ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6)
  • 523  (6)
  • VU 000
  • English  (6)
  • 2020-2022  (6)
Collection
  • Other Sources  (6)
Source
Keywords
Language
  • English  (6)
Years
Year
  • 1
    Publication Date: 2021-07-21
    Description: The observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the topside (≥200 km) ionosphere of Mars show that this region is very responsive to the variations of the external (solar extreme ultraviolet flux, solar wind, and interplanetary magnetic field [IMF]) and internal (the crustal magnetic field) drivers. With the growth of the solar irradiance the ionosphere broadens while with increase of the solar wind dynamic pressure it shrinks. As a result, the upper ionospheric boundary at solar zenith angles of 60–70° can move from ∼400 to ∼1,200 km. Similar trends are observed at the nightside ionosphere. At Pdyn ≥ 1–2 nPa the nightside ionosphere becomes very fragmented and depleted. On the other hand, the ion density in the nightside ionosphere significantly (up to a factor of 10) increases with the rise of the solar extreme ultraviolet flux. Large-amplitude motions of the topside ionosphere also occur with variations of the value of the cross-flow component of the IMF. The upper dayside ionosphere at altitudes of more than 300–400 km is sensitive also to the direction of the cross-flow component of the IMF or, correspondingly, to the direction of the motional electric field in the solar wind. The ionosphere becomes very asymmetrical with respect to the Vsw×BIMF direction and the asymmetry strongly enhances at the nightside. The topside ionosphere above the areas with strong crustal magnetic field in the dayside southern hemisphere is significantly denser and expands to higher altitudes as compared to the ionosphere above the northern nonmagnetized lowlands. The crustal magnetic field also protects the nightside ionosphere from being filled by plasma transported from the dayside. The draping IMF penetrates deeply into the ionosphere and actively influences its structure. Weak fields and, correspondingly, weak magnetic field forces only slightly affect the ionosphere. With increase of the induced magnetic field strength the transport motions driven by the magnetic field pressure and field tensions seem to be intensified and we observe that the local ion densities at the dayside considerably decrease. A different trend is observed at the nightside. The ion density in the nightside ionosphere above the northern lowlands is higher than in the southern hemisphere indicating that plasma transport from the dayside is the main source of the nightside ionosphere. Nonstop variations in the solar wind, the IMF and the solar irradiance together with planetary rotation of the crustal magnetic field sources lead to a continuous expansion/shrinking and reconfiguration of the topside ionosphere of Mars.
    Keywords: 523 ; Mars ; MAVEN ; Ionosphere ; Solar Wind ; IMF ; Crustal magnetic field
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-25
    Description: Cassini detected numerous hydrocarbon seas/lakes in the polar region of Titan and wide areas of sand seas in the tropical region, which initially led to the perception that Titan's tropical region may be too dry for lakes. Yet, a few tropical lakes were possibly seen on Cassini's near-infrared images, while they were not seen by other imaging instruments. This study shows by a lake balance model in combination with a global climate model and global topography map that a few lakes can perennially exist in Titan's tropical drainage basins of Shangri-La, Tui Regio, and Hotei Regio. This is possible because the lakes are fed by precipitation in a huge catchment area, while efficient lake evaporation occurs only in a small area inside of deep topographic depressions. However, tropical lakes may occasionally desiccate due to orbitally forced changes in tropical precipitation.
    Keywords: 523 ; Titan ; lakes ; tropical lakes
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-21
    Description: Observations of the magnetization state of asteroids indicate diverse properties. Values between 1.9  × 10 −6 Am 2/kg (Eros) and 10 −2 Am 2/kg (Braille) have been reported. A more detailed understanding of asteroidal magnetic properties allows far-reaching conclusions of the magnetization mechanism as well as the strength of the magnetic field of the solar system regions the asteroid formed in. The Hayabusa2 mission with its lander Mobile Asteroid Surface Scout is equipped with a magnetometer experiment, MasMag. MasMag is a state-of-the-art three-axis fluxgate magnetometer, successfully operated also on Philae, the Rosetta mission lander. MasMag has enabled, after Eros for the second time ever, to determine the magnetic field of an asteroid during descent and on-surface operations. The new observations show that Ryugu, a low-albedo C-type asteroid, has no detectable global magnetization, and any local magnetization is either small ( 〈10−6 Am 2/kg) or on very small (subcentimeter) scales. This implies, for example, that energetic solar wind particles could reach and alter the surface unimpeded by strong asteroidal magnetic fields, such as minimagnetospheres in case of the Moon.
    Keywords: 523 ; asteroids ; magnetization ; MASCOT ; Hayabusa2 ; magnetic field ; Ryugu
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-21
    Description: Based on the Mars Atmosphere and Volatile EvolutioN (MAVEN) observations, we have analyzed the role of the crustal magnetic field on ion loss driven by the direct interaction of the solar wind with the Mars ionosphere. Crustal magnetic fields significantly attenuate the ion ionospheric motions and raise the flux of returning ions. On the other hand, since the ion densities in the ionosphere with strong crustal field are significantly higher than in the ionosphere with a weak crustal magnetic field, the net escape fluxes from the ionosphere with the crustal sources remain vital. The crustal magnetic field also leads to the expansion of the ionosphere and increase of the area exposed to solar wind. As a result, fluxes from higher altitudes essentially contribute to the flow pattern in Martian tail producing an excess of ion loss rate (∼15%) through the southern part of the tail. Thus, effects of inhibition and enhancement of the escape rate by the crustal magnetic field at Mars operate in competition producing a minor influence on the total ion loss.
    Keywords: 523 ; Mars ; crustal magnetic fields ; ion escape ; ionosphere ; solar wind ; MAVEN
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-15
    Description: Forbush decreases (FDs), which are short-term drops in the flux of galactic cosmic rays, are caused by the shielding from strong and/or turbulent magnetic structures in the solar wind, especially interplanetary coronal mass ejections (ICMEs) and their associated shocks, as well as corotating interaction regions. Such events can be observed at Earth, for example, using neutron monitors, and also at many other locations in the solar system, such as on the surface of Mars with the Radiation Assessment Detector instrument onboard Mars Science Laboratory. They are often used as a proxy for detecting the arrival of ICMEs or corotating interaction regions, especially when sufficient in situ solar wind measurements are not available. We compare the properties of FDs observed at Earth and Mars, focusing on events produced by ICMEs. We find that FDs at both locations show a correlation between their total amplitude and the maximum hourly decrease, but with different proportionality factors. We explain this difference using theoretical modeling approaches and suggest that it is related to the size increase of ICMEs, and in particular their sheath regions, en route from Earth to Mars. From the FD data, we can derive the sheath broadening factor to be between about 1.5 and 1.9, agreeing with our theoretical considerations. This factor is also in line with previous measurements of the sheath evolution closer to the Sun.
    Keywords: 539.7223 ; 523 ; ICME ; Forbush decrease ; GCR ; MSL ; Mars mission ; radiation
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-24
    Description: Mercury is embedded in a tenuous and highly anisotropic sodium exosphere, generated mainly by plasma-surface interactions. The absolute values of the sodium ion density are still under debate. Observations by MESSENGER's Fast Imaging Plasma Spectrometer (FIPS) instrument suggest the density of exospheric ions to be several orders of magnitude lower than the upstream solar wind density, indicating that the sodium exosphere has no substantial influence on the magnetospheric current systems. However, MESSENGER magnetic field observations of field line resonances revealed sodium ion densities comparable to the upstream solar wind density. To investigate how a dense exosphere would affect the current systems within Mercury's magnetosphere, we apply an established hybrid (kinetic ions, fluid electrons) model and conduct multiple model runs with gradually increasing exospheric density, ranging from no sodium ions at all to comet-like configurations. We demonstrate how a sufficiently dense exosphere leads to self-shielding of the sodium ion population from the ambient electric field and a significant inflation and symmetrization of Mercury's magnetosphere, which is decreasingly affected by the dipole offset. Once the sodium ion density is sufficiently high, Region 2 field-aligned currents emerge close to the planet. The modeled Region 2 currents are located below the orbit of MESSENGER, thereby providing a possible explanation for the absence of these currents in observations. The sodium exosphere also closes a significant fraction of the Region 1 currents through Pedersen and Hall currents before the “guiding” magnetic field lines even reach the planetary surface. The modeled sodium ion and solar wind densities agree well with observations.
    Keywords: 523 ; exosphere ; magnetosphere ; field-aligned currents ; hybrid-model ; Mercury ; sodium
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...