ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:551  (29)
  • English  (29)
  • 2020-2023  (29)
  • 1955-1959
Collection
Language
Years
Year
  • 1
    Publication Date: 2022-06-26
    Description: Physical weathering in cold, steep bedrock hillslopes occurs at rates that are thought to depend on temperature, but our ability to quantify the temperature‐dependence of erosion remains limited when integrating over geomorphic timescales. Here, we present results from a 1D numerical model of in‐situ cosmogenic 10Be, 14C, and 3He concentrations that evolve as a function of erosion rate, erosion style, and ground surface temperature. We used the model to explore the suitability of these nuclides for quantifying erosion rates in areas undergoing non‐steady state erosion, as well as the relationship between bedrock temperature, erosion rate, and erosional stochasticity. Our results suggest that even in stochastically eroding settings, 10Be‐derived erosion rates of amalgamated samples can be used to estimate long‐term erosion rates, but infrequent large events can lead to bias. The ratio of 14C to 10Be can be used to evaluate erosional stochasticity, and to determine the offset between an apparent 10Be‐derived erosion rate and the long‐term rate. Finally, the concentration of 3He relative to that of 10Be, and the paleothermometric interpretations derived from it, are unaffected by erosional stochasticity. These findings, discussed in the context of bedrock hillslopes in mountainous regions, indicate that the 10Be‐14C‐3He system in quartz offers a method to evaluate the temperature‐sensitivity of bedrock erosion rates in cold, high‐alpine environments.
    Description: Plain Language Summary: All mountains erode, but not all mountains erode in the same way and at the same rate. In cold mountainous landscapes, temperature is thought to be an important control on erosion. Previous research suggests that rocks fracture by frost most effectively at temperatures between −3°C and −8°C, and that the warming and thawing of permanently frozen ground (permafrost) destabilizes hillslopes and leads to more and larger rockfalls. However, our ability to test these hypotheses is limited, due to difficulties in measuring or estimating erosion rates and linking them with the temperatures that rocks experience. In this paper we present the results of a computer modeling study that tests the suitability of geochemical tools as measures of erosion rate, erosion style, and long‐term bedrock temperature. We find that these geochemical tracers, called cosmogenic nuclides, can be used to determine erosion rates, even in places that are prone to rare rockfalls, together with the long‐term bedrock temperature. They are therefore uniquely suitable for evaluating the link between temperatures and erosion rates in cold bedrock hillslopes over long timescales.
    Description: Key Points: Cosmogenic 10Be, 14C, and 3He is used to determine erosion rates, erosion styles, and bedrock temperatures in cold regions. 14C/10Be ratios of surface samples reflect the depth at which material was previously eroded, allowing for determination of erosion style. 14C/10Be ratios combined with 10Be‐derived erosion rates improve erosion rate estimates in stochastically eroding environments.
    Description: European Research Council Horizon 2020
    Description: https://doi.org/10.5880/GFZ.3.3.2022.001
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-17
    Description: Volcanic crises are often associated with magmatic intrusions or the pressurization of magma chambers of various shapes. These volumetric sources deform the country rocks, changing their density, and cause surface uplift. Both the net mass of intruding magmatic fluids and these deformation effects contribute to surface gravity changes. Thus, to estimate the intrusion mass from gravity changes, the deformation effects must be accounted for. We develop analytical solutions and computer codes for the gravity changes caused by triaxial sources of expansion. This establishes coupled solutions for joint inversions of deformation and gravity changes. Such inversions can constrain both the intrusion mass and the deformation source parameters more accurately.
    Description: Plain Language Summary: Volcanic crises are usually associated with magmatic fluids that intrude and deform the host rocks before potentially breaching the Earth's surface. It is important to estimate how much fluid (mass and volume) is on the move. Volume can be determined from the measured surface uplift. Mass can be determined from surface gravity changes. The fluid intrusion increases the mass below the volcano, thereby increasing the gravity and pressurizing the rocks. This dilates parts of the host rock and compresses other parts, changing the rock density and redistributing the rock mass. This causes secondary gravity changes, called deformation‐induced gravity changes. The measured gravity change is always the sum of the mass and deformation‐induced contributions. Here, we develop mathematical equations for the rapid estimation of these deformation‐induced gravity changes caused by arbitrary intrusion shapes. This way we can take the mass contribution apart from the deformation contribution. We show that by using this solution not only the intrusion mass, but also other intrusion parameters, including the volume, depth, and shape can be calculated more accurately.
    Description: Key Points; We develop analytical solutions for gravity changes due to the point Compound Dislocation Model simulating triaxial expansions. Rapid coupled inversions of deformation and gravity changes, accounting for deformation‐induced gravity changes are now possible. For shallow sources, estimation errors in the chamber volume change may lead to large biases in the simulated gravity changes.
    Description: EU Horizon 2020 programme NEWTON‐g project, under the FETOPEN‐ Grant Agreement No.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://volcanodeformation.com/onewebmedia/pCDMgravity.zip
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-25
    Description: The Miocene period saw substantially warmer Earth surface temperatures than today, particularly during a period of global warming called the Mid Miocene Climatic Optimum (MMCO; ∼17–15 Ma). However, the long‐term drivers of Miocene climate remain poorly understood. By using a new continuous climate‐biogeochemical model (SCION), we can investigate the interaction between volcanism, climate and biogeochemical cycles through the Miocene. We identify high tectonic CO2 degassing rates and further emissions associated with the emplacement of the Columbia River Basalt Group as the primary driver of the background warmth and the MMCO respectively. We also find that enhanced weathering of the basaltic terrane and input of explosive volcanic ash to the oceans are not sufficient to drive the immediate cooling following the MMCO and suggest that another mechanism, perhaps the change in ocean chemistry due to massive evaporite deposition, was responsible.
    Description: Plain Language Summary: The Miocene period was much warmer than today, with the Mid Miocene Climatic Optimum (MMCO, roughly 17–15 million years ago) especially warm. Due to the high surface temperatures, comparisons to projected climatic conditions as a result of anthropogenic climate change have been drawn. However, the drivers of climate during the Miocene are not well understood. By using a new type of climate model, we investigate the impact volcanic eruptions had on the period, and link the extreme warmth of the MMCO with greenhouse gas release from the eruption of the Columbia River Basalts Group (CRBG). We find weathering of the CRBG does not explain the cooling at the end of the MMCO, and so discuss other potential explanations such as evaporite deposition.
    Description: Key Points: A new climate‐biogeochemical model allows investigation of drivers of climate change in the Miocene. Columbia River Basalt Group (CRBG) degassing is sufficient to have caused the Mid Miocene Climatic Optimum (MMCO). Weathering of CRBG insufficient to drive cooling after the MMCO. This may be linked to evaporite deposition and changes to marine chemistry.
    Description: UK Natural Environment Research Council
    Description: French Research Agency (ANR)
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-04
    Description: Greenhouse gas fluxes (CO2, CH4, and N2O) from African streams and rivers are under‐represented in global datasets, resulting in uncertainties in their contributions to regional and global budgets. We conducted year‐long sampling of 59 sites in a nested‐catchment design in the Mara River, Kenya in which fluxes were quantified and their underlying controls assessed. We estimated annual basin‐scale greenhouse gas emissions from measured in‐stream gas concentrations, modeled gas transfer velocities, and determined the sensitivity of up‐scaling to discharge. Based on the total annual CO2‐equivalent emissions calculated from global warming potentials (GWP), the Mara basin was a net greenhouse gas source (294 ± 35 Gg CO2 eq yr−1). Lower‐order streams (1–3) contributed 81% of the total fluxes, and higher stream orders (4–8) contributed 19%. Cropland‐draining streams also exhibited higher fluxes compared to forested streams. Seasonality in stream discharge affected stream widths (and stream area) and gas exchange rates, strongly influencing the basin‐wide annual flux, which was 10 times higher during the high and medium discharge periods than the low discharge period. The basin‐wide estimate was underestimated by up to 36% if discharge was ignored, and up to 37% for lower stream orders. Future research should therefore include seasonality in stream surface areas in upscaling procedures to better constrain basin‐wide fluxes. Given that agricultural activities are a major factor increasing riverine greenhouse gas fluxes in the study region, increased conversion of forests and agricultural intensification has the possibility of increasing the contribution of the African continent to global greenhouse gas sources.
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Description: IHE Delft Institute for Water Education
    Description: Federal Ministry of Education and Research http://dx.doi.org/10.13039/501100002347
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: TERENO Bavarian Alps/ Pre‐Alps Observatory
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-07
    Description: The decomposition of thawing permafrost organic matter (OM) to the greenhouse gases (GHG) carbon dioxide (CO2) and methane forms a positive feedback to global climate change. Data on in situ GHG fluxes from thawing permafrost OM are scarce and OM degradability is largely unknown, causing high uncertainties in the permafrost‐carbon climate feedback. We combined in situ CO2 and methane flux measurements at an abrupt permafrost thaw feature with laboratory incubations and dynamic modeling to quantify annual CO2 release from thawing permafrost OM, estimate its in situ degradability and evaluate the explanatory power of incubation experiments. In July 2016 and 2019, CO2 fluxes ranged between 0.24 and 2.6 g CO2‐C m−2 d−1. Methane fluxes were low, which coincided with the absence of active methanogens in the Pleistocene permafrost. CO2 fluxes were lower three years after initial thaw after normalizing these fluxes to thawed carbon, indicating the depletion of labile carbon. Higher CO2 fluxes from thawing Pleistocene permafrost than from Holocene permafrost indicate OM preservation for millennia and give evidence that microbial activity in the permafrost was not substantial. Short‐term incubations overestimated in situ CO2 fluxes but underestimated methane fluxes. Two independent models simulated median annual CO2 fluxes of 160 and 184 g CO2‐C m−2 from the thaw slump, which include 25%–31% CO2 emissions during winter. Annual CO2 fluxes represent 0.8% of the carbon pool thawed in the surface soil. Our results demonstrate the potential of abrupt thaw processes to transform the tundra from carbon neutral into a substantial GHG source.
    Description: Plain Language Summary: Thawing of permanently frozen soils (permafrost) in the northern hemisphere forms a threat to global climate since these soils contain large amounts of frozen organic carbon, which might be decomposed to the greenhouse gases (GHGs) carbon dioxide (CO2) and methane upon thaw. How fast these GHGs are produced is largely unknown, since field observations of greenhouse gas fluxes from thawing permafrost are too sparse. Consequently, simulations on the effect of thawing permafrost soils on future climate are highly uncertain. We measured CO2 and methane fluxes from soils affected by abrupt permafrost thaw in Siberia during two summer seasons. We used these field observations and long‐term incubation data to calibrate two models that simulate the CO2 release over a whole year. We found that greenhouse gas fluxes were dominated by CO2 and that the minor importance of methane was due to the absence of methane producing microorganisms in the Pleistocene permafrost. The CO2 release in the first year accounted for 0.8% of thawed permafrost carbon but decomposition rates decreased after the depletion of the rapidly decomposable organic matter. Abrupt permafrost thaw turned the tundra into a substantial source of CO2, of which 25%–31% was released in the non‐growing season.
    Description: Key Points: Abrupt permafrost thaw turned the tundra into a substantial annual source of CO2 of which 25%–31% were released in the non‐growing season. About 0.8% of thawed permafrost carbon was decomposed to CO2 in one year but decomposition rates declined after the loss of labile carbon. Methane contributed a minor fraction to total greenhouse gas fluxes also because of a low methanogen abundance in Pleistocene permafrost.
    Description: German Ministry for Education and Research
    Description: German Research Foundation
    Description: https://doi.org/10.5281/zenodo.5584710
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-12-05
    Description: To explore the dynamic mechanism of continental rifting within a convergent setting, we determine the first P wave radial anisotropic tomography beneath the Woodlark rift in southeastern Papua New Guinea, which develops within the obliquely colliding zone between the Australian and southwest Pacific plates. The rift zone is depicted as localized low‐velocity anomalies with positive radial anisotropy, which rules out a dominant role of active mantle upwelling in promoting the rift development and favors passive rifting with decompression melting as main processes. Downwelling slab relics in the upper mantle bounding the rift zone are revealed based on observed high‐velocity anomalies and negative radial anisotropy, which may contribute to the ultra‐high pressure rock exhumations and rift initiation. Our observations thus indicate that the Woodlark rift follows a passive model and is mainly driven by slab pull from the northward subduction of the Solomon plate.
    Description: Plain Language Summary: The Woodlark rift in Papua New Guinea develops within the shear zone between the Australian and southwest Pacific plates and is one of the youngest and most rapidly extending continental rifts in the world. In this work, we analyze teleseismic P wave arrivals to study both 3‐D velocity and radial anisotropy structures of the upper mantle, offering new evidence to understand rift initiation under a generally convergent setting. Slab remnants in the upper mantle bordering the rift zone are detected and sinking into the deeper mantle. Downwelling of these slab segments may induce small scale return flows in the mantle and contribute to exhumation of the ultra‐high pressure rocks and rift development. Significant low‐velocity anomalies are revealed beneath the rift zone and have consistently positive radial anisotropy, which indicates a dominant strain in the horizontal plane and supports a passive rifting model, where mantle material is brought to shallower depths simply as a result of the extension of the lithosphere and melt is produced due to the lowered melting point at reduced pressure (decompression melting). Tensional stresses transferred from slab pull of the northward Solomon subduction are probably driving the rifting.
    Description: Key Points: P wave radial anisotropic structure beneath the young and highly extended Woodlark rift is constrained from teleseismic tomography. Downwelling of slab relics bordering the rift zone may contribute to ultra‐high pressure rock exhumation and rift development. Slab‐pull drives rift initiation and induces decompression melting in the upper mantle under the rift zone by horizontal stress transfer.
    Description: National Natural Science Foundation of China (NSFC) http://dx.doi.org/10.13039/501100001809
    Description: National Science Foundation (NSF) http://dx.doi.org/10.13039/100000001
    Description: MEXT | Japan Society for the Promotion of Science (JSPS) http://dx.doi.org/10.13039/501100001691
    Description: Alexander von Humboldt‐Stiftung (Humboldt‐Stiftung) http://dx.doi.org/10.13039/100005156
    Description: https://doi.org/10.7914/SN/XD_1999
    Description: https://doi.org/10.7914/SN/ZN_2010
    Keywords: ddc:551 ; Woodlark rift ; radial anisotropy ; decompression melting ; slab‐pull ; slab downwelling ; ultra‐high pressure rock
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-04
    Description: Changes to the carbon content of the deep ocean, the largest reservoir in the surficial carbon cycle, are capable of altering atmospheric carbon dioxide concentrations and thereby Earth's climate. While the role of the deep ocean's carbon inventory in the last ice age has been thoroughly investigated, comparatively little is known about whether the deep ocean contributed to the change in the pacing and intensity of ice ages around 1 million years ago during the Mid‐Pleistocene Transition (MPT). Qin et al. (2022, https://doi.org/10.1029/2021GL097121) provide new reconstructions of deep ocean carbonate ion saturation, a proxy for carbon content, from the deep Pacific Ocean across the MPT. Intriguingly, their results show that a reduction in deep Pacific carbonate ion saturation across the MPT occurred at different intervals from carbonate ion saturation decline in the deep Atlantic Ocean. These results suggest a more nuanced contribution of whole‐ocean carbon sequestration to the climate changes reconstructed across the MPT.
    Description: Plain Language Summary: Earth's periodic ice ages became longer and more intense around 1 million years ago. While the underlying reasons for this climate change remain debated, it is widely understood that the deep ocean may have played an important role by storing the potent greenhouse gas carbon dioxide away from the atmosphere. New research by Qin et al. (2022, https://doi.org/10.1029/2021gl097121) shows that the deep Pacific Ocean did indeed accumulate additional carbon around the time of this million‐year old climate transition. However, the new results also show that Pacific Ocean accumulated carbon over different intervals than the Atlantic Ocean, deepening the mystery around how and why this carbon uptake occurred.
    Description: Key Points: The deep Atlantic and Pacific Oceans accumulated carbon at different intervals during the mid‐Pleistocene transition.
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: https://doi.org/10.1029/2021GL097121
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-12-06
    Description: Molecular‐biological data and omics tools have increasingly been used to characterize microorganisms responsible for the turnover of reactive compounds in the environment, such as reactive‐nitrogen species in groundwater. While transcripts of functional genes and enzymes are used as measures of microbial activity, it is not yet clear how they are quantitatively related to actual turnover rates under variable environmental conditions. As an example application, we consider the interface between rivers and groundwater which has been identified as a key driver for the turnover of reactive‐nitrogen compounds, that cause eutrophication of rivers and endanger drinking water production from groundwater. In the absence of measured data, we developed a reactive‐transport model for denitrification that simultaneously predicts the distributions of functional‐gene transcripts, enzymes, and reaction rates. Applying the model, we evaluate the response of transcripts and enzymes at the river‐groundwater interface to stable and dynamic hydrogeochemical regimes. While functional‐gene transcripts respond to short‐term (diurnal) fluctuations of substrate availability and oxygen concentrations, enzyme concentrations are stable over such time scales. The presence of functional‐gene transcripts and enzymes globally coincides with the zones of active denitrification. However, transcript and enzyme concentrations do not directly translate into denitrification rates in a quantitative way because of nonlinear effects and hysteresis caused by variable substrate availability and oxygen inhibition. Based on our simulations, we suggest that molecular‐biological data should be combined with aqueous geochemical data, which can typically be obtained at higher spatial and temporal resolution, to parameterize and calibrate reactive‐transport models.
    Description: Plain Language Summary: Molecular‐biological tools can detect how many enzymes, functional genes, and gene transcripts (i.e., precursors of enzyme production) associated with a microbial reaction exist in a sample from the environment. Although these measurements contain valuable information about the number of bacteria and how active they are, they do not directly say how quickly a contaminant like nitrate disappears. Nitrate, from agriculture and other sources, threatens groundwater quality and drinking water production. In the process of denitrification, bacteria can remove nitrate by converting it into harmless nitrogen gas using specialized enzymes. The interface between rivers and groundwater is known as a place where denitrification takes place. In this study, we use a computational model to simulate the coupled dynamics of denitrification, bacteria, transcripts, and enzymes when nitrate‐rich groundwater interacts with a nearby river. The simulations yield complex and nonunique relationships between the denitrification rates and the molecular‐biological variables. While functional‐gene transcripts respond to daily fluctuations of environmental conditions, enzyme concentrations and genes are stable over such time scales. High levels of functional‐gene transcripts therefore provide a good qualitative indicator of reactive zones. Quantitative predictions of nitrate turnover, however, will require high‐resolution measurements of the reacting compounds, genes, and transcripts.
    Description: Key Points: We simulate the distributions of functional‐gene transcripts and enzymes related to denitrification at the river‐groundwater interface. Functional‐gene transcripts respond quickly to diurnal fluctuations of substrate and oxygen concentrations. Substrate limitation and oxygen inhibition impede the direct prediction of denitrification rates from transcript or enzyme concentrations.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5281/zenodo.6584591
    Description: https://gitlab.com/astoeriko/nitrogene
    Description: https://doi.org/10.5281/zenodo.6584641
    Description: https://gitlab.com/astoeriko/adrpy
    Description: https://doi.org/10.5281/zenodo.5213947
    Description: https://github.com/aseyboldt/sunode
    Keywords: ddc:551 ; reactive‐transport modeling ; denitrification ; groundwater‐river interface ; functional genes ; transcripts ; molecular biology
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-30
    Description: The prevailing view suggests that the Eemian interglacial on the European Plain was characterized by largely negligible geomorphic activity beyond the coastal areas. However, systematic geomorphological studies are sparse. Here we present a detailed reconstruction of Eemian to Early Weichselian landscape evolution in the vicinity of a small fingerlake on the northern margin of the Salzwedel Palaeolake in Lower Saxony (Germany). We apply a combination of seismics, sediment coring, pollen analysis and luminescence dating on a complex sequence of colluvial, paludal and lacustrine sediments. Results suggest two pronounced phases of geomorphic activity, directly before the onset and at the end of the Eemian period, with an intermediate period of pronounced landscape stability. The dynamic phases were largely driven by incomplete vegetation cover, but likely accentuated by fluvial incision in the neighbouring Elbe Valley. Furthermore, we discovered Neanderthal occupation at the lakeshore during Eemian pollen zone (PZ) E IV, which is chronologically in line with other known Eemian sites of central Europe. Our highly‐resolved spatio‐temporal data substantially contribute to the understanding of climate‐induced geomorphic processes throughout and directly after the last interglacial period. It helps unraveling the landscape dynamics between the coastal areas to the north and the loess belt to the south.
    Description: Two phases of channel incision at the Saalian‐Eemian transition and in the late Eemian. Incisions closely followed by rising water tables. Long‐lasting phase of geomorphic stability in the mid‐Eemian, characterized by: very dense forest cover. the formation of a fingerlake within the paleochannel with gradually sinking water table. no influx of clastic sediments, but deposition of peat and lake‐marl deposits.
    Description: Max‐Planck‐Gesellschaft http://dx.doi.org/10.13039/501100004189
    Keywords: ddc:554.3 ; ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-04-04
    Description: Focused fluid flow shapes the evolution of marine sedimentary basins by transferring fluids and pressure across geological formations. Vertical fluid conduits may form where localized overpressure breaches a cap rock (permeability barrier) and thereby transports overpressured fluids towards shallower reservoirs or the surface. Field outcrops of an Eocene fluid flow system at Pobiti Kamani and Beloslav Quarry (ca 15 km west of Varna, Bulgaria) reveal large carbonate‐cemented conduits, which formed in highly permeable, unconsolidated, marine sands of the northern Tethys Margin. An uncrewed aerial vehicle with an RGB sensor camera produces ortho‐rectified image mosaics, digital elevation models and point clouds of the two kilometre‐scale outcrop areas. Based on these data, geological field observations and petrological analysis of rock/core samples, fractures and vertical fluid conduits were mapped and analyzed with centimetre accuracy. The results show that both outcrops comprise several hundred carbonate‐cemented fluid conduits (pipes), oriented perpendicular to bedding, and at least seven bedding‐parallel calcite cemented interbeds which differ from the hosting sand formation only by their increased amount of cementation. The observations show that carbonate precipitation likely initiated around areas of focused fluid flow, where methane entered the formation from the underlying fractured subsurface. These first carbonates formed the outer walls of the pipes and continued to grow inward, leading to self‐sustaining and self‐reinforcing focused fluid flow. The results, supported by literature‐based carbon and oxygen isotope analyses of the carbonates, indicate that ambient seawater and advected fresh/brackish water were involved in the carbonate precipitation by microbial methane oxidation. Similar structures may also form in modern settings where focused fluid flow advects fluids into overlying sand‐dominated formations, which has wide implications for the understanding of how focusing of fluids works in sedimentary basins with broad consequences for the migration of water, oil and gas.
    Description: Integrated School of Ocean Sciences (ISOS) Kiel
    Description: European Union’s Horizon 2020 http://dx.doi.org/10.13039/100010661
    Description: Bulgarian Science Fund
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...