a single plasmid to overexpress a monoclonal antibody IgG1. Post transfection, the production of cell pool was optimized by glutamine-free selection and amplification using various concentrations of methionine sulfoximine. The best cell pool of CHO K1/IgG1 was used to screen the top single clone using the limiting dilution cloning. Finally, a high IgG1 production of 780 mg/L was obtained from a batch culture. This study demonstrated that the construction of high producing cell line, from gene to clone, could be completed within six month and the gene amplification improved protein production greatly.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-10-13
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-10-20
    Description: The ability to tune the size, shape, composition and surface properties impart nanoparticles with the desired functions for bio-application. This article highlights some of the recent examples in the exploration of metal (e.g., gold and silver) nanoparticles, especially those with magnetic properties and bio-conjugated structures, as theranostic nanoprobes. Such nanoprobes exhibit tunable optical, spectroscopic, magnetic, and electrical properties for signal amplifications. Examples discussed in this article will focus on the nanoproble-enhanced colorimetric detection and surface enhanced Raman scattering (SERS) detection of biomarkers or biomolecules such as proteins and DNAs. The understanding of factors controlling the biomolecular interactions is essential for the design of SERS nanoprobes with theranostic functions.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-09-22
    Description: Cyanobacteria can produce useful renewable fuels and high-value chemicals using sunlight and atmospheric carbon dioxide by photosynthesis. Genetic manipulation has increased the variety of chemicals that cyanobacteria can produce. However, their uniquely abundant NADPH-pool, in other words insufficient supply of NADH, tends to limit their production yields in case of utilizing NADH-dependent enzyme, which is quite common in heterotrophic microbes. To overcome this cofactor imbalance and enhance cyanobacterial fuel and chemical production, various approaches for cofactor engineering have been employed. In this review, we focus on three approaches: (1) utilization of NADPHdependent enzymes, (2) increasing NADH production, and (3) changing cofactor specificity of NADH-dependent enzymes from NADH to NADPH.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-09-22
    Description: Pyrroloquinoline quinone (PQQ) plays a significant role as a redox cofactor in combination with dehydrogenases in bacteria. These dehydrogenases play key roles in the oxidation of important substrates for the biotechnology industry, such as vitamin C production. While biosynthesis of PQQ genes has been widely studied, PQQ-transport mechanisms remain unclear. Herein, we used both two-dimensional fluorescence-difference gel electrophoresis tandem mass spectrometry and RNA sequencing to investigate the effects of pqqB overexpression in an industrial strain of Gluconobacter oxydans WSH-003. We have identified 73 differentially expressed proteins and 99 differentially expressed genes, a majority of which are related to oxidation-reduction and transport processes by gene ontology analysis. We also described several putative candidate effectors that responded to increased PQQ levels resulting from pqqB overexpression. Furthermore, quantitative PCR was used to verify five putative PQQ-transport genes among different PQQ producing strains, and the results showed that ompW , B932_1930 and B932_2186 were upregulated in all conditions. Then the three genes were over-expressed in G. oxydans WSH-003 and PQQ production were detected. The results showed that extracellular PQQ of B932_1930 (a transporter) and B932_2186 (an ABC transporter permease) overexpression strains were enhanced by 1.77-fold and 1.67-fold, respectively. The results suggest that the proteins encoded by PqqB, B932_1930 and B932_2186 might enhance the PQQ secretion process.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-09-10
    Description: Oil bleed is a serious problem in elastomeric thermal silicone conductive pads. The components of the oil bleed and the effect of the silicone chemical parameters on the amount of oil bleed have been determined. The main components of oil bleeds are the uncrosslinked silicones in the cured resins, which include the unreacted silicone materials and the macromolecular substances produced by the hydrosilylation reaction. Cured resins with a high crosslinking density and a high molecular weight of vinyl silicone residues had a lower amount of oil bleed. In addition, a low Si-H content also reduced the amount of oil bleed.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-09-10
    Description: Leaching selectivity during metal recovery from complex electronic waste using a hydrochemical process is always one of the generic issues. It was recently improved by using ammonia-based leaching process, specifically for electronic waste enriched with copper. This research proposes electrodeposition as the subsequent approach to effectively recover copper from the solutions after selective leaching of the electronic waste and focuses on recognising the electrochemical features of copper recovery. The electrochemical reactions were investigated by considering the effects of copper concentration, scan rate and ammonium salts. The diffusion coefficient, charge transfer coefficient and heterogeneous reaction constant of the electrodeposition process were evaluated in accordance with different solution conditions. The results have shown that electrochemical recovery of copper from ammoniabased solution under the conditions of selective electronic waste treatment is charge transfer controlled and provide bases to correlate the kinetic parameters with further optimisation of the selective recovery of metals from electronic waste.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-05-28
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-05-28
    Description: We report on the rheological behavior of wormlike micelles constructed by ionic liquid surfactant [C 8 mim]Br (1-octyl-3-methylimidazolium bromide) and anionic surfactant sodium oleate (NaOA) in aqueous solution. The effects of surfactant composition, total surfactant concentration, added salts, and temperature were investigated. The prevailing surfactant effect at lower concentration and the leading cosolvent effect at higher concentration of [C 8 mim]Br may be the main reasons for appearance of well-established maximum in key rheological parameters with variation of surfactant composition and total surfactant concentration. The Cole-Cole plots demonstrate that the systems (total surfactant concentration falls within 0.17–0.35 mol·L–1 and molar ratio 0.33≤R≤0.50) fit the Maxwell’s mechanical model as linear viscoelastic fluid. The addition of NaBr or sodium salicylate decreases significantly the viscosity and the relaxation time of the wormlike micelle solution but cannot change the value of plateau modulus G 0 . The present system has low rheological tolerance to temperature. The increase of temperature decreases the average contour length and viscosity of wormlike micelles and thus strengthens the relaxation progress of diffusion and weakens the relaxation progress of reptation. Increasing the temperature also decreases the value of plateau modulus G 0 and shifts the minimum value of the loss modulus G″ min to higher frequencies.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-05-28
    Description: Shell-and-tube heat exchanger with helical baffles is superior to that with segmental baffles in reducing pressure drop, eliminating dead zone and lowering the risks of vibration of tube bundle. This paper focused on the small-angle helical baffles that have been merely reported in open literature. These baffles are noncontinuous helical baffles with a helix angle of 10° to 30°, and their shapes are 1/4 ellipse, 1/4 sector and 1/3 sector. To assess the integrative performance, α/Δp is employed, and the calculated results show that among the three baffle shapes the heat exchangers with a 1/4 sector helical baffle have the lowest pressure drop. At β = 10° and 20°, 1/4 sector helical baffle heat exchangers show the best integrative performance; at β = 30°, 1/4 ellipse and 1/4 sector helical baffle heat exchangers perform almost the same. For the study of helix angles, we found that 30° has the best integrative performance at low mass flow rate, almost the same as 20° at high mass flow rate.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-06-23
    Description: Two types of activated carbon, namely, Filtrasorb 400 and Nuchar SA, were functionalized by quaternary ammonium salts (quats), as to enhance perchlorate adsorption. Results showed that the adsorption of quats on Nuchar SA increased with increase in chain length (hydrophobicity) of quats. Filtrasorb 400, however, had limited uptake of long-chain quats such as dodecyltrimethylammonium and hexadecyltrimethylammoium (HDTMA). Results indicated that perchlorate removal by the functionalized activated carbon was directly related to the chain length of the modifying quats. Perchlorate removal by functionalized activated carbon increased with increase in chain length of the modifying quats and became less pH-dependent. Modified Nuchar SA had higher overall perchlorate removal capacity than the modified Filtrasorb F400, but was more strongly affected by pH than Filtrasorb 400. Activated carbon treated with HDTMA exhibited the best perchlorate removal capacity among all quats studied. Results indicated that tailoring the activated carbon surface with HDTMA rendered the activated carbon surface positively charged, which resulted in substantial increase in perchlorate removal compared to unfunctionalized activated carbons.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-06-23
    Description: The process of activating coal spoil (CS) in order to recover aluminum as a high value product was investigated. The CS was first characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermo-gravimetric analysis-differential scanning calorimetry (TGA-DSC) in order to determine the chemical and mineral compositions of the CS. Then a mechanothermal activation method was adopted to increase the aluminum activity in the coal spoil. Over 95% of the aluminum in the CS could be extracted using this activation method. The mechanothermal activation process promoted the destruction of kaolinite structures and hindered the formation of amorphous γ -Al 2 O 3 . This resulted in a high aluminum leaching activity in the mechanothermally activated CS.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-06-23
    Description: Currently, a large proportion of global fossil fuel emissions originate from large point sources such as power generation or industrial processes. This trend is expected to continue until the year 2030 and beyond. Carbon capture and storage (CCS), a straightforward and effective carbon reduction approach, will play a significant role in reducing emissions from these sources into the future if atmospheric carbon dioxide (CO 2 ) emissions are to be stabilized and global warming limited below a threshold of 2 °C. This review provides an update on the status of large scale integrated CCS technologies using solvent absorption for CO 2 capture and provides an insight into the development of new solvents, including advanced amine solvents, amino acid salts, carbonate systems, aqueous ammonia, immiscible liquids and ionic liquids. These proposed new solvents aim to reduce the overall cost CO 2 capture by improving the CO 2 absorption rate, CO 2 capture capacity, thereby reducing equipment size and decreasing the energy required for solvent regeneration.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-06-23
    Description: Recent advances with Pd containing catalysts for the selective hydrogenation of acetylene are described. The overview classifies enhancement of catalytic properties for monometallic and bimetallic Pd catalysts. Activity/selectivity of Pd catalysts can be modified by controlling particle shape/morphology or immobilisation on a support which interacts strongly with Pd particles. In both cases enhanced ethylene selectivity is generally associated with modifying ethylene adsorption strength and/or changes to hydride formation. Inorganic and organic selectivity modifiers (i.e., species adsorbed onto Pd particle surface) have also been shown to enhance ethylene selectivity. Inorganic modifiers such as TiO 2 change Pd ensemble size and modify ethylene adsorption strength whereas organic modifiers such as diphenylsulfide are thought to create a surface template effect which favours acetylene adsorption with respect to ethylene. A number of metals and synthetic approaches have been explored to prepare Pd bimetallic catalysts. Examples where enhanced selectivity is observed are generally associated with decreased Pd ensemble size and/or hindering of the ease with which an unselective hydride phase is formed for Pd. A final class of bimetallic catalysts are discussed where Pd is not thought to be the primary reaction site but merely acts as a site where hydrogen dissociation and spillover occurs onto a second metal (Cu or Au) where the reaction takes place more selectively.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-06-23
    Description: Nano-sized titanium dioxide (nano-TiO 2 ) has wide industrial applications and therefore considerable chances of exposure are created for human beings and ecosystems. To better understand the interactions between nano-TiO 2 and aquatic organisms, we first studied TiO 2 uptake by algae exemplified by Pseudokirchneriella subcapitata. P. subcapitata were exposed to nano-TiO 2 in a series of concentrations and at various pH. TiO 2 uptake was quantified using a sedimentation curve analysis technique. After exposure of algae to TiO 2 , the variation of zeta potential was measured and the morphology of algae-TiO 2 aggregate was observed with scanning electron microscopy and the optical microscopy. The steady-state TiO 2 uptake was found to be pH-dependent and the isotherms can be described well by Freundlich model. TiO 2 deposited on algal surfaces causes the shift of pH zpc of TiO 2 -covered algae from that of algae toward that of TiO 2 . The attraction between TiO 2 -covered algal cells induces the agglomeration of algae and TiO 2 and thus the formation of algae-TiO 2 aggregates in the size of 12 to 50 μm. The 2-D fractal dimension of the aggregates is pH-dependent and ranges from 1.31 to 1.67. The theoretical analysis of the Gibbs energy of interaction indicates that both TiO 2 uptake by algae and the formation of algae-TiO 2 aggregate are influenced by the interaction between TiO 2 particles.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-06-11
    Description: While it is well-known that the plasmaenhanced catalytic chemical vapor deposition (PECVD) of carbon nanotubes (CNTs) offers a number of advantages over thermal CVD, the influence of the various individual contributing factors is not well understood. Especially the role of ions is unclear, since ions in plasmas are generally associated with sputtering rather than with growing a material. Even so, various studies have demonstrated the beneficial effects of ion bombardment during the growth of CNTs. This review looks at the role of the ions in plasmaenhanced CNT growth as deduced from both experimental and simulation studies. Specific attention is paid to the beneficial effects of ion bombardment. Based on the available literature, it can be concluded that ions can be either beneficial or detrimental for carbon nanotube growth, depending on the exact conditions and the control over the growth process.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-02-01
    Description: The sorption of water and organic vapors on valnemulin hydrochloride was determined by dynamic vapor sorption at 25 °C. The adsorption-desorption behavior of water vapor and a series of organic vapors was investigated to probe the structural changes in valnemulin hydrochloride before and after sorption. The isothermal adsorption equilibrium data was evaluated using Guggenheim-Anderson-deBoer (GAB) and Brunauer-Emmett-Teller (BET) models. The BET model is applicable only at low relative pressures (0.1⩽RP⩽0.4) while the GAB model is applicable in the whole range of RPs (0.1⩽RP⩽0.9). The sorption kinetics at high RPs was determined by fitting the sorption data to the Avrami equation and the sorption content vs. time relationship could be predicted by the Avrami equation. Finally, the possible sorption mechanism of valnemulin hydrochloride was also discussed.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-09-18
    Description: The objective of this study was to improve the production of butyric acid by process optimization using the metabolically engineered mutant of Clostridium tyrobutyricum (PAK-Em). First, the free-cell fermentation at pH 6.0 produced butyric acid with concentration of 38.44 g/L and yield of 0.42 g/g. Second, the immobilizedcell fermentations using fibrous-bed bioreactor (FBB) were run at pHs of 5.0, 5.5, 6.0, 6.5 and 7.0 to optimize fermentation process and improve the butyric acid production. It was found that the highest titer of butyric acid, 63.02 g/L, was achieved at pH 6.5. Finally, the metabolic flux balance analysis was performed to investigate the carbon rebalance in C. tyrobutyricum . The results show both gene manipulation and fermentation pH change redistribute carbon between biomass, acetic acid and butyric acid. This study demonstrated that high butyric acid production could be obtained by integrating metabolic engineering and fermentation process optimization.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-09-18
    Description: Surface molecularly imprinted polymers (SMIPs) have been synthesized to selectively determine (–)-epigallocatechin gallate in aqueous media. SMIPs were prepared using a surface grafting copolymerization method on a functionalized silica gel modified with β -cyclodextrin and vinyl groups. The morphology and composition of the SMIPs were investigated by scanning electron microscopy, Fourier transform-infrared spectroscopy and thermogravimetric analysis. In addition, the molecular binding capacity, recognition properties and selectivity of the SMIPs were evaluated. The imprinted polymers were found to have a highly specific recognition and binding capacity for (–)-epigallocatechin gallate in aqueous media which is the result of the hydrophobic properties of the β -cyclodextrin and the hydrogen-bonding interactions of methacrylic acid. The SMIPs were successfully employed as solid-phase extraction adsorbents prior to the HPLC determination of (–)-epigallocatechin gallate in toothpaste. The HPLC analysis had a linear dynamic range of 0.5–50.0 μg·mL −1 with a correlation coefficient of 0.9998 and the recoveries ranged from 89.4% to 97.0% with relative standard deviations less than 4.8%. The limit of detection and limit of quantification were 0.17 and 0.33 μg·mL −1 , respectively. The method provides a promising approach for the preparation of selective materials for the purification and determination of complex samples.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-09-18
    Description: Reductive iodonio-Claisen rearrangement (RICR) involving λ 3 -iodanes and allyl or substituted-allyl silanes in fluoroalcohols, such as 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and 2,2,2-trifluoroethanol (TFE), was studied for the synthesis of complex ortho -allyl or substituted-allyl iodoarenes. In comparison to the previously reported condition involving boron trifluoride diethyl etherate, the RICR mediated by fluoroalcohols was found to proceed more effectively. The resulting complex ortho -allyl iodoarenes are useful synthetic intermediates and can be readily converted to various heterocyclic compounds.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-01-26
    Description: Heterogeneous catalysis with core-shell structures has been a large area of focus for many years. This paper reviews the most recent work and research in coreshell catalysts utilizing noble metals, specifically gold, as the core within a metal oxide shell. The advantage of the core-shell structure lies in its capacity to retain catalytic activity under thermal and mechanical stress, which is a pivotal consideration when synthesizing any catalyst. This framework is particularly useful for gold nanoparticles in protecting them from sintering so that they retain their size, structure, and most importantly their catalytic efficiency. The different methods of synthesizing such a structure have been compiled into three categories: seed-mediated growth, post selective oxidation treatment, and one-pot chemical synthesis. The selective oxidation of carbon monoxide and reduction of nitrogen containing compounds, such as nitrophenol and nitrostyrene, have been studied over the past few years to evaluate the functionality and stability of the core-shell catalysts. Different factors that could influence the catalyst’s performance are the size, structure, choice of metal oxide shell and noble metal core and thereby the interfacial synergy and lattice mismatch between the core and shell. In addition, the morphology of the shell also plays a critical role, including its porosity, density, and thickness. This review covers the synthesis and characterization of gold-metal oxide core-shell structures, as well as how they are utilized as catalysts for carbon monoxide (CO) oxidation and selective reduction of nitrogen-containing compounds.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-01-26
    Description: Amyloid peptides are renowned to be related to neurodegenerative diseases, however, a fruitful avenue is to employ them as high-performance nanomaterials. These materials benefit from the intrinsic outstanding mechanical robustness of the amyloid backbone made of β-strands. In this work, we exploited amyloid-like fibrils as functional material to attach pristine L-cysteine aggregates (cystine oligomers) and gold nanoparticles, without the need of templating compounds. This work will open new avenues on functional materials design and their realisation.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-02-03
    Description: Aqueous solutions of methyldiethanolamine (MDEA) and piperazine (PZ) are commonly used solvent nowadays. In this work a thermodynamic analysis with the Electrolyte-NRTL model has been performed for systems composed of acidic gases and MDEA + PZ aqueous solution. ASPEN Plus® has been used for thermodynamic modeling. Values of binary interaction parameters for liquid phase activity coefficients have been estimated from regressions of experimental data. Moreover, the influence of the interactions between ion pairs and MDEA or PZ molecular species has been analyzed. The final aim is to obtain a reliable tool for design and simulation of absorption and stripping columns, fundamentals also in order to carry out energy saving studies.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-02-03
    Description: A largely increased number of GGGGCC repeats located in the non-coding region of C9orf72 gene have been identified as the leading cause of two related neurological disorders, familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We examined G-quadruplex forming ability of GGGGCCrepeat containing oligonucleotides with four guanine tracts chosen as the smallest possible model to form a unimolecular G-quadruplex. These oligonucleotides are readily to folded into G-quadruplexes in the presence of K + ions. However, the formation of multiple structures makes structural analysis challenging and time consuming. We observed that flanking sequences on 5'- and 3'-ends as well as mutations of loop residues have a profound effect on folding. Sequence d[(G 4 C 2 ) 3 G 4 ] was chosen for further scrutiny and optimization of nuclear magnetic resonance (NMR) spectroscopic properties with dG to 8Br-dG substitutions at specific positions in the sequence under different folding conditions. Expectedly, folding into desired predominant topology is facilitated when substituted residue adopted a syn conformation in the naturally-occurring structure. Single dG to 8Br-dG substitution at position 21 and fine tuning of folding conditions facilitate folding of d[(G 4 C 2 ) 3 GG Br GG] into (mostly) a single G-quadruplex, and thus enable determination of its high-resolution structure by high-field NMR.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-02-03
    Description: Small pore zeolites, containing 8-rings as the largest, are widely employed as catalysts in the process of methanol-to-olefins (MTO). Reactants and products diffuse with constraints through 8-rings and this is one of the reaction bottlenecks related to zeolite micropore topology. Small pore zeolites and silicon-aluminophosphates (SAPOs) containing cavities, where olefins are mainly formed through the hydrocarbon pool (HP) mechanism, are frequently tested for MTO. Shape selectivity of transition states within the side-chain methylation will be reviewed as this is one of the controlling steps of the MTO process, with particular attention to the role of hexamethylbenzene (HMB) and heptamethylbenzenium cation (HeptaMB+), which are the most tipically detected reaction intermediates, common to the paring and side-chain routes within the HP mechanism. The relative stability of these and other species will be reviewed in terms of confinement effects in different cage-based zeolites. The role of the different alkylating agents, methanol, dimethyl ether (DME), and surface methoxy species (SMS) will also be reviewed from the computational viewpoint.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-02-21
    Description: Nowadays a lot of low-grade heat is wasted from the industry through the off- and flue-gasses with different compositions. These gases provide the sensitive heat with utilisation potential and latent heat with the components for condensation. In this paper, process integration methodology has been applied to the partly condensed streams. A hot composite curve that represents the gas mixture cooling according to equation of state for real gases was drawn to account the gas-liquid equilibrium. According to the pinch analysis methodology, the pinch point was specified and optimal minimal temperature difference was determined. The location of the point where gas and liquid phases can be split for better recuperation of heat energy within heat exchangers is estimated using the developed methodology. The industrial case study of tobacco drying process off-gasses is analysed for heat recovery. The mathematical model was developed by using MathCad software to minimise the total annualised cost using compact plate heat exchangers for waste heat utilisation. The obtained payback period for the required investments is less than six months. The presented method was validated by comparison with industrial test data.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-02-25
    Description: A review of recent research related to microporous polymeric membranes formed via thermally induced phase separation (TIPS) and the morphologies of these membranes is presented. A summary of polymers and suitable diluents that can be used to prepare these microporous membranes via TIPS are summarized. The effects of different kinds of polymer materials, diluent types, cooling conditions, extractants and additive agents on the morphology and performance of TIPS membranes are also discussed. Finally new developments in TIPS technology are summarized.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-03-03
    Description: Natural products and their derivatives represent a rich source for the discovery and development of new cancer therapeutic drugs. Bioactive components derived from natural sources including marine compounds have been shown to be effective agents in the clinic or in preclinical settings. In the present review, we present a story of discovery, synthesis and evaluation of three synthetic tricyclic pyrroloquinone (TPQ) alkaloid analogs as cancer therapeutic agents. Chemical synthesis of these compounds (BA-TPQ, TBA-TPQ, and TCBA-TPQ) has been accomplished and the mechanisms of action (MOA) and structure-activity relationships (SAR) have been investigated. In the past, the complexity of chemical synthesis and the lack of well-defined MOA have dampened the enthusiasm for the development of some makaluvamines. Recent discovery of novel molecular targets for these alkaloids (unrelated to inhibition of Topoisomerase II) warrant further consideration as clinical candidates in the future. In addition to the establishment of novel synthetic approaches and demonstration of in vitro and in vivo anticancer activities, we have successfully demonstrated that these makaluvamines attack several key molecular targets, including the MDM2-p53 pathway, providing ample opportunities of modulating the compound structure based on SAR and the use of such compounds in combination therapy in the future.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-02-05
    Description: This paper presents a novel synthesis method for designing integrated processes for oil-in-water (O/W) emulsions treatment. General superstructure involving alternative separation technologies is developed and modelled as a mixed integer linear programming (MILP) model for maximum annual profit. Separation processes in the superstructure are divided into three main sections of which the pretreatment and final treatment are limited to the selection of one alternative (or bypass) only, while within the intermediate section various combinations of different technologies in series can be selected. Integrated processes composed of selected separation techniques for given ranges of input chemical oxygen demand (COD) can be proposed by applying parametric analyses within the superstructure approach. This approach has been applied to an existing industrial case study for deriving optimal combinations of technologies for treating diverse oil-inwater emulsions within the range of input COD values between 1000 mg·L -1 and 145000 mg·L -1 . The optimal solution represents a flexible and profitable process for reducing the COD values below maximal allowable limits for discharging effluent into surface water.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-12-02
    Description: A novel hydrogel composite was prepared via inverse suspension polymerization using starch, acrylic acid and organo-mordenite micropowder with the crosslinker, N,N' -methylenebisacrylamide and the initiator, potassium persulfate. Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy confirmed that the acrylic acid was grafted onto the backbone of the corn starch, that the organo-mordenite participated in the polymerization, and that the addition of organo-mordenite improved the surface morphology of the hydrogel composite. The swelling capacity of the hydrogel composite was evaluated in distilled water, and solutions with different pH values, and various salt solutions. It was found that the incorporation of 10 wt-% organo-mordenite enhanced the water absorbency by 144% (from 268 to 655 g·g –1 ) and swelling was extremely sensitive to the pH values, the concentration of the salt solution and cation type. Swelling kinetics and water diffusion mechanism of the hydrogel composite in distilled water were also discussed. Moreover, the hydrogel composite showed excellent reversibility of water absorption even after five repetitive cycles and the hydrogel composite exhibited significant environmental-responsiveness by changing the swelling medium from distilled water to 0.1 mol·L –1 NaCl solution. In addition, the loading and release of urea by the hydrogel composite were tested and the nutrient-slowrelease capability of this material was found to be suitable for many potential applications.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-01-19
    Description: Water induced decomposition of Cu 3 (BTC) 2 (BTC = benzene-1,3,5-tricarboxylate) metal-organic framework (MOF) was studied using dynamic water vapour adsorption. Small-angle X-ray scattering, Fourier transform infrared spectroscopy and differential scanning calorimetry analyses revealed that the underlying mechanism of Cu 3 (BTC) 2 MOF decomposition under humid streams is the interpenetration of water molecules into Cu- BTC coordination to displace organic linkers (BTC) from Cu centres.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-02-06
    Description: Ribozymes are widespread, and catalyze some extremely important reactions in the cell. Mechanistically most fall into one of two classes, using either metal ions or general acid-base catalysis. The nucleolytic ribozymes fall into the latter class, mostly using nucleobases. A sub-set of these use a combination of guanine base plus adenine acid to catalyze the cleavage reaction. New ribozymes are still being discovered at regular intervals and we can speculate on the potential existence of ribozymes that catalyze chemistry beyond phosphoryl transfer reactions, perhaps using small-molecule coenzymes.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉A series of PdCu bimetallic catalysts with low Cu and Pd loadings and different Cu: Pd atomic ratios were prepared by conventionally sequential impregnation (CSI) and modified sequential impregnation (MSI) of Cu and Pd for selective hydrogenation of acetylene. Characterization indicates that the supported copper (II) nitrate in the PdCu bimetallic catalysts prepared by MSI can be directly reduced to Cu metal particles due to the hydrogen spillover from Pd to Cu(NO〈sub〉3〈/sub〉)〈sub〉2〈/sub〉 crystals. In addition, for the catalysts prepared by MSI, Pd atoms can form PdCu alloy on the surface of metal particles, however, for the catalysts prepared by CSI, Pd tends to migrate and exist below the surface layer of Cu. Reaction results indicate that compared with CSI, the MSI method enables samples to possess preferable stability as well as comparable reaction activity. This should be due to the MSI method in favor of the formation of PdCu alloy on the surface of metal particles. Moreover, even Pd loading is super low, 〈 0.045 wt-% in this study, by through adjusting Cu loading to an appropriate value, attractive reactivity and selectivity still can be achieved.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1822_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Continuous processes which allow for large amount of wastewater to be treated to meet drainage standards while reducing treatment time and energy consumption are urgently needed. In this study, a dielectric barrier discharge plasma water bed system was designed and then coupled with granular activated carbon (GAC) adsorption to rapidly remove acid fuchsine (AF) with high efficiency. Effects of feeding gases, treatment time and initial concentration of AF on removal efficiency were investigated. Results showed that compared to the N〈sub〉2〈/sub〉 and air plasmas treatments, O〈sub〉2〈/sub〉 plasma processing was most effective for AF degradation due to the strong oxidation ability of generated activated species, especially the OH radicals. The addition of GAC significantly enhanced the removal efficiency of AF in aqueous solution and shorten the required time by 50%. The effect was attributed to the ability of porous carbon to trap and concentrate the dye, increasing the time dye molecules were exposed to the plasma discharge zone, and to enhance the production of OH radicals on/in GAC to boost the degradation of dyes by plasma as well as 〈em〉in situ〈/em〉 regenerate the exhausted GAC. The study offers a new opportunity for continuous effective remediation of wastewater contaminated with organic dyes using plasma technologies. 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1798_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉〈/p〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The mixed-mode resins for protein adsorption have been prepared by a novel strategy, copolymer grafting. Specially, the copolymer-grafted resins CG-M-A with two functional groups, 5-amino-benzimidazole (ABI) and methacryloxyethyltrimethyl ammonium chloride (METAC), have been prepared through surface-initiated activator generated by electron transfer for atom transfer radical polymerization of METAC and glycidyl methacrylate (GMA), followed by a ring-open reaction to introduce ABI. The charge and hydrophobicity of CG-MA resins could be controlled by manipulating the addition of METAC and GMA/ABI. Besides, METAC and ABI provided positive effects together in both protein adsorption and elution: dynamic binding capacity of human Immunoglobulin G (hIgG) onto CG-M-A resin with the highest ligand ratio of METAC to ABI is 46.8 mg∙g〈sup〉–1〈/sup〉 at pH 9 and the elution recovery of hIgG is 97.0% at pH 5. The separation experiment showed that purity and recovery of monoclonal antibody from cell culture supernatant are 96.0% and 86.5%, respectively, indicating that copolymer-grafted mixed-mode resins could be used for antibody purification.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1745_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The europium heptadentate coordinatively unsaturated (Eu(III)) and the terbium (Tb(III)) 1,4,7,10- tetraazacyclododecane (cyclen) complexes 〈strong〉1〈/strong〉 and 〈strong〉2〈/strong〉 were used in conjunction with ligand 〈strong〉3〈/strong〉 (1,3,5-benzene-trisethynylbenzoate) to form the supramolecular self-assembly structures 〈strong〉4〈/strong〉 and 〈strong〉5〈/strong〉; this being investigated in both the solid and the solution state. The resulting self-assemblies gave rise to metal centered emission (both in the solid and solution) upon excitation of 〈strong〉3〈/strong〉, confirming its role as a sensitizing antenna. Drop-cased examples of ligand 〈strong〉3〈/strong〉, and the solid forms of 〈strong〉4〈/strong〉 and 〈strong〉5〈/strong〉, formed from both organic and mixture of organic-aqueous solutions, were analyzed using Scanning Electron Microscopy, which showed significant changes in morphology; the ligand giving rise to one dimensional structures, while both 〈strong〉4〈/strong〉 and 〈strong〉5〈/strong〉 formed amorphous materials that were highly dense solid networks containing nanoporous features. The surface area (216 and 119 m〈sup〉2〈/sup〉·g〈sup〉–1〈/sup〉 for 〈strong〉4〈/strong〉 and 〈strong〉5〈/strong〉 respectively) and the ability of these porous materials to capture and store gases such as N〈sub〉2〈/sub〉 investigated at 77 K. The self-assembly formation was also investigated in diluted solution by monitoring the various photophysical properties of 〈strong〉3〈/strong〉–〈strong〉5〈/strong〉. This demonstrated that the most stable structures were that consisting of a single antennae 3 and three complexes of 〈strong〉1〈/strong〉 or 〈strong〉2〈/strong〉 (e.g., 〈strong〉4〈/strong〉 and 〈strong〉5〈/strong〉) in solution. By monitoring the excited state lifetimes of the Eu(III) and Tb(III) ions in H〈sub〉2〈/sub〉O and D〈sub〉2〈/sub〉O respectively, we showed that their hydration states (the 〈em〉q〈/em〉-value) changed from ∼2 to 0, upon formation of the assemblies, indicating that the three benzoates of 〈strong〉3〈/strong〉 coordinated directly to the each of the three lanthanide centers. Finally we demonstrate that this hierarchically porous materials can be used for the sensing of organic solvents as the emission is highly depended on the solvent environment; the lanthanide emission being quenched in the presence of acetonitrile and THF, but greatly enhanced in the presence of methanol.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1762_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Environmental and energy concerns have increased interest in renewable energy sources, particularly biofuels. Thus the fermentation of glucose from sulfuric acid-hydrolyzed corn stover for the production of bioethanol has been explored using a combined acid retardation and continuous-effect membrane distillation treatment process. This process resulted in the separation of the sugars and acids from the acid-catalyzed hydrolysate, the removal of most of the fermentation inhibitors from the hydrolysate and the concentration of the detoxified hydrolysate. The recovery rate of glucose from the sugar-acid mixture using acid retardation was greater than 99.12% and the sulfuric acid was completely recovered from the hydrolysate. When the treated corn stover hydrolysate, containing 100 g/L glucose, was used as a carbon source, 43.06 g/L of ethanol was produced with a productivity of 1.79 g/(L∙h) and a yield of 86.31%. In the control experiment, where glucose was used as the carbon source these values were 1.97 g/(L∙h) and 93.10% respectively. Thus the integration of acid retardation and a continuous-effect membrane distillation process are effective for the production of fuel ethanol from corn stover.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1714_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce global dependence on petroleum resources. Cellulose is known as the most abundant renewable polymer in nature, varieties of cellulose-based products have been developed and have gained growing interest in recent years. In this review, a kind of water-soluble cellulose derivative, i.e., sodium cellulose sulfate (NaCS) is introduced. Details about NaCS’s physicochemical properties like solubility, biocompatibility, biodegradability, degree of substitution, etc. are systematically elaborated. And promising applications of NaCS used as biomaterials for microcarriers’ designing, such as microcell- carriers, micro-drug-carriers, etc., are presented.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1723_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉A simple method using a water soluble lignin quaternary ammonium salt (LQAS) and TiO〈sub〉2〈/sub〉 has been developed for the preparation of lignin/TiO〈sub〉2〈/sub〉 nanocomposites in an aqueous medium under mild conditions. The LQAS/TiO〈sub〉2〈/sub〉 nanocomposites contain well-dispersed small particles with excellent ultraviolet (UV) shielding abilities and good compatibilities with waterborne polyurethane (WPU). When the LQAS/TiO〈sub〉2〈/sub〉 nanocomposites were blended with WPU, the UV absorbance and the tensile ductility of the WPU increased significantly. The composite WPU hybrid film containing 6 wt-% LQAS/TiO〈sub〉2〈/sub〉 nanocomposite had the highest visible light transmittance and had excellent ultraviolet aging properties. After 192 h of UV light irradiation, the tensile strength of the composite film was above 8 MPa and the elongation at break was 800%. This work highlights new possibilities for the utilization of alkali lignin.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1712_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Chalcogenide nanostructured semiconductor, copper sulfide (CuS) was prepared from copper and sulfur powders in stoichiometric ratio by a simple, fast, and convenient one-step mechanochemical synthesis after 40 min of milling in an industrial eccentric vibratory mill. The kinetics of the mechanochemical synthesis and the influence of the physical properties of two Cu powder precursor types on the kinetics were studied. The crystal structure, physical properties, and morphology of the product were characterized by X-ray diffraction (XRD), the specific surface area measurements, particle size distribution and scanning electron microscopy. The XRD analysis confirmed the hexagonal crystal structure of the product-CuS (covellite) with the average size of the crystallites 11 nm. The scanning electron microscopy analysis has revealed that the agglomerated grains have a plate-like structure composed of CuS nanoparticles. The thermal analysis was performed to investigate the thermal stability of the mechanochemically synthesized CuS. The optical properties were studied using UV-Vis and photoluminescence spectroscopy. The determined optical band gap energy 1.80 eV responds to the value of the bulk CuS, because of agglomerated nanoparticles. In addition, a mechanism of CuS mechanochemical reaction was proposed, and the verification of CuS commercial production was performed.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1755_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The issues of describing and understanding the changes in performance that result when a catalyst is placed into plasma are discussed. The different chemical and physical interactions that result and how their combination might produce beneficial results for the plasma-catalytic processing of different gas streams are outlined with particular emphasis being placed on the different range of spatial and temporal scales that must be considered both in experiment and modelling. The focus is on non-thermal plasma where the lack of thermal equilibrium creates a range of temperature scales that must be considered. This contributes in part to a wide range of inhomogeneity in different properties such as species concentrations and electric fields that must be determined experimentally by 〈em〉in situ〈/em〉 methods and be incorporated into modelling. It is concluded that plasma-catalysis is best regarded as conventional catalysis perturbed by the presence of a discharge, which modifies its operating conditions, properties and outcomes often in a very localised way. The sometimes used description “plasma-activated catalysis” is an apt one.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1794_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Though they reduce microorganism growth, current hospital disinfectants also damage many of today’s modern electronic devices such as tablets and smartphones. Herein, the efficacy of a new chlorhexidine digluconate gel (CDG) was tested as a disinfectant for mobile and electronic devices in a clinical environment. Specifically, 〈em〉Escherichia coli〈/em〉, 〈em〉Klebsiella pneumoniae〈/em〉, 〈em〉Pseudomonas aeruginosa〈/em〉 and methicillin resistant 〈em〉Staphylococcus aureus〈/em〉 were used to infect the screen of eight smartphones. The CDG was prepared at concentrations of 2%, 4% and 6%, and tested on paper disks infected with these bacteria before being tested on the smartphones. The devices were disinfected with the CDG gel (4%) at two times: immediately and after 5 min of the bacterial contamination. In all cases, the CDG gel eliminated 100% of gram-positive and gram-negative microorganisms compared to the control (without any agent). In addition, the gel did not damage the smartphones. Therefore, our study suggests that the CDG gel may be applied to disinfect a wide range of electronic devices for health care professionals in the hospital environment.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1728_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉An appropriate co-catalyst can significantly promote the photocatalytic efficacy, but this has been seldom studied in the visible-light photocatalysis combined with ozone, namely photocatalytic ozonation. In this work, a dendritic bismuth vanadium tetraoxide (BiVO〈sub〉4〈/sub〉) material composited with highly dispersed MnO〈sub〉〈em〉x〈/em〉〈/sub〉 nanoparticles was synthesized, and its catalytic activity is 86.6% higher than bare BiVO〈sub〉4〈/sub〉 in a visible light and ozone combined process. Catalytic ozonation experiments, ultraviolet- visible (UV-Vis) diffuse reflectance spectra and photoluminescence spectra jointly indicate that MnO〈sub〉〈em〉x〈/em〉〈/sub〉 plays a triple role in this process. MnO〈sub〉〈em〉x〈/em〉〈/sub〉 strengthens the light adsorption and promotes the charge separation on the composite material, and it also shows good activity in catalytic ozonation. The key reactive species in this process is $OH, and various pathways for its generation in this process is proposed. This work provides a new direction of catalyst preparation and pushes forward the application of photocatalytic ozonation in water treatment.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1713_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉In 〈em〉Lactococcus lactis〈/em〉, the global transcriptional regulatory factor CodY can interact with the promoter DNA to regulate the growth, metabolism, environmental adaptation and other biological activities of the strains. In order to study the mechanism of interaction between CodY and its target DNA, molecular docking and molecular dynamics simulations were used to explore the binding process at molecular level. Through the calculations of the free energy of binding, hydrogen bonding and energy decomposition, nine key residues of CodY were identified, corresponding to SER184, SER186, SER208, THR217, ARG218, SER219, ASN223, LYS242 and GLY243, among which SER186, ARG218 and LYS242 play a vital role in DNA binding. Our research results provide important theoretical guidance for using wet-lab methods to study and optimize the metabolic network regulated by CodY.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1737_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Plants have been used for medicinal purposes for thousands of years but they are still finding new uses in modern times. For example, 〈em〉Elaeagnus angustifolia〈/em〉 (EA) is a medicinal herb with antinociceptive, anti-inflammatory, antibacterial and antioxidant properties and it is widely used in the treatment of rheumatoid arthritis and osteoarthritis. EA extract was loaded onto poly(〈em〉ɛ〈/em〉-caprolactone)-poly(ethylene glycol)-poly(〈em〉ɛ〈/em〉-caprolactone) (PCL-PEG-PCL/EA) nanofibers and their potential applications for bone tissue engineering were studied. The morphology and chemical properties of the fibers were evaluated using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, contact angle measurements and mechanical tests. All the samples had bead-free morphologies with average diameters ranging from 100 to 200 nm. The response of human cells to the PCL-PEG-PCL/EA nanofibers was evaluated using human dental pulp stem cells (hDPSCs). The hDPSCs had better adhesion and proliferation capacity on the EA loaded nanofibers than on the pristine PCL-PEG-PCL nanofibers. An alizarin red S assay and the alkaline phosphatase activity confirmed that the nanofibrous scaffolds induced osteoblastic performance in the hDPSCs. The quantitative real time polymerase chain reaction results confirmed that the EA loaded nanofibrous scaffolds had significantly upregulated gene expression correlating to osteogenic differentiation. These results suggest that PCL-PEG-PCL/EA nanofibers might have potential applications for bone tissue engineering.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2018_1742_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Focused beam reflectance measurement (FBRM) and 〈sup〉13〈/sup〉C nuclear magnetic resonance (〈sup〉13〈/sup〉C NMR) analysis were used to study the precipitation process of CO〈sub〉2〈/sub〉-loaded potassium glycinate (KGLY) solutions at different CO〈sub〉2〈/sub〉 loadings, during the addition of ethanol as an antisolvent at a rate of 10 mL·min〈sup〉−1〈/sup〉. The volume ratio of ethanol added to the KGLY solution (3.0 mol·L〈sup〉−1〈/sup〉, 340 mL) ranged from 0 to 3.0. Three solid-liquid-liquid phases were formed during the precipitation process. The FBRM results showed that the number of particles formed increased with CO〈sub〉2〈/sub〉 loading and ethanol addition for CO〈sub〉2〈/sub〉-unsaturated KGLY solutions, whilst for CO〈sub〉2〈/sub〉-saturated KGLY solution it first increased then decreased to a stable value with ethanol addition. 〈sup〉13〈/sup〉C NMR spectroscopic analysis showed that the crystals precipitated from the CO〈sub〉2〈/sub〉-unsaturated KGLY solutions consisted of glycine only, and the quantity crystallised increased with CO〈sub〉2〈/sub〉 loading and ethanol addition. However, a complex mixture containing glycine, carbamate and potassium bicarbonate was precipitated from CO〈sub〉2〈/sub〉-saturated KGLY solution with the maximum precipitation percentages of 94.3%, 31.4% and 89.6%, respectively, at the ethanol volume fractions of 1.6, 2.5 and 2.3.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1882_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Water/oil flow characteristics in a water-wet capillary were simulated at the pore scale to increase our understanding on immiscible flow and enhanced oil recovery. Volume of fluid method was used to capture the interface between oil and water and a pore-throat connecting structure was established to investigate the effects of viscosity, interfacial tension (IFT) and capillary number (〈em〉Ca〈/em〉). The results show that during a water displacement process, an initial continuous oil phase can be snapped off in the water-wet pore due to the capillary effect. By altering the viscosity of the displacing fluid and the IFT between the wetting and non-wetting phases, the snapped-off phenomenon can be eliminated or reduced during the displacement. A stable displacement can be obtained under high 〈em〉Ca〈/em〉 number conditions. Different displacement effects can be obtained at the same 〈em〉Ca〈/em〉 number due to its significant influence on the flow state, i.e., snapped-off flow, transient flow and stable flow, and ultralow IFT alone would not ensure a very high recovery rate due to the fingering flow occurrence. A flow chart relating flow states and the corresponding oil recovery factor is established.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1835_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Graphene oxide (GO) induced enhancement of elastomer properties showed a great deal of potential in recent years, but it is still limited by the barrier of the complicated synthesis processes. Stereolithography (SLA), used in fabrication of thermosets and very recently in “flexible” polymers with elastomeric properties, presents itself as simple and user-friendly method for integration of GO into elastomers. In this work, it was first time demonstrated that GO loadings can be incorporated into commercial flexible photopolymer resins to successfully fabricate GO/elastomer nanocomposites via readily accessible, consumer-oriented SLA printer. The material properties of the resulting polymer was characterized and tested. The mechanical strength, stiffness, and the elongation of the resulting polymer decreased with the addition of GO. The thermal properties were also adversely affected upon the increase in the GO content based on differential scanning calorimetry and thermogravimetric analysis results. It was proposed that the GO agglomerates within the 3D printed composites, can result in significant change in both mechanical and thermal properties of the resulting nanocomposites. This study demonstrated the possibility for the development of the GO/elastomer nanocomposites after the optimization of the GO/“flexible” photoreactive resin formulation for SLA with suitable annealing process of the composite in future.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1836_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Plasma-assisted oxidation of organic compounds is one of the developing technologies for wastewater treatment. Plasmas effectively accelerate degradation processes due to plasma generated reactive species and ultra-violet radiation. Oxidation of BA in aqueous solutions by the atmospheric pressure glow discharge and underwater diaphragm discharge was studied and monitored by fluorescence and spectrophotometric methods. Discharge type and solution pH affect the formation rates of mono- and dihydroxybenzoic acids. Dihydroxyl derivatives were formed only by glow discharge action. The yields of hydroxyl radical were estimated on the kinetics data for the hydroxylation of benzoic acid. The steps of the hydroxylation processes and further oxidation were described. 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1825_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉〈/p〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉In the last decades, many reports dealing with technology for the catalytic combustion of methane (CH〈sub〉4〈/sub〉) have been published. Recently, attention has increasingly focused on the synthesis and catalytic activity of nickel oxides. In this paper, a NiO/CeO〈sub〉2〈/sub〉 catalyst with high catalytic performance in methane combustion was synthesized via a facile impregnation method, and its catalytic activity, stability, and water-resistance during CH〈sub〉4〈/sub〉 combustion were investigated. X-ray diffraction, low-temperature N〈sub〉2〈/sub〉 adsorption, thermogravimetric analysis, Fourier transform infrared spectroscopy, hydrogen temperature programmed reduction, methane temperature programmed surface reaction, Raman spectroscopy, electron paramagnetic resonance, and transmission electron microscope characterization of the catalyst were conducted to determine the origin of its high catalytic activity and stability in detail. The incorporation of NiO was found to enhance the concentration of oxygen vacancies, as well as the activity and amount of surface oxygen. As a result, the mobility of bulk oxygen in CeO〈sub〉2〈/sub〉 was increased. The presence of CeO〈sub〉2〈/sub〉 prevented the aggregation of NiO, enhanced reduction by NiO, and provided more oxygen species for the combustion of CH〈sub〉4〈/sub〉. The results of a kinetics study indicated that the reaction order was about 1.07 for CH〈sub〉4〈/sub〉 and about 0.10 for O〈sub〉2〈/sub〉 over the NiO/CeO〈sub〉2〈/sub〉 catalyst.〈/p〉 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1821_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉In this work, a thin zirconium-based UiO-66 membrane was successfully prepared on an alumina hollow fiber tube by flow synthesis, and was used in an attempt to remove 〈em〉p〈/em〉-nitrophenol from water through a nanofiltration process. Two main factors, including flow rate and synthesis time, were investigated to optimize the conditions for membrane growth. Under optimal synthesis conditions, a thin UiO-66 membrane of approximately 2 μm in thickness was fabricated at a flow rate of 4 mL·h〈sup〉-1〈/sup〉 for 30 h. The 〈em〉p〈/em〉-nitrophenol rejection rate for the as-prepared UiO-66 membrane applied in the removal of 〈em〉p〈/em〉-nitrophenol from water was only 78.1% due to the existence of membrane defects caused by coordinative defects during membrane formation. Post-synthetic modification of the UiO-66 membrane was carried out using organic linkers with the same flow approach to further improve the nanofiltration performance. The result showed that the 〈em〉p〈/em〉-nitrophenol rejection for the postmodified membrane was greatly improved and reached over 95%. Moreover, the post-modified UiO-66 membrane exhibited remarkable long-term operational stability, which is vital for practical application. 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1819_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉〈/p〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The integration of porous organo-silicate low-〈em〉k〈/em〉 materials has met a lot of technical challenges. One of the main issues is plasma-induced damage, occurring for all plasma steps involved during interconnects processing. In the present paper, we focus on porous SiOCH low-〈em〉k〈/em〉 damage mitigation using cryogenic temperature so as to enable micro-capillary condensation. The aim is to protect the porous low-〈em〉k〈/em〉 from plasma-induced damage and keep the 〈em〉k〈/em〉-value of the material unchanged, in order to limit the RC delay of interconnexion levels while shrinking the microchip dimension. The cryogenic temperature is used to condense a gas inside the porous low-〈em〉k〈/em〉 material. Then, the etching process is performed at the temperature of condensation in order to keep the condensate trapped inside the material during the etching. In the first part of this work, the condensation properties of several gases are screened, leading to a down selection of five gases. Then, their stability into the porous structure is evaluated at different temperature. Four of them are used for plasma damage mitigation comparison. Damage mitigation is effective and shows negligible damage for one of the gases at −50°C. 〈span〉 〈span〉 〈img alt="" src="https://static-content.springer.com/image/MediaObjects/11705_2019_1820_Fig1_HTML.jpg"〉 〈/span〉 〈/span〉〈/p〉
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-03-14
    Description: A series of p -alkoxylbenzamides featuring a long alkyl chain have been synthesized and are readily to form stable gels in a variety of organic solvents. Their self-assembly properties and structure-property relationship were investigated by scanning electron microscopy, X-ray diffraction, 1 H nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The gels formed were multi-responsive to environmental stimuli such as temperature and fluoride anion. The results show that a combination of hydrogen bonding, π-π stacking and van der Waals interaction result in the aggregation of p -alkoxylbenzamides to form three-dimension networks, depending on the length of the long alkyl chain.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-03-24
    Description: This review aims at the treatment of the entire landfill, including the waste mass and the harmful emissions: leachate and landfill gas. Different landfill treatments (aerobic, anaerobic and semi-aerobic bioreactor landfills, dry-tomb landfills), leachate treatments (anaerobic and aerobic treatments, anammox, adsorption, chemical oxidation, coagulation/flocculation and membrane processes) and landfill gas treatments (flaring, adsorption, absorption, permeation and cryogenic treatments) are reviewed. Available information and the gaps present in current knowledge is summarized. The most significant areas to expand are landfill waste treatments, which in recent years has begun to grow but there is an opportunity for much more. Another area to explore is the treatment of landfill gas, a very large field to which not much effort has been put forth. This review is to compare different treatment methods and give direction to future research.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-03-24
    Description: Triacetone triperoxide (TATP) is more sensitive than diacetone diperoxide (DADP) in the solid-state explosion. To explain this reactivity difference, we analyzed the electronic structures and properties of the crystals of both compounds by using Ab initio method to calculate the structures of their individual molecules as well as their lattice structures and particularly calculating Nuclear Fukui function to gain insight into the sensitivity of the initial, rate-determining step of their decomposition. Our results indicate that TATP and DADP crystal structures exhibit significantly different electronic properties. Most notably, the electronic structure of the TATP crystal shows asymmetry among its reactive oxygen atoms as supported by magnitudes of their nuclear Fukui functions. The greater explosion sensitivity of crystalline TATP may be attributed to the properties of its electronic structure. The electronic calculations provided valuable insight into the decomposition sensitivity difference between TATP and DADP crystals.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-03-24
    Description: A new series of 2-(4-(4-aminophenylsulfonyl) phenylamino)-3-(thiophen-2-ylthio)naphthalene-1,4-dione derivatives ( 3a-3n ) were synthesized and characterized by spectral techniques. To understand the interaction of binding sites with bacterial protein receptor, the docking study was performed by the GLIDE program and compound N -(4-(4-(1,4-dioxo-3-(thiophen-2-ylthio)-1,4-dihydronaphthalen-2-ylamino)phenylsulfonyl)phenyl)-3-methylbenzamide ( 3b ) exhibited good glide and E model scores of −5.89 and −94.90, respectively. Moreover among all the molecules studied including the standards used, namely Sparfloxacin (4.8 μg/mL) and Norfloxacin (no inhibition observed) for their antibacterial property, compound N -(4-(4-(1,4-dioxo-3-(thiophen-2-ylthio)-1,4-dihydronaphthalen-2-ylamino)phenylsulfonyl)phenyl)-4-nitrobenzamide ( 3e ) exhibited the lowest minimum inhibitory concentration (MIC) value of 1.3 μg/mL against Proteus vulgaris .
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-04-02
    Description: With the development of modern technology like high throughput screening, combinatorial chemistry and computer aid drug design, the drug discovery process has been dramatically accelerated. However, new drug candidates often exhibit poor aqueous or even organic medium solubility. Additionally, many of them may have low dissolution velocity and low oral bioavailability. Nanocrystal formulation sheds new light on advanced drug development. Due to small (nano- or micro- meters) sizes, the increased surface-volume ratio leads to dramatically enhanced drug dissolution velocity and saturation solubility. The simplicity in preparation and the potential for various administration routes allow drug nanocrystals to be a novel drug delivery system for specific diseases (i.e. cancer). In addition to the comprehensive review of different technologies and methods in drug nanocrystal preparation, suspension, and stabilization, we will also compare nano- and micro-sized drug crystals in pharmaceutical applications and discuss current nanocrystal drugs on the market and their limitations.
    Print ISSN: 2095-0179
    Electronic ISSN: 2095-0187
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...