ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (97,841)
  • Spanish  (4,275)
Collection
Language
Years
  • 1
    Publication Date: 2024-05-13
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-13
    Description: The Zagros Fold and Thrust Belt (ZFTB) is an outstanding orogen running from eastern Turkey to the Makran area. It is formed as a consequence of the convergence between the Arabian and the Eurasian plates that occurred in the Neogene. This still active and long-lasting process generated a topographic configuration dominated by a series of parallel folding structures which, at places, isolate internal basins. The topographic configuration has, in turn, profoundly influenced the river network evolution, which follows a trellis pattern with the main valleys developed in the synclines and rivers that occasionally cut into anticlines. The peculiar climate, characterised by arid and semi-arid conditions, makes most of the rivers ephemeral, alimented only by short rainfall events. For this reason, the sediments are transported over short distances and deposited in huge alluvial fans. Although the Zagros is one of the most studied belts in the world, its tectonic evolution is far from being fully understood. Debated, for example, are the beginning of collision, the primary deformation mechanism, the evolution of the drainage system, the formation process of the alluvial fans, and the interrelations between landscape, tectonics, and climate. This paper, focusing on the geodynamic, geological, stratigraphic, and topographic configuration of the Zagros belt, is intended to be a compendium of the most up-to-date knowledge on the Zagros and aims to provide the cognitive basis for future research that can find answers to outstanding questions.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-13
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-13
    Description: Underwater cabled observatories are a key assets to monitor the oceans, providing high-resolution multi-parametric data from a wide variety of sensor systems. Their outstanding observational capabilities lead to significant amounts of data that need to be properly acquired, archived, curated and distributed. This paper presents the OBSEA e-Infrastructure, a modular data infrastructure to manage and distribute data from the OBSEA underwater observatory in a Findable, Accessible, Interoperable and Re-usable manner.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-13
    Description: Slow slip events (SSEs) have been observed in spatial and temporal proximity to megathrust earthquakes in various subduction zones, including the 2014 Mw 7.3 Guerrero, Mexico earthquake which was preceded by a Mw 7.6 SSE. However, the underlying physics connecting SSEs to earthquakes remains elusive. Here, we link 3D slow‐slip cycle models with dynamic rupture simulations across the geometrically complex flat‐slab Cocos plate boundary. Our physics‐based models reproduce key regional geodetic and teleseismic fault slip observations on timescales from decades to seconds. We find that accelerating SSE fronts transiently increase shear stress at the down‐dip end of the seismogenic zone, modulated by the complex geometry beneath the Guerrero segment. The shear stresses cast by the migrating fronts of the 2014 Mw 7.6 SSE are significantly larger than those during the three previous episodic SSEs that occurred along the same portion of the megathrust. We show that the SSE transient stresses are large enough to nucleate earthquake dynamic rupture and affect rupture dynamics. However, additional frictional asperities in the seismogenic part of the megathrust are required to explain the observed complexities in the coseismic energy release and static surface displacements of the Guerrero earthquake. We conclude that it is crucial to jointly analyze the long‐ and shortterm interactions and complexities of SSEs and megathrust earthquakes across several (a)seismic cycles accounting for megathrust geometry. Our study has important implications for identifying earthquake precursors and understanding the link between transient and sudden megathrust faulting processes.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-13
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-13
    Description: Fault‐damage zones comprise multiscale fracture networks that may slip dynamically and interact with the main fault during earthquake rupture. Using 3D dynamic rupture simulations and scale‐dependent fracture energy, we examine dynamic interactions of more than 800 intersecting multiscale fractures surrounding a listric fault, emulating a major listric fault and its damage zone. We investigate 10 distinct orientations of maximum horizontal stress, probing the conditions necessary for sustained slip within the fracture network or activating the main fault. Additionally, we assess the feasibility of nucleating dynamic rupture earthquake cascades from a distant fracture and investigate the sensitivity of fracture network cascading rupture to the effective normal stress level. We model either pure cascades or main fault rupture with limited offfault slip. We find that cascading ruptures within the fracture network are dynamically feasible under certain conditions, including: (a) the fracture energy scales with fracture and fault size, (b) favorable relative pre‐stress of fractures within the ambient stress field, and (c) close proximity of fractures. We find that cascading rupture within the fracture network discourages rupture on the main fault. Our simulations suggest that fractures with favorable relative pre‐stress, embedded within a fault damage zone, may lead to cascading earthquake rupture that shadows main fault slip. We find that such off‐fault events may reach moment magnitudes up to Mw ≈ 5.5, comparable to magnitudes that can be otherwise hosted by the main fault. Our findings offer insights into physical processes governing cascading earthquake dynamic rupture within multiscale fracture networks.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-13
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-13
    Description: Wetlands in Arctic drained lake basins (DLBs) have a high potential for carbon storage in vegetation and peat as well as for elevated greenhouse gas emissions. However, the evolution of vegetation and organic matter is rarely studied in DLBs, making these abundant wetlands especially uncertain elements of the permafrost carbon budget. We surveyed multiple DLB generations in northern Alaska with the goal to assess vegetation, microtopography, and organic matter in surface sediment and pond water in DLBs and to provide the first high-resolution land cover classification for a DLB system focussing on moisture-related vegetation classes for the Teshekpuk Lake region. We associated sediment properties and methane concentrations along a post-drainage succession gradient with remote sensing-derived land cover classes. Our study distinguished five eco-hydrological classes using statistical clustering of vegetation data, which corresponded to the land cover classes. We identified surface wetness and time since drainage as predictors of vegetation composition. Microtopographic complexity increased after drainage. Organic carbon and nitrogen contents in sediment, and dissolved organic carbon (DOC) and dissolved nitrogen (DN) in ponds were high throughout, indicating high organic matter availability and decomposition. We confirmed wetness as a predictor of sediment methane concentrations. Our findings suggest moderate to high methane concentrations independent of drainage age, with particularly high concentrations beneath submerged patches (up to 200 μmol l−1) and in pond water (up to 22 μmol l−1). In our DLB system, wet and shallow submerged patches with high methane concentrations occupied 54% of the area, and ponds with high DOC, DN and methane occupied another 11%. In conclusion, we demonstrate that DLB wetlands are highly productive regarding organic matter decomposition and methane production. Machine learning-aided land cover classification using high-resolution multispectral satellite imagery provides a useful tool for future upscaling of sediment properties and methane emission potentials from Arctic DLBs.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-13
    Description: We present a seismic catalog (Bindi et al., 2024, https://doi.org/10.5880/GFZ.2.6.2023.010) including energy magnitude Me estimated from P waves recorded at teleseismic distances in the range 20° 1 98° and for depths shorter than 80 km. The catalog is built starting from the event catalog disseminated by GEOFON (GEOFOrschungsNetz), considering 6349 earthquakes with moment magnitude Mw 5 occurring between 2011 and 2023. Magnitudes are computed using 1 031 396 freely available waveforms archived in EIDA (European Integrated Data Archive) and IRIS (Incorporated Research Institutions for Seismology) repositories, retrieved through the standard International Federation of Digital Seismograph Networks (FDSN) web services (https://www.fdsn.org/webservices/, last access: March 2024). A reduced, high-quality catalog for events with Mw 5〉_8 and from which stations and events with only few recordings were removed forms the basis of a detailed analysis of the residuals of individual station measurements, which are decomposed into station- and event-specific terms and a term accounting for remaining variability. The derived Me values are compared to Mw computed by GEOFON and with the Me values calculated by IRIS. Software and tools developed for downloading and processing waveforms for bulk analysis and an add-on for SeisComP for real-time assessment of Me in a monitoring context are also provided alongside the catalog. The SeisComP add-on has been part of the GEOFON routine processing since December 2021 to compute and disseminate Me for major events via the existing services.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...