ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Stockholm : European Council for an Energy Efficient Economy
    Publication Date: 2019-07-12
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-18
    Description: This paper analyses and compares industry sector transformation strategies as envisioned in recent German, European and global deep decarbonisation scenarios. The first part of the paper identifies and categorises ten key strategies for deep emission reductions in the industry sector. These ten key strategies are energy efficiency, direct electrification, use of climateneutral hydrogen and/or synthetic fuels, use of biomass, use of CCS, use of CCU, increases in material efficiency, circular economy, material substitution and end-use demand reductions. The second part of the paper presents a meta-analysis of selected scenarios, focusing on the question of which scenario relies to what extent on the respective mitigation strategies. The key findings of the meta-analysis are discussed, with an emphasis on identifying those strategies that are commonly pursued in all or the vast majority of the scenarios and those strategies that are only pursued in a limited number of the scenarios. Possible reasons for differences in the choice of strategies are investigated. The paper concludes by deriving key insights from the analysis, including identifying the main uncertainties that are still apparent with regard to the future steps necessary to achieve deep emission reductions in the industry sector and how future research can address these uncertainties.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-18
    Description: Technological innovations in energy-intensive industries (EIIs) have traditionally emerged within the boundaries of a specific sector. Now that these industries are facing the challenges of deep decarbonisation and a significant reduction in greenhouse gas (GHG) emissions is expected to be achieved across sectors, cross-industry collaboration is becoming increasingly relevant for low-carbon innovation. Accessing knowledge and other resources from other industrial sectors as well as co-developing innovative concepts around industrial symbiosis can be mutually beneficial in the search for fossil-free feedstocks and emissions reductions. In order to harness the potential of this type of innovation, it is important to understand not only the technical innovations themselves, but in particular the non-technical influencing factors that can drive the successful implementation of cross-industry collaborative innovation projects. The scientific state of the art does not provide much insight into this particular area of research. Therefore, this paper builds on three separate strands of innovation theory (cross-industry innovation, low-carbon innovation and innovation in EIIs) and takes an explorative case-study approach to identify key influencing factors for cross-industry collaboration for low-carbon innovation in EIIs. For this purpose, a broad empirical database built within the European joint research project REINVENT is analysed. The results from this project provide deep insights into the dynamics of low-carbon innovation projects of selected EIIs. Furthermore, the paper draws on insights from the research project SCI4Climate.NRW. This project serves as the scientific competence centre for IN4Climate.NRW, a unique initiative formed by politicians, industry and science to promote, among other activities, cross-industry collaboration for the implementation of a climate-neutral industry in the German federal state of North Rhine-Westphalia (NRW). Based on the results of the case study analysis, five key influencing factors are identified that drive the implementation of cross-industry collaboration for low-carbon innovation in EIIs: Cross-industry innovation projects benefit from institutionalised cross-industry exchange and professional project management and coordination. Identifying opportunities for regional integration as well as the mitigation of financial risk can also foster collaboration. Lastly, clear political framework conditions across industrial sectors are a key driver.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-02-18
    Description: The paper describes quantitative scenarios on a possible evolution of the EU petrochemical industry towards climate neutrality. This industry will be one of the remaining sectors in a climate neutral economy still handling hydrocarbon material to manufacture polymers. Concepts of a climate neutral chemical industry stress the need to consider the potential end-of-life emissions of polymers produced from fossil feedstock and draft the vision of using renewable electricity to produce hydrogen and to use renewable (hydro)carbon feedstock. The latter could be biomass, CO2 from the air or recycled feedstock from plastic waste streams. The cost-optimization model used to develop the scenarios describes at which sites investments of industry in the production stock could take place in the future. Around 50 types of products, the related production processes and the respective sites have been collected in a database. The processes included cover the production chain from platform chemicals via intermediates to polymers. Pipelines allowing for efficient exchange of feedstock and platform chemicals between sites are taken into account as well. The model draws on this data to simulate capacity change at individual plants as well as plant utilization. Thus, a future European production network for petrochemicals with flows between the different sites and steps of the value chain can be sketched. The scenarios described in this paper reveal how an electrification strategy could be implemented by European industry over time with minimized societal costs. Today's existing assets as well as geographical variance of energy supply and the development of demand for different plastic sorts are the major model drivers. Finally, implications for the chemical industry, the energy system and national or regional governments are discussed.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-18
    Description: For some time, 3D printing has been a major buzzword of innovation in industrial production. It was considered a game changer concerning the way industrial goods are produced. There were early expectations that it might reduce the material, energy and transport intensity of value chains. However for quite a while, the main real world applications of additive manufacturing (AM) have been some rapid prototyping and the home-based production of toys made from plastics. On this limited basis, any hypotheses regarding likely impacts on industrial energy efficiency appeared to be premature. Notwithstanding the stark contrast between early hype and practical use, the diffusion of AM has evolved to an extent that at least for some applications allows for a preliminary assessment of its likely implications for energy efficiency. Unlike many cross-cutting energy efficiency technologies, energy use of AM may vary substantially depending on industry considered and material used for processing. Moreover, AM may have much greater repercussions on other stages of value chains than conventional cross-cutting energy efficiency technologies. In case of AM with metals the following potential determinants of energy efficiency come to mind: - A reduction of material required per unit of product and used during processing; - Changes in the total number and spatial allocation of certain stages of the value chain; and - End-use energy efficiency of final products. At the same time, these various streams of impact on energy efficiency may be important drivers for the diffusion of AM with metals. This contribution takes stock of AM with metals concerning applications and processes used as well as early evidence on impacts on energy efficiency and combine this into a systematic overview. It builds on relevant literature and a case study on Wire Arc Additive Manufacturing performed within the REINVENT project.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Stockholm : European Council for an Energy Efficient Economy
    Publication Date: 2022-02-18
    Description: Financial institutions play a crucial role in achieving the 2015 Paris Climate Agreement. They can manage capital flows for financing the required transformation towards a decarbonized industry. Currently established policy programs and regulations at European and national level increasingly address financial institutions to make their climate warming impact measurable and transparent. However, required science-based assessment methods have not been sufficiently developed so far. This paper discusses methodological opportunities and challenges for measuring carbon footprints of financial institutions. Based on a scientific case study undertaken with the German GLS Bank, the authors introduce an innovative method for quantifying greenhouse gas emissions from a bank's asset with a focus on loans. The authors apply an input/output database to calculate greenhouse gas (GHG) intensities and allocate them with bank's loans and investments. Moreover, the paper provides insights of calculating avoided GHG emissions initiated by a bank's investment and loans. In conclusion, a high degree of consistent and standardized assessment methods and guidelines need to be developed and applied to promote comparability and transparency.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-24
    Description: The EU aims to become the first climate neutral continent. To achieve this goal, the industry sector needs to reduce its GHG emissions to net zero or at least close to net zero. This is a particularly challenging task due to the high energy demand especially of primary materials production and the little potential to reduce this energy intensity when switching to other production processes based on electricity or hydrogen. In order to identify robust strategies for achieving a net-zero-compatible industry sector, the paper at hand analyses the transformation of the industry sector as described by a number of recent climate neutrality scenarios for Germany. Apart from overall industry, a focus is set on the sectors of steel, chemicals and cement. The analysed scenarios show very deep GHG emission reductions in industry and they appear to be techno-economically feasible by the mid of the century, without relying on offsets or on shifts from domestic production to imports. The scenarios agree on a suite of core strategies to achieve this, such as direct and indirect electrification, energy efficiency and recycling as well as new technological routes in steel making and cement. The scenarios differ, however, regarding the future mix of electricity, hydrogen and biomass and regarding the future relevance of domestic production of basic chemicals.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-24
    Description: More and more cities are setting themselves ambitious climate protection targets, including CO2 neutrality. Schools are important institutions of cities and therefore they have to play a central role in achieving this goal. With the investment backlog building up and pressure from the Friday for Future movement increasing, the Wuppertal Institute and Büro Ö-quadrat have initiated the project Schools4Future, aiming to support secondary schools to become climate-neutral. In cooperation with secondary school students and teachers, the project team evaluated the existing situation of the participating schools and developed GHG-balances and feasible climate protection concepts. For this purpose, an Excel-based carbon footprint (CF) assessment tool for schools has been developed which is freely available. The tool covers all important emission areas, including heating energy, electricity use, travel to and from schools, school trips, the school canteen and paper consumption. The students were found capable to conduct the CF assessment with the guidance of the teacher, information materials and support of the researchers. So far, six pilot schools have completed their CF assessment with emissions ranging between 335 and 944 kg CO2 per person. In this paper we present the tool and compare the CF assessment of some schools. We further elaborate on how the tool and project has increased the climate awareness and self-efficacy of students and even stimulated measures by the school board.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...