ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-05-15
    Description: Abstract
    Description: Version History:15 June 2020:Initial release of the data. Note that the initial version number is 0002 in order to reflect the consistent data processing of this data set and Version 0002 of the data set Sasgen et al. (2019, http://doi.org/10.5880/GFZ.GRAVIS_06_L3_ICE).---------------------------------------------------------------------------------------------GRACE/GRACE-FO Level-3 products based on COST-G RL01 Level-2B products (Dahle & Murböck, 2020) representing ice-mass changes for the Antarctic Ice Sheet (AIS) and the Greenland Ice Sheet (GIS). The ice-mass changes are provided both as basin average product and as gridded product.Basin-average ice-mass changes are obtained using the inversion procedure based on a forward modelling approach as described in Sasgen et al. (2013) for the AIS and Sasgen et al. (2012) for the GIS.Gridded ice-mass changes are provided at polar-stereographic grids with a grid spacing of 50 x 50 km^2. The applied algorithm is based on tailored sensitivity kernels (Groh & Horwath, 2016), and has also been used to generate gravimetric mass balance products within the ESA Climate Change Initiative (CCI) projects for the AIS and the GIS.These Level-3 products are visualized at GFZ's web portal GravIS (http://gravis.gfz-potsdam.de).Link to data products: ftp://isdcftp.gfz-potsdam.de/grace/GravIS/COST-G/Level-3/ICE
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-3 ; Mass ; Mass Transport ; Ice-mass Change ; Time Variable Gravity ; Antarctic Mass Balance ; Greenland Mass Balance ; Sea-level Change ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-15
    Description: Abstract
    Description: Version History:09 June 2020:Release of Version 0002. This is an update of Version 0001 of the same data set. All changes and updates are documented in the changelog available via the data download section. Previously released versions of this data set are available at ftp://isdcftp.gfz-potsdam.de/grace/GravIS/GFZ/Level-3/ICE/old_versions---------------------------------------------------------------------------------------------GRACE/GRACE-FO Level-3 products representing ice-mass changes for the Antarctic Ice Sheet (AIS) and the Greenland Ice Sheet (GIS). The ice-mass changes are provided both as basin average product and as gridded product.Basin-average ice-mass changes are obtained using the inversion procedure based on a forward modelling approach as described in Sasgen et al. (2013) for the AIS and Sasgen et al. (2012) for the GIS.Gridded ice-mass changes are provided at polar-stereographic grids with a grid spacing of 50 x 50 km^2. The applied algorithm is based on tailored sensitivity kernels (Groh & Horwath, 2016), and has also been used to generate gravimetric mass balance products within the ESA Climate Change Initiative (CCI) projects for the AIS and the GIS.These Level-3 products are visualized at GFZ's web portal GravIS (http://gravis.gfz-potsdam.de).Link to data products: ftp://isdcftp.gfz-potsdam.de/grace/GravIS/GFZ/Level-3/ICE
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-3 ; Mass ; Mass Transport ; Ice-mass Change ; Time Variable Gravity ; Antarctic Mass Balance ; Greenland Mass Balance ; Sea-level Change ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-12-01
    Description: Abstract
    Description: Combined monthly gravity fields of the GRACE satellite mission in spherical harmonic representation (Level-2 product) generated by the Combination Service for Time-variable Gravity Fields (COST-G; Jäggi et al. (2020):http://dx.doi.org/10.1007/1345_2020_109), a product center for time-variable gravity fields of IAG's International Gravity Field Service (IGFS). COST-G GRACE RL01 is a combination of AIUB-RL02, GFZ-RL06, GRGS-RL04 (unconstrained solution), ITSG-GRACE2018, and CSR-RL06. The original time-series were provided by the analysis centers (ACs) and partner analysis centers (PCs) of COST-G.
    Description: Methods
    Description: COST-G performs a harmonization and quality control of the individual input solutions of the COST-G ACs and PCs. The combination of COST-G GRACE RL01 is then performed applying variance component estimation on the solution level (Jean et al., 2018): https://doi.org/10.1007/s00190-018-1123-5). The resulting COST-G combined gravity fields are validated assessing their signal and noise content in the spectral and spatial domain (Meyer et al., 2019: https://doi.org/10.1007/s00190-019-01274-6) and by the COST-G Product Evaluation Group (PEG).
    Keywords: COST-G ; IGFS Product Center ; Combined solutions ; Time variable gravity ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Language: English
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-03
    Description: Abstract
    Description: SeisComP is a seismological software for data acquisition, processing, distribution and interactive analysis. The seismological software package has evolved within a decade from pure acquisition modules to a fully featured real-time earthquake monitoring software. The SeedLink protocol for seismic data transmission has been the core of SeisComP from the very beginning. Later additions included simple, purely automatic event detection, location and magnitude determination capabilities. Especially within the development of the 3rd-generation SeisComP, also known as SeisComP3 automatic processing capabilities have been augmented by graphical user interfaces (GUIs) for visualization, rapid event review and quality control.Communication between the modules is achieved using a dedicated messaging system that allows distributed computing and remote review. For seismological metadata exchange export/import tools to/from QuakeML and FDSN StationXML are available, which also provide convenient interfaces with 3rd-party software. The initial SeisComP3 development took place at GFZ between 2006 and 2008 within the GITEWS project (German Indonesian Tsunami Early Warning System) and continued with increasing engagement of gempa GmbH, a software company established by the initial development team of the GFZ.
    Keywords: real-time ; data ; processing ; earthquakes ; monitoring ; fdsn ; standards ; seismology ; C++ ; python ; AGPL ; open ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE
    Language: English
    Type: Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-10-04
    Description: Abstract
    Description: GOCO05c is a static global combined gravity field model up to d/o 720. It has been elaborated by the GOCO Group (TU Munich, Bonn University, TU Graz, Austrian Academy of Sciences, University Bern). GOCO05c is a combination model based on the satellite-only gravity field model GOCO05s and several gravity anomaly datasets, constituting a global 15'x15' data grid. The combination is carried out in term of full normal equation systems.Contributing Institutions are: (1) TU Muenchen, DE, Institute of Astronomical and Physical Geodesy; (2) University of Bonn, DE, Institute of Geodesy and Geoinformation; (3) TU Graz, AU, Institute of Theoretical and Satellite Geodesy; (4) Austrian Academy of Sciences, Space Research Institute, and (5) University of Bern, CH, Astronomical Institute
    Description: Other
    Description: Global 15’x15’ data grid: Region (Source): Number of data cellsArctic (ArcGP Group): 44522Australia (Curtin University):11170Canada (NRCan):19259Europe (IfE Hanover):15625Oceans (DTU Space): 691818South America (NGA): 24818USA (NGA): 12895For the remaining land areas (Central America, Asia, Africa, Antarctica) fill-in datasets were used: Data (Source): Number of data cells NIMA96 (DMA/GSFC): 110594GOCO05s (GOCO Group): 106099 (band-limited gravity anomalies)RWI_TOIS2012 (KIT): 117737 (topographic anomalies)GOCO05c should not be used for geophysical applications in fill-in regions, because its high frequency part in fill-in regions resulted from simple synthetic numeric forward modelling of topographic information.
    Keywords: ICGEM ; global gravitational model ; GOCO ; Geodesy ; GOCE
    Language: English
    Type: Dataset , Dataset
    Format: 14167050 Bytes
    Format: 4 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-10-04
    Description: Abstract
    Description: GGM05C is an unconstrained global gravity model complete to degree and order 360 determined from 1) GRACE K-band intersatellite range-rate data, GPS tracking and GRACE accelerometer data, 2) GOCE gradiometer data (ZZ+YY+XX+XZ) spanning the entire mission using a band pass filter of 10-50 mHz and polar gap filled with synthetic gradients from GGM05S to degree/order 150 evaluated at 200-km altitude, and 3) terrestrial gravity anomalies from DTU13 (Andersen et al., 2014). The value for C20 has been replaced with a value derived from satellite laser ranging. No rate terms were modeled. For additional details on the background modeling, see the CSR RL05 processing standards document available at ftp://podaac.jpl.nasa.gov/allData/grace/docs/L2-CSR0005_ProcStd_v4.0.pdf (Bettadpur 2012). Detailed information about GGM05C is available at ftp://ftp.csr.utexas.edu/pub/grace/GGM05/README_GGM05C.pdf (Ries et al., 2016).
    Keywords: ICGEM ; global gravitational model ; GRACE ; GOCE
    Language: English
    Type: Dataset , Dataset
    Format: 1734765 Bytes
    Format: 3 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-29
    Description: Abstract
    Description: The effects of climate and topography on soil physico-chemical and microbial parameters were studied along an extensive latitudinal climate gradient in the Coastal Cordillera of Chile (26° - 38°S). The study sites encompass arid (Pan de Azúcar), semiarid (Santa Gracia), mediterranean (La Campana) and humid (Nahuelbuta) climates and vegetation, ranging from arid desert, dominated by biological soil crusts (biocrusts), semiarid shrubland and mediterranean sclerophyllous forest, where biocrusts are present but do have a seasonal pattern to temperate-mixed forest, where biocrusts only occur as an early pioneering development stage after disturbance. All soils originate from granitic parent materials and show very strong differences in pedogenesis intensity and soil depth.Most of the investigated physical, chemical and microbiological soil properties showed distinct trends along the climate gradient. Further, abrupt changes between the arid northernmost study site and the other semi-arid to humid sites can be shown, which indicate non-linearity and thresholds along the climate gradient. Clay and total organic carbon contents (TOC) as well as Ah horizons and solum depths increased from arid to humid climates, whereas bulk density (BD), pH values and base saturation (BS) decreased. These properties demonstrate the accumulation of organic matter, clay formation and element leaching as key-pedogenic processes with increasing humidity. However, the soils in the northern arid climate do not follow this overall latitudinal trend, because texture and BD are largely controlled by aeolian input of dust and sea salts spray followed by the formation of secondary evaporate minerals. Total soil DNA concentrations and TOC increased from arid to humid sites, while areal coverage by biocrusts exhibited an opposite trend. Relative bacterial and archaeal abundances were lower in the arid site, but for the other sites the local variability exceeds the variability along the climate gradient. Differences in soil properties between topographic positions were most pronounced at the study sites with the mediterranean and humid climate, whereas microbial abundances were independent on topography across all study sites. In general, the regional climate is the strongest controlling factor for pedogenesis and microbial parameters in soils developed from the same parent material. Topographic position along individual slopes of limited length augmented this effect only under humid conditions, where water erosion likely relocated particles and elements downward. The change from alkaline to neutral soil pH between the arid and the semi-arid site coincided with qualitative differences in soil formation as well as microbial habitats. This also reflects non-linear relationships of pedogenic and microbial processes in soils depending on climate with a sharp threshold between arid and semi-arid conditions. Therefore, the soils on the transition between arid and semi-arid conditions are especially sensitive and may be well used as indicators of long and medium-term climate changes. Concluding, the unique latitudinal precipitation gradient in the Coastal Cordillera of Chile is predestined to investigate the effects of the main soil forming factor – climate – on pedogenic processes.The data presented here is part of the German-Chilean Priority Program “EarthShape” (Earth Surface Shaping by Biota), funded by the German Research Foundation (DFG). We provide the basic background data, which includes investigations into the influence of climate, vegetation and topography on pedogenesis and microbial abundances. The data are supplementary material to Bernhard et al. (2018).All tables are available as one Excel file, as individual tables in .csv format in a zipped archive and as PDF file. The samples are assigned with International Geo Sample Numbers (IGSN) and linked to a comprehensive sample description in the internet.The content of the five data tables is:Table S1: Soil profile field description for the EarthShape study sitesTable S2: Soil physico-chemical properties for the depth increment samples in the four study sitesTable S3: Soil physico-chemical properties for the horizon samples in the four study sitesTable S4: Relative microbial abundances in the four study sitesTable S5: Plant species and abundance (% cover) in the four study sites
    Keywords: climate ; topography ; soil texture ; total organic carbon ; carbon isotope ratio (δ13 Corg) ; microbial abundance
    Language: English
    Type: Dataset , Dataset
    Format: 707740 Bytes
    Format: 4 Files
    Format: application/pdf
    Format: application/x-zip-compressed
    Format: application/x-zip-compressed
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-20
    Description: Abstract
    Description: Definitive digital values of the Earth's mangetic field recorded during 2014 at INTERMAGNET observatories around the world. Data includes minute, hourly and daily vector values, along with observatory baseline values for quality control. Annual means are also included. All data is included on the single downloadable archive file (gzipped tar format) available from this landing page. This is the 24th annual publication in the series. Some national data institutions may have related DOIs that describe subsets of the data. These DOIs are shown under "Related DOIs to be quoted".For more information on the data formats used in this publication and the technical standards used to create the data, please refer to the INTERMAGNET Technical Manual and the Technical note TN6 "INTERMAGNET Definitive One-second Data Standard"..
    Description: Methods
    Description: Geomagnetic data is recorded and quality controlled at the institutions responsible for each observatory. Before becoming a member of INTERMAGNET, institutes must make a detailed submission for each observatory that is to join. This submission is verified by a committee in INTERMAGNET before the observatory is admitted. Only data from INTERMAGNET members is published by INTERMAGNET. Each annual definitive data set is checked for quality by a team of data checkers in INTERMAGNET before the data is admitted to the series for that year.
    Description: Other
    Description: The International Real-time Magnetic Observatory Network (INTERMAGNET) is the global network of observatories, monitoring the Earth's magnetic field. The INTERMAGNET programme exists to establish a global network of cooperating digital magnetic observatories, adopting modern standard specifications for measuring and recording equipment, in order to facilitate data exchange and the production of geomagnetic products in close to real time. INTERMAGNET also coordinates the publication of quality-controlled, definitive geomagnetic data from its affiliated observatories.
    Keywords: definitive data ; INTERMAGNET ; geomagnetism ; magnetism ; observatory ; definitive ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM ; EARTH SCIENCE SERVICES 〉 ENVIRONMENTAL ADVISORIES 〉 GEOLOGICAL ADVISORIES 〉 GEOMAGNETISM ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 GEOMAGNETIC STATIONS
    Language: English
    Type: Dataset , Dataset
    Format: 1 Files
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-06-20
    Description: Abstract
    Description: Definitive digital values of the Earth's mangetic field recorded during 2013 at INTERMAGNET observatories around the world. Data includes minute, hourly and daily vector values, along with observatory baseline values for quality control. Annual means are also included. All data is included on the single downloadable archive file (gzipped tar format) available from this landing page. This is the 23rd annual publication in the series. Some national data institutions may have related DOIs that describe subsets of the data. These DOIs are shown under "Related DOIs to be quoted".For more information on the data formats used in this publication and the technical standards used to create the data, please refer to the INTERMAGNET Technical Manual (http://www.intermagnet.org/publication-software/technicalsoft-eng.php) and the Technical note TN6 "INTERMAGNET Definitive One-second Data Standard"..
    Description: Methods
    Description: Geomagnetic data is recorded and quality controlled at the institutions responsible for each observatory. Before becoming a member of INTERMAGNET, institutes must make a detailed submission for each observatory that is to join. This submission is verified by a committee in INTERMAGNET before the observatory is admitted. Only data from INTERMAGNET members is published by INTERMAGNET. Each annual definitive data set is checked for quality by a team of data checkers in INTERMAGNET before the data is admitted to the series for that year.
    Description: Other
    Description: The International Real-time Magnetic Observatory Network (INTERMAGNET) is the global network of observatories, monitoring the Earth's magnetic field. The INTERMAGNET programme exists to establish a global network of cooperating digital magnetic observatories, adopting modern standard specifications for measuring and recording equipment, in order to facilitate data exchange and the production of geomagnetic products in close to real time. INTERMAGNET also coordinates the publication of quality-controlled, definitive geomagnetic data from its affiliated observatories.
    Keywords: definitive data ; INTERMAGNET ; geomagnetism ; magnetism ; observatory ; definitive ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 GEOMAGNETIC STATIONS ; EARTH SCIENCE SERVICES 〉 ENVIRONMENTAL ADVISORIES 〉 GEOLOGICAL ADVISORIES 〉 GEOMAGNETISM ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM
    Language: English
    Type: Dataset , Dataset
    Format: 1 Files
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-12
    Description: Abstract
    Description: This data set is the third of a series reporting chemical data for accessory minerals from felsic igneous rocks. It compiles the results of electron-microprobe spot analyses of monazite-(Ce) from various Paleoproterozoic granitoids and spatially associated gneisses located in the wider Fort McMurray area in northeastern Alberta, Canada. The data were generated in connection with the Master of Science thesis of Nathanial John Walsh (Walsh 2013) at the Department of Earth and Atmospheric Sciences of the University of Alberta, Edmonton, Canada, but remained unpublished. The thesis was part of the Helmholtz - Alberta - Initiative (HAI) between the University of Alberta and the Helmholtz Association.Interestingly, monazite from the diverse basement rocks display various kinds of pattern with respect to composition and origin. The great bulk of measured grains display variably declined chondrite-normalized LREE patterns virtually free of anomalies indicative for significant fluid-induced overprinting. We have rocks characterized by largely unzoned, chemically homogeneous grains. There are as well rocks containing nicely patchy-zoned grains showing a wide range in composition, in particular regarding the Th/LREE proportions. Here, maximum measured Th concentration amounted to 33 wt% ThO2. Incorporation of Th into the crystal structure is almost exclusively governed by the huttonite substitution reaction, i.e., Th^4+ + Si^4+ = REE^3+ + P^5+, as characteristic for this chemical type of granites (Förster 1998). The suite of rocks also included samples containing small-sized inclusions of Th-poor monazite in apatite, which formed in response to metamorphic, fluid-aided dissolution-reprecipitation processes (Harlov and Förster 2003, Harlov et al. 2005). Finally, we have a quartz monzonite containing Th-poor monazite in apatite together with matrix monazite of normal Th concentration, the origin if which is not yet fully resolved (cf. Foerster-2018-004_monazite-alberta-BSE images.pdf. presenting back-scattered electron images of monazite grains). In brief, the data set provides information on several aspects of formation and alteration of monazite in non-metamorphic and metamorphic granite.The data set published here contains the complete pile of data acquired for monazite-(Ce) and back-scattered electron (BSE) images of many of the probed grains. Chemical data are provided as Excel and machine-readable .csv files, which contain the information listed in Table 1 of the data description file. Column headers in red (only in the Excel version) indicate that the data and information provided in these columns is from Walsh (2013). “0.00” means that the concentrations of the respective elements were measured, but were below their limits of detection. Blank boxes in oxide concentrations columns indicate that the respective elements were not sought. The collection of BSE images is presented as pdf.file. The sample and grain numbers are given below each mineral image and are corresponding to the Sample No. and the Grain No. in the data table.The thesis of N. Walsh "Walsh, N.J. (2013) Geochemistry and geochronology of the Precambrian basement domains in the vicinity of Fort MacMurray, Alberta: a geothermal perspective. Master of Science thesis, Department of Earth and Atmospheric Sciences, University of Alberta, Canada" is not available online.
    Keywords: monazite ; mineral composition ; granitoids ; electron-microprobe analysis ; rare earth elements ; gneisses ; thorium ; uranium ; compound material 〉 rock 〉 composite genesis rock 〉 metamorphic rock 〉 foliated metamorphic rock 〉 gneiss ; compound material 〉 igneous material 〉 igneous rock 〉 phaneritic igneous rock 〉 granitoid ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 ELEMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-06-12
    Description: Abstract
    Description: IPOC Creep is an array of 11 creepmeters installed along 4 active segments oft eh Atacama Fault Zone in Northern Chile. Installation of instruments started in 2008 within the framework of the Integrated Plate-boundary Observatory Chile (IPOC) and was completed in 2011. All installations are designed by the authors and follow a general concept, but are adapted to each site specifically. All the installed instruments use solid 12 mm thick invar rods as length standards, which are firmly attached to a concrete foundation in the hanging wall of the fault and pass through a PVC pipe to the footwall side of the fault where it is fixed to another concrete foundation. The creepmeters are buried at a depth of 30 - 70 cm, in order to increase the signal-to-noise ratio. We use a LVDT (linear variable differential transformer) with a range of 50 mm to monitor the relative displacement of the free end of the rod relative to the fixation point. Displacement is measured as voltage change and stored on a data logger with a sampling rate of 1/min (2008-2011 and 2/min (since 2011). Temperature at the rod is continuously measured with the same sampling rate to correct for thermal expansion and contraction of the length standard. The length of the instrument is dependent on the geometry at each site and ranges between 2 and 9 m. More specific information on each site can be found on http://www.ipoc-network.org/index.php/observatory/creepmeter.html . The Data is stored as time series since the initial start of operation of each creepmeter until July 2016. Data format is asci and contains 4 columns: 1st column Date[D.M.Y] 2nd column Time [HH:MM:SS] 3rd column ReferenceSensor[V]The reference signal is a steady signal of 1V and fluctuations indicate general voltage fluctuations in the setup. By normalizing to the reference signal it is possible to correct for these voltage changes. 4th column CreepSensor[V]The measured voltage of the CreepSensor is linearly proportional to the actual displacement. It can be converted to micrometers as follows: Displacement(µm) = (CreepSensor(t2)[V] - CreepSensor(t1)[V]) * 10000.
    Keywords: Tectonic Creep ; Active Faults ; Fault Displacement Rate ; Convergent Margin ; Trench Parallel Fault System ; IPOC
    Language: English
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-06-12
    Description: Abstract
    Description: The dataset is composed of a) hyperspectral imagery acquired with AISA Eagle and Hawk imaging spectrometer data in the range 400 to 2500 nm on April 2 and August 9, 2011, with a ground sampling distance of 4 m in 12 and 15 flight lines, respectively; b) airborne LiDAR data acquired in single-pulse mode in August 2011 concurrent with hyperspectral data acquisition with an avarage point density of 0.7 hits per meter squared; c) spectral reference measurements acquired with a portable ASD field spectroradiometer around the days of image acquisitions d) fractional cover of green vegetation, dry vegetation, bare soil and rock were visually estimated for 60 (April) and 53 (August) transects of 20-m length. The overall goal of the study was to investigate the potential of hyperspectral and LiDAR data for assessing sediment connectivity at the hillslope to subcatchment scale. For that the fractional cover of green vegetation, dry vegetation, bare soil and rock was derived by applying a multiple endmember spectral mixture analysis approach to the hyperspectral image data. The LiDAR point clouds were pre-processed to generate a digital elevation map as well as a vegetation height map, both with 4-m spatial resolution.
    Description: Other
    Description: The Environmental Mapping and Analysis Program (EnMAP) is a German hyperspectral satellite mission that aims at monitoring and characterizing the Earth’s environment on a global scale. EnMAP serves to measure and model key dynamic processes of the Earth’s ecosystems by extracting geochemical, biochemical and biophysical parameters, which provide information on the status and evolution of various terrestrial and aquatic ecosystems. In the frame of the EnMAP preparatory phase, pre-flight campaigns including airborne and in-situ measurements in different environments and for several application fields are being conducted. The main purpose of these campaigns is to support the development of scientific applications for EnMAP. In addition, the acquired data are input in the EnMAP end-to-end simulation tool (EeteS) and are employed to test data pre-processing and calibration-validation methods. The campaign data are made freely available to the scientific community under a Creative Commons Attribution-ShareAlike 4.0 International License. An overview of all available data is provided in in the EnMAP Flight Campaigns Metadata Portal http://www.enmap.org/?q=flights.
    Keywords: Imaging Spectroscopy ; Airborne Laserscanning ; Mediterranean drylands ; Ground fractional cover
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-04-21
    Description: Abstract
    Description: Spherical harmonic coefficients representing an estimate of Earth's mean gravity field during the specified timespan derived from GRACE-FO mission measurements. These coefficients represent the full magnitude of land hydrology, ice, and solid Earth processes. Further, they represent atmospheric and oceanic processes not captured in the accompanying GAC product.
    Keywords: Gravity Recovery And Climate Experiment Follow-On (GRACE-FO) ; Gravity Recovery And Climate Experiment (GRACE) ; Level-2 ; SHM ; Spherical Harmonic Model ; Gravitational Field ; GSM ; Geopotential ; Gravity Field ; Mass ; Mass Transport ; Total Water Storage ; Time Variable Gravity ; Mass Balance ; Gravity Anomaly ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD
    Language: English
    Type: Dataset , Dataset
    Format: 3 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-04-21
    Description: Abstract
    Description: Version History:09 June 2020:Release of Version 0002. This is an update of Version 0001 of the same data set. All changes and updates are documented in the changelog available via the data download section. Previously released versions of this data set are available at ftp://isdcftp.gfz-potsdam.de/grace/GravIS/GFZ/Level-2B/old_versions---------------------------------------------------------------------------------------------Post-processed GRACE/GRACE-FO spherical harmonic coefficients of GFZ RL06 Level-2 GSM products representing an estimate of Earth's gravity field variations during the specified timespan. Post-processing steps comprise: (1) subtraction of a long-term mean field; (2) optionally, decorrelation and smoothing with VDK filter (anisotropic filter taking the actual error covariance information of the underlying GSM coefficients into account, see Horvath et al. (2018)); (3) replacement of coefficients C20, C30 (only for the months starting from 2016/11 and later), C21 and S21 and its formal standard deviations by values estimated from a combination of GRACE/GRACE-FO and Satellite Laser Ranging (SLR); (4) subtraction of linear trend caused by Glacial Isostatic Adjustment (GIA) as provided by a numerical model; (5) insertion of geocenter coefficients (C10, C11, S11); and (6) removal of estimated aliased signal of the S2 tide (161 days period). These coefficients represent signals caused by water mass redistribution over the continents and in the oceans.These post-processed GRACE/GRACE-FO GSM products are denoted as Level-2B products.There are multiple variants of Level-2B products available that differ by the characteristics of the anisotropic filter applied. These variants are distinguishable by the following strings in the product file names:- 'NFIL': Level-2B product is not filtered- 'VDK1': Level-2B product is filtered with VDK1- 'VDK2': Level-2B product is filtered with VDK2- 'VDK3': Level-2B product is filtered with VDK3- 'VDK4': Level-2B product is filtered with VDK4- 'VDK5': Level-2B product is filtered with VDK5- 'VDK6': Level-2B product is filtered with VDK6- 'VDK7': Level-2B product is filtered with VDK7- 'VDK8': Level-2B product is filtered with VDK8The individual auxiliary data sets and models used during the post-processing steps mentioned above are provided as well (in the aux_data folder):- 'GRAVIS-2B_2002095-2020091_GFZOP_0600_NFIL_0002.gz': Long-term mean field calculated as unweighted average of the 183 available GFZ RL06 GSM products in the period from 2002/04 up to and including 2020/03.- 'GRAVIS-2B_GFZOP_GRACE+SLR_LOW_DEGREES_0002.dat': time series of coefficients C20, C30, C21 and S21 estimated from a combination of GRACE/GRACE-FO and SLR- 'GRAVIS-2B_GIA_ICE-6G_D_VM5a_0002.gz': Model from Peltier et al. (2018) for subtraction of linear trend caused by GIA- 'GRAVIS-2B_GFZOP_GEOCENTER_0002.dat': Time series with geocenter coefficients estimated from GFZ RL06Further information about the Level-2B products and the auxiliary data is provided in the header of the corresponding data files.
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-2 ; Level-2B ; SHM ; Spherical Harmonic Model ; Gravitational Field ; GSM ; Geopotential ; Gravity Field ; Mass ; Mass Transport ; Total Water Storage ; Time Variable Gravity ; Mass Balance ; Gravity Anomaly ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-04-21
    Description: Abstract
    Description: Version History:15 June 2020:Initial release of the data. Note that the initial version number is 0002 in order to reflect the consistent data processing of this data set and Version 0002 of the data set Dobslaw et al. (2019, http://doi.org/10.5880/GFZ.GRAVIS_06_L3_OBP).---------------------------------------------------------------------------------------------GRACE/GRACE-FO Level-3 product based on COST-G RL01 Level-2B products (Dahle & Murböck, 2020) representing Ocean Bottom Pressure (OBP) variations provided at 1° latitude-longitude grids as defined over ocean areas. The OBP grids are provided in NetCDF format divided into yearly batches. The files each contain seven different variables:1) 'barslv': gravity-based barystatic sea-level pressure2) 'std_barslv': gravity-based barystatic sea-level pressure uncertainties3) 'resobp': gravity-based residual ocean circulation pressure resobp4) 'std_resobp': gravity-based residual ocean circulation pressure uncertainties5) 'leakage': apparent gravity-based bottom pressure due to continental leakage6) 'model_ocean': background-model ocean circulation pressure7) 'model_atmosphere': background-model atmospheric surface pressureThese Level-3 products are visualized at GFZ's web portal GravIS (http://gravis.gfz-potsdam.de). Link to data products: ftp://isdcftp.gfz-potsdam.de/grace/GravIS/COST-G/Level-3/OBP
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-3 ; Mass ; Mass Transport ; Ocean Bottom Pressure ; Time Variable Gravity ; Mass Balance ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-04-21
    Description: Abstract
    Description: Version History:15 June 2020:Initial release of the data. Note that the initial version number is 0002 in order to reflect the consistent data processing of this data set and Version 0002 of the data set Boergens et al. (2019, http://doi.org/10.5880/GFZ.GRAVIS_06_L3_TWS).---------------------------------------------------------------------------------------------GRACE/GRACE-FO Level-3 product based on COST-G RL01 Level-2B products (Dahle & Murböck, 2020) representing Terrestrial Water Storage (TWS) anomalies provided at 1° latitude-longitude grids as defined over all continental regions except Greenland and Antarctica. The TWS anomaly grids are provided in NetCDF format divided into yearly batches. The files each contain four different variables:1) 'tws': gravity-based TWS2) 'std_tws': gravity-based TWS uncertainties3) 'leakage': spatial leakage contained in TWS4) 'model_atmosphere': background model atmospheric massThese Level-3 products are visualized at GFZ's web portal GravIS (http://gravis.gfz-potsdam.de). Link to data products: ftp://isdcftp.gfz-potsdam.de/grace/GravIS/COST-G/Level-3/TWS
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-3 ; Mass ; Mass Transport ; Total Water Storage ; Time Variable Gravity ; Mass Balance ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-04-21
    Description: Abstract
    Description: Version History:09 June 2020: Release of Version 0002. This is an update of Version 0001 of the same data set. All changes and updates are documented in the changelog available via the data download section. Previously released versions of this data set are available at ftp://isdcftp.gfz-potsdam.de/grace/GravIS/GFZ/Level-3/OBP/old_versions---------------------------------------------------------------------------------------------GRACE/GRACE-FO Level-3 product based on GFZ RL06 Level-2B products (Dahle & Murböck, 2019) representing Ocean Bottom Pressure (OBP) variations provided at 1° latitude-longitude grids as defined over ocean areas. The OBP grids are provided in NetCDF format divided into yearly batches. The files each contain seven different variables:1) 'barslv': gravity-based barystatic sea-level pressure2) 'std_barslv': gravity-based barystatic sea-level pressure uncertainties3) 'resobp': gravity-based residual ocean circulation pressure resobp4) 'std_resobp': gravity-based residual ocean circulation pressure uncertainties5) 'leakage': apparent gravity-based bottom pressure due to continental leakage6) 'model_ocean': background-model ocean circulation pressure7) 'model_atmosphere': background-model atmospheric surface pressureThese Level-3 products are visualized at GFZ's web portal GravIS (http://gravis.gfz-potsdam.de). Link to data products: ftp://isdcftp.gfz-potsdam.de/grace/GravIS/GFZ/Level-3/OBP
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-3 ; Mass ; Mass Transport ; Ocean Bottom Pressure ; Time Variable Gravity ; Mass Balance ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-04-21
    Description: Abstract
    Description: Version History:9 June 2020:Release of Version 0002. This is an update of Version 0001 of the same data set. All changes and updates are documented in the changelog available via the data download section. Previously released versions of this data set are available at ftp://isdcftp.gfz-potsdam.de/grace/GravIS/GFZ/Level-3/TWS/old_versions.---------------------------------------------------------------------------------------------GRACE/GRACE-FO Level-3 product based on GFZ RL06 Level-2B products (Dahle & Murböck, 2019) representing Terrestrial Water Storage (TWS) anomalies provided at 1° latitude-longitude grids as defined over all continental regions except Greenland and Antarctica. The TWS anomaly grids are provided in NetCDF format divided into yearly batches. The files each contain four different variables:1) 'tws': gravity-based TWS2) 'std_tws': gravity-based TWS uncertainties3) 'leakage': spatial leakage contained in TWS4) 'model_atmosphere': background model atmospheric massThese Level-3 products are visualized at GFZ's web portal GravIS (http://gravis.gfz-potsdam.de). Link to data products: ftp://isdcftp.gfz-potsdam.de/grace/GravIS/GFZ/Level-3/TWS
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-3 ; Mass ; Mass Transport ; Total Water Storage ; Time Variable Gravity ; Mass Balance ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Beestland BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Beestland BF1 was installed in 2013. It is located in the Trebel valley, and sensors are below agricutltural land. The station is equipped with sensor for measuring the following variables: AdconRainGauge_Precipitation, ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_2_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.004 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Alt Plestlin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Alt Plestlin was installed in 2013. It is located within a large field, next to a water area, which is about 1m below the station and within a shallow depression. Smaller bushes are within the closer surrounding of the station. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.283 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Alt Tellin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Alt Tellin BF1 was installed in 2014. It is located on a farm field close to the Tollense river and next to the Alt Tellin climate station. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_5_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.003 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Alt Plestlin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Alt Plestlin BF1 was installed in 2012. It is located on a field border next to a hedgerow. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_4_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.002 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Beggerow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Beggerow BF1 was installed in 2013. It is located near to a single tree within a flat agricultural field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.005 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Bentzin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Bentzin BF1 was installed in 2012. It is located at the edge of a flat field, next to pastures. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.006 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Boeken climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Boeken was installed in 2011. It is located within a field on a small conservated area. No direct obstacles are close to the station. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature015-025cm, AdconSM1_Soiltemperature045-075cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.47 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Boeken BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Boeken BF1 was installed in 2012. It is located in the northern part of the investigated area, close to the edge of a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_1_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.008 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Boeken BF2 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Boeken BF2 was installed in 2012. It is located on the southern edge of a conserved plot within an agricultural fields, sensors are below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_1_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.009 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Borrentin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Borrentin BF1 was installed in 2013. It is located next to a pylon, within an undulating field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.011 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/octet-stream
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Goermin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Goermin BF1 was installed in 2012. It is located within a tree row on the eastern edge of a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_2_Temperature and ScemeSpadeSoilMoisture_Spade_6_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.019 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Buchholz BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Buchholz BF1 was installed in 2013. It is located on the southern edge of a field, with falling slope to the north. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_2_Temperature and ScemeSpadeSoilMoisture_Spade_5_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.012 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Boeken BF3 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Boeken BF3 was installed in 2012. It is located on the eastern edge of a conserved plot within an agricultural fields, sensors are below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_1_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.010 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Deven BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Deven BF1 was installed in 2013. It is located next to an irrigation supply on an undulating part of a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_4_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.014 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Demmin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Demmin BF1 was installed in 2013. It is located next to a pylon, within an flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_1_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.013 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Glendelin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Glendelin BF1 was installed in 2014. It is located next to a pylon, within an flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_1_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.018 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Gatschow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Gatschow BF1 was installed in 2013. It is located on the border between two fields, with sensors A under a field with mainly grassland and sensors B below a managed field. The station is equipped with sensor for measuring the following variables: AdconRainGauge_Precipitation, ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.017 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Droennewitz BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Droennewitz BF1 was installed in 2013. It is located on a small crest, next to the climate station Droennewitz. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.015 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Eugenienberg BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Eugenienberg BF1 was installed in 2013. It is located on the edge of a field, between some sparse trees and sensors are below the managed field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_2_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.016 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Grosszetelvitz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Grosszetelvitz was installed in 2011. It is located on a small conservated area within a field. Bushes and small trees are growing on the western side of the station. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature015-025cm, AdconSM1_Soiltemperature045-075cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.256 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-04-04
    Description: Abstract
    Description: The Volksdorf BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Volksdorf BF1 was installed in 2013. It is located at the border of two field, with sensors A to the northeast and sensors B to the southeast. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_1_Temperature and ScemeSpadeSoilMoisture_Spade_5_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.075 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Sophienhof climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Sophienhof was installed in 2017. It is located on a flat terrain, near to a boundary ridge and near to a hedge, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: Temperature and RelativeHumidityThe dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level. Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: TERENO ; TERENO Northeast ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Neu Tellin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Neu Tellin was installed in 2011. It is located on a flat terrain closed to a boundary ridge surrounded by agricultural fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.012 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Sommersdorf climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Sommersdorf was installed in 2011. It is located on flat terrain, within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZSPLite_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.014 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Seedorf climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Seedorf was installed in 2004. It is located on flat terrain, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.013 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Seedorf BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Seedorf BF1 was installed in 2013. It is located next to a railway track with sensors below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_2_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.063 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Tutow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Tutow BF1 was installed in 2012. It is located on the southern edge of a conserved area within a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.069 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Toitz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Toitz was installed in 2004. It is located on flat terrain, within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.016 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Metschow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Metschow was installed in 2004. It is located on a hilly terrain within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.011 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Teusin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Teusin BF1 was installed in 2013. It is located within a flat field, and next to a pylon. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.064 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/octet-stream
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Toitz BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Toitz BF1 was installed in 2014. It is located next to a forest edge with sensors below an agricultural field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_1_Temperature and ScemeSpadeSoilMoisture_Spade_4_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.065 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Passow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Passow was installed in 2011. It is located within a field, next to some drainage installations. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.272 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Trittelwitz BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Trittelwitz BF1 was installed in 2014. It is located next to a pylon on a flat field. The station is equipped with sensor for measuring the following variables: AdconRainGauge_Precipitation, ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.068 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Trantow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Trantow BF1 was installed in 2012. It is located next to a pylon on a flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.067 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Ploetz BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Ploetz BF1 was installed in 2012. It is located on the border of a field to gardens, sensors are below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.051 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Pustow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Pustow BF1 was installed in 2012. It is located on the border of a conserved area within a field, with sensors below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_1_Temperature, ScemeSpadeSoilMoisture_Spade_2_Temperature and ScemeSpadeSoilMoisture_Spade_5_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.052 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Quitzerow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Quitzerow BF1 was installed in 2013. It is located on the field border, sensors below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.053 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Rustow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Rustow was installed in 2011. It is located next to a lysimeter facility, with buildings east of the station. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.273 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Roidin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Roidin BF1 was installed in 2012. It is located next to a conserved, wet spot within a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_1_Temperature and ScemeSpadeSoilMoisture_Spade_4_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.054 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Rustow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Rustow BF1 was installed in 2013. It is located on grassland with a rather wet sourrounding. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.056 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Rustow BF2 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Rustow BF2 was installed in 2013. It is located on the border between two fields, sensors A are installed in the northern field, sensors B in the eastern field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_2_Temperature and ScemeSpadeSoilMoisture_Spade_4_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.057 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Sanzkow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Sanzkow was installed in 2011. It is located between a field and grassland. Single rows of large trees are within 50m distance. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.274 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Neu Tellin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Neu Tellin BF1 was installed in 2013. It is located on the edge of a field with sensors below, 10m to the opposite direction is a trench. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.046 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Sanzkow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Sanzkow BF1 was installed in 2013. It is located on grassland with sandy soils. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_1_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.059 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Medrow BF2 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Medrow BF2 was installed in 2013. It is located next to a hedgerow with all sensors at one location below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_3_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.040 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Medrow BF3 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Medrow BF3 was installed in 2013. It is located next to a geodetic marker within a flat field. The station is equipped with sensor for measuring the following variables: AdconRainGauge_Precipitation, ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_2_Temperature and ScemeSpadeSoilMoisture_Spade_4_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.041 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Metschow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Metschow BF1 was installed in 2013. It is located on the southern and lowest edge of a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.042 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Muehlenkamp BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Muehlenkamp BF1 was installed in 2013. It is located on the edge of a driveway, with sensors below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_3_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.044 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Muessentin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Muessentin was installed in 2011. It is surrounded by agricultural used lands and next to a wet sink within the field, without obstacles next to the station. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature015-025cm, AdconSM1_Soiltemperature045-075cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.270 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Muehlenkamp climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Muehlenkamp was installed in 2011. It is located on a narrow strip of conservated land, with an agricultural field to the south and grasslands to the north. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.269 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Jarmen BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Jarmen BF1 was installed in 2012. It is located on the edge of two field, with sensors A below the southern field and sensors B to the north. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_1_Temperature and ScemeSpadeSoilMoisture_Spade_4_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.027 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Jarmen BF2 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Jarmen BF2 was installed in 2012. It is located on the edge of two field, with sensors A below the southern field and sensors B to the north. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.028 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2023-03-31
    Description: Abstract
    Description: The Jarmen BF3 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Jarmen BF3 was installed in 2012. It is located on the edge of two field, with sensors A below the southern field and sensors B to the north. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.029 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Wotenick climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Wotenick was installed in 2004. It is located on flat terrain, near to a high-voltage tower within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.021 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Warrenzin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Warrenzin was installed in 2004. It is located on flat terrain, near to an high-voltage tower within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.020 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Beestland climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Beestland was installed in 2011. It is located on a boundary ridge, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.002 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Volksdorf climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Volksdorf was installed in 2004. It is located on flat terrain, within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.019 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Verchen climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Verchen was installed in 2004. It is located on flat terrain, within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.018 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Upost climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Upost was installed in 2004. It is located on flat terrain, within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.017 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Hohenbuessow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Hohenbuessow BF1 was installed in 2013. It is located next to a dirt track with sensors below the southern field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.026 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kletzin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Kletzin was installed in 2004. It is located on a hilly terrain, closed to a drainage basin, surrounded by an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.008 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Medrow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Medrow was installed in 2004. It is located on flat terrain, near to a hedge on grassland, surrounded by agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.010 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Goermin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Goermin was installed in 2004. It is located on flat terrain within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.007 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Droennewitz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Droennewitz was installed in 2010. It is located on flat terrain within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.006 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kruckow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Kruckow was installed in 2008. It is located on flat terrain within a small wind farm and a drainage basin, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.009 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Buchholz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Buchholz was installed in 2007. It is located on a hilly terrain near a boundary ridge and near to a hedge surrounded by agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, Temperature5cm_Temperature005cm, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.005 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Bentzin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Bentzin was installed in 2004. It is located on a flat terrain on a boundary ridge, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.004 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Alt Tellin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Alt Tellin was installed in 2011. It is located on a flat terrain within the field on grassland, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.001 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Beggerow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Beggerow was installed in 2012. It is located on a small wind farm on grassland, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.003 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Heydenhof BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Heydenhof BF1 was installed in 2012. It is located on the southern edge of a hedge row with sensors south of the station and below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_2_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.025 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Heydenhof climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Heydenhof was installed in 2013. It is located within a large field, with no obstacles surrounding the stations. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.290 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kletzin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Kletzin BF1 was installed in 2012. It is located near a former wind turbine location within a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_5_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.031 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Nossendorf BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Nossendorf BF1 was installed in 2013. It is located within a field, next to some drainage installations. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_1_Temperature and ScemeSpadeSoilMoisture_Spade_4_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.049 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Karlshof climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Karlshof was installed in 2013. It is located within a field, with close obstacles surrounding the station from western, northern and partly eastern direction. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.265 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kran-droennewitz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Kran-droennewitz was installed in 2014. It is located on top of a tower crane at 40m height, on the border of a deciduous forest to natural wetlands. The station is equipped with sensor for measuring the following variables: Temperature, Precipitation, BarometricPressure, RelativeHumidity, LeafWetness, WindDirection, WindSpeed, PyrgeometerCGR3incoming, PyrgeometerCGR3outgoing, PyranometerCMP3incoming and PyranometerCMP3outgoingThe dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level. Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: TERENO ; TERENO Northeast ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Nielitz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Nielitz was installed in 2012. It is located on a small patch of conservated land, including some trees, west of the stations The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.271 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kletzin BF2 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Kletzin BF2 was installed in 2015. It is located near a wind turbine location within a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.032 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Nielitz BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Nielitz BF1 was installed in 2013. It is located next to a pylon, within an flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.048 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kuntzow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Kuntzow was installed in 2011. It is located on a natural grassland, with an agricultural used field to the south and east. 50m to the north are some trees. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.267 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kruckow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Kruckow BF1 was installed in 2012. It is located on the border of a conserved area within a flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_1_Temperature and ScemeSpadeSoilMoisture_Spade_2_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.034 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Leppin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Leppin was installed in 2013. It is located within a field, close to a collection of huge stones (~1.5m height) and small shrubs. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.268 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Lindenfelde BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Lindenfelde BF1 was installed in 2014. It is located next to a pylon, within an undulating field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.037 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...