ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:551.49  (8)
  • English  (8)
  • Spanish
  • Swedish
  • 2020-2023  (8)
Collection
Keywords
Language
  • English  (8)
  • Spanish
  • Swedish
Years
Year
  • 1
    Publication Date: 2022-04-01
    Description: We present a workflow to estimate geostatistical aquifer parameters from pumping test data using the Python package welltestpy. The procedure of pumping test analysis is exemplified for two data sets from the Horkheimer Insel site and from the Lauswiesen site, Germany. The analysis is based on a semi‐analytical drawdown solution from the upscaling approach Radial Coarse Graining, which enables to infer log‐transmissivity variance and horizontal correlation length, beside mean transmissivity, and storativity, from pumping test data. We estimate these parameters of aquifer heterogeneity from type‐curve analysis and determine their sensitivity. This procedure, implemented in welltestpy, is a template for analyzing any pumping test. It goes beyond the possibilities of standard methods, for example, based on Theis' equation, which are limited to mean transmissivity and storativity. A sensitivity study showed the impact of observation well positions on the parameter estimation quality. The insights of this study help to optimize future test setups for geostatistical aquifer analysis and provides guidance for investigating pumping tests with regard to aquifer statistics using the open‐source software package welltestpy.
    Description: Article impact statement: We present a workflow to infer parameters of subsurface heterogeneity from pumping test data exemplified at two sites using welltestpy.
    Description: German Federal Environmental Foundation (DBU) http://dx.doi.org/10.13039/100007636
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-24
    Description: The regional terrestrial water cycle is strongly altered by human activities. Among them, reservoir regulation is a way to spatially and temporally allocate water resources in a basin for multi‐purposes. However, it is still not sufficiently understood how reservoir regulation modifies the regional terrestrial‐ and subsequently, the atmospheric water cycle. To address this question, the representation of reservoir regulation into the terrestrial component of fully coupled regional Earth system models is required. In this study, an existing process‐based reservoir network module is implemented into NOAH‐HMS, that is, the terrestrial component of an atmospheric–hydrologic modelling system, namely, the WRF‐HMS. It allows to quantitatively differentiate role of reservoir regulation and of groundwater feedback in a simulated ground‐soil‐vegetation continuum. Our study focuses on the Poyang Lake basin, where the largest freshwater lake of China and reservoirs of different sizes are located. As compared to streamflow observations, the newly extended NOAH‐HMS slightly improves the streamflow and streamflow duration curves simulation for the Poyang Lake basin for the period 1979–1986. The inclusion of reservoir regulation leads to major changes in the simulated groundwater recharges and evaporation from reservoirs at local scale, but has minor effects on the simulated soil moisture and surface runoff at basin scale. The performed groundwater feedback sensitivity analysis shows that the strength of the groundwater feedback is not altered by the consideration of reservoir regulation. Furthermore, both reservoir regulation and groundwater feedback modify the partitioning of the simulated evapotranspiration, thus affecting the atmospheric water cycle in the Poyang Lake region. This finding motivates future research with our extended fully coupled atmospheric–hydrologic modelling system by the community.
    Description: An existing process‐based reservoir network module is implemented into the terrestrial component NOAH‐HMS of the atmospheric–hydrologic modelling system WRF‐HMS. The inclusion of reservoir regulation leads to major changes in the simulated groundwater recharges and evaporation from reservoirs at local scale, but does not alter the strength of the groundwater feedback. Reservoir regulation and groundwater feedback play different roles in modifying the regional terrestrial water cycle for the Poyang Lake basin, particularly with respect to the partitioning of the simulated evapotranspiration.
    Description: German Federal Ministry of Science and Education
    Description: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Description: National Key R&D Program of China
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-26
    Description: Efficient compositional models are required to simulate underground gas storage in porous formations where, for example, gas quality (such as purity) and loss of gas due to dissolution are of interest. We first extend the concept of vertical equilibrium (VE) to compositional flow, and derive a compositional VE model by vertical integration. Second, we present a hybrid model that couples the efficient compositional VE model to a compositional full‐dimensional model. Subdomains, where the compositional VE model is valid, are identified during simulation based on a VE criterion that compares the vertical profiles of relative permeability at equilibrium to the ones simulated by the full‐dimensional model. We demonstrate the applicability of the hybrid model by simulating hydrogen storage in a radially symmetric, heterogeneous porous aquifer. The hybrid model shows excellent adaptivity over space and time for different permeability values in the heterogeneous region, and compares well to the full‐dimensional model while being computationally efficient, resulting in a runtime of roughly one‐third of the full‐dimensional model. Based on the results, we assume that for larger simulation scales, the efficiency of this new model will increase even more.
    Description: Key Points: A compositional vertical equilibrium model is coupled to its full‐dimensional counterpart. A criterion is developed to adaptively identify and assign regions where the vertical equilibrium model is applicable during simulation. A test case of hydrogen storage in a heterogeneous porous aquifer demonstrates efficiency and accuracy of the hybrid model.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://git.iws.uni-stuttgart.de/dumux-pub/Becker2021b.git
    Keywords: ddc:551.49 ; ddc:550
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-18
    Description: Large‐scale groundwater models are required to estimate groundwater availability and to inform water management strategies on the national scale. However, parameterization of large‐scale groundwater models covering areas of major river basins and more is challenging due to the lack of observational data and the mismatch between the scales of modeling and measurements. In this work, we propose to bridge the scale gap and derive regional hydraulic parameters by spectral analysis of groundwater level fluctuations. We hypothesize that specific locations in aquifers can reveal regional parameters of the hydraulic system. We first generate ensembles of synthetic but realistic aquifers which systematically differ in complexity. Applying Liang and Zhang’s (2013), https://doi.org/10.1016/j.jhydrol.2012.11.044, semi‐analytical solution for the spectrum of hydraulic head time series, we identify for each ensemble member and at different locations representative aquifer parameters. Next, we extend our study to investigate the use of spectral analysis in more complex numerical models and in real settings. Our analyses indicate that the variance of inferred effective transmissivity and storativity values for stochastic aquifer ensembles is small for observation points which are far away from the Dirichlet boundary. Moreover, the head time series has to cover a period which is roughly 10 times as long as the characteristic time of the aquifer. In deterministic aquifer models we infer equivalent, regionally valid parameters. A sensitivity analysis further reveals that as long as the aquifer length and the position of the groundwater measurement location is roughly known, the parameters can be robustly estimated.
    Description: Plain Language Summary: We build large‐scale (regional) computer models of the subsurface flow conditions in order to quantify the long‐term shift in groundwater storage and response on the national level under changing climatic conditions and increasing human water demands. These models must be fed with hydrogeological parameters obtained from subsurface observation wells, drilling logs, and hydraulic tests in conjunction with (hydro)geological and geostatistical methods. In some regions these wells are sparsely distributed and derived parameters are representative only for small areas. We hypothesize that groundwater level records can reveal regional aquifer information when analyzed in the spectral domain. In order to bridge that scale gap and because groundwater level time series are generally available, we propose to infer regional parameters by analyzing the frequency content (spectrum) of long groundwater level time series. The required parameters were determined using mathematical formulations of the theoretical spectrum for simplified settings. We tested the methodology in computer models with limited complexity and found that the groundwater level time series indeed contain regional information if the time of observation is sufficiently long. Lastly, we apply the spectral analysis to real groundwater data to test the capability of the method to infer regional aquifer parameters in real aquifers.
    Description: Key Points: We successfully tested the spectral analysis of groundwater level fluctuations in numerical models and obtained regional aquifer parameters. In a sensitivity analysis of the spectral analysis using field data, the storativity and the response times could be robustly estimated. The application of the suggested methodology to the field data from a catchment in central Germany produced plausible results.
    Description: Helmholtz Centre for Environmental Research (UFZ)
    Description: Global Resource Water
    Description: German Federal Ministry of Education and Research (BMBF)
    Description: IDAEA‐CSIC
    Description: Barcelona City Council
    Description: https://github.com/ufz/ogs5
    Description: https://geostat-framework.github.io/
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-09-27
    Description: Little research attention has been given to validating clusters obtained from the groundwater geochemistry of the waterworks' capture zone with a prevailing lake‐groundwater exchange. To address this knowledge gap, we proposed a new scheme whereby Gaussian finite mixture modeling (GFMM) and Spike‐and‐Slab Bayesian (SSB) algorithms were utilized to cluster the groundwater geochemistry while quantifying the probability of the resulting cluster membership against each other. We applied GFMM and SSB to 13 geochemical parameters collected during different sampling periods at 13 observation points across the Barnim Highlands plateau located in the northeast of Berlin, Germany; this included 10 observation wells, two lakes, and a gallery of drinking production wells. The cluster analysis of GFMM yielded nine clusters, either with a probability ≥0.8, while the SSB produced three hierarchical clusters with a probability of cluster membership varying from 〈0.2 to 〉0.8. The findings demonstrated that the clustering results of GFMM were in good agreement with the classification as per the principal component analysis and Piper diagram. By superimposing the parameter clustering onto the observation clustering, we could identify discrepancies that exist among the parameters of a certain cluster. This enables the identification of different factors that may control the geochemistry of a certain cluster, although parameters of that cluster share a strong similarity. The GFMM results have shown that from 2002, there has been active groundwater inflow from the lakes towards the capture zone. This means that it is necessary to adopt appropriate measures to reverse the inflow towards the lakes.
    Description: Article impact statement: The probability of cluster membership quantified using an algorithm should be validated against another probabilistic‐based classifier.
    Description: Federal Ministry of Education and Research http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.9 ; ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-06
    Description: In recent years, the issue of high groundwater levels has caught attention. Unfavorable consequences of high groundwater levels are especially damage to buildings, infrastructure, and the environment. Processes that lead to high groundwater levels are hydrological (heavy or extended rainfall and flood events), or anthropogenic (reduced groundwater extractions, interaction with sewer networks, hydraulic engineering measures, structural interventions in the water balance, and mining activities). Several different map products have been prepared for the information of inhabitants and for planning purposes, and also methods for damage and risk analysis related to high groundwater levels have been developed. Groundwater management measures and structural measures are available to reduce the risk related to high groundwater levels. An operational management system could be combined from existing components, but operational forecasting systems for high groundwater levels are—different to flood forecasting systems—not yet common practice. A better understanding of the processes and the development of integrated approaches for modeling, design, planning, forecasting, and warning, as well as improvement of interdisciplinary collaboration between different organizations, are recommendations for the future. This article is categorized under: Engineering Water 〉 Engineering Water Water and Life 〉 Conservation, Management, and Awareness Science of Water 〉 Hydrological Processes Science of Water 〉 Water Extremes
    Description: Pumping water from a basement during the Neiße flood 2010 in Saxony. The clear water indicates that the basement flooding originates from groundwater (photo: Reinhard Schinke).
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-06-17
    Description: Urban green space is increasingly viewed as essential infrastructure to build resilience to climate change by retaining water in the city landscape and balancing ecohydrological partitioning into evapotranspiration for cooling and groundwater recharge. Quantifying how different vegetation types affect water partitioning is essential for future management, but paucity of data and the complex heterogeneity of urban areas make water balance estimates challenging. Here, we provide a preliminary assessment of water partitioning from different sized patches of trees and grass as well as from sealed surfaces. To do this, we used limited field observations together with an advanced, process‐based tracer‐aided ecohydrological model at a meso‐scale (5 km2) in central Berlin, Germany. Transpiration was the dominant green water flux accounting for over 50% of evapotranspiration in the modelled area. Green water fluxes were in general greater from trees compared with grass, but grass in large parks transpired more water compared with grass in small parks that were intensively used for recreation. Interception evaporation was larger for trees compared with grass, but soil water evaporation was greater for grass compared with trees. We also show that evapotranspiration from tree‐covered areas comprise almost 80% of the total evapotranspiration from the whole model domain while making up less than 30% of the surface cover. The results form an important stepping‐stone towards further upscaling over larger areas and highlights the importance of continuous high‐resolution hydrological measurements in the urban landscape, as well as the need for improvements to ecohydrological models to capture important urban processes.
    Description: Berlin University Alliance / Einstein Stiftung Berlin, Climate and Water under Change
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Einstein Stiftung Berlin http://dx.doi.org/10.13039/501100006188
    Description: Leverhulme Trust http://dx.doi.org/10.13039/501100000275
    Description: Urban Climate Observatory (UCO) Berlin
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-17
    Description: The dynamic relationships between water flux and storage, together with the associated water ages and speed of hydrological responses (as proxies for velocity and celerity respectively) are fundamental to understanding how catchments react to hydroclimate perturbations, such as floods and droughts. Using results from a calibrated, tracer‐aided ecohydrological model (EcH2O‐iso) we analyzed the dynamics of storage‐flux‐age‐response time (RT) interactions at scales that resolve the internal heterogeneity of these non‐stationary relationships. EcH2O‐iso has previously shown an adequate representation of ecohydrological flux partitioning and storage dynamics (celerity), and water ages (velocity) over 11‐year at Demnitzer Millcreek catchment (DMC, 66 km2), a drought‐sensitive, lowland catchment in Germany. The 11‐year period had marked hydroclimatic contrasts facilitating the evaluation of flux‐storage‐age‐RT dynamics under different wetness anomalies. Our results show that the spatio–temporal variability of soil moisture and ecohydrological partitioning dynamics reflect both land use (especially forest cover) and distinct soil units (i.e., brown earth vs. podzolic soils). Spatial differences in RTs of storage were driven by rapid soil evaporation and transpiration responses to rainfall, which revealed a divergence of transpiration ages from RTs. RTs of groundwater and streamflow were fast (days), but mediation by soil water storage dynamics caused marked separation from water ages (years‐decades) of deeper flow paths. Analysis of RTs and ages revealed a degradation of process representation with coarsening model spatial resolution. This study uses novel analysis of the spatio‐temporal interactions of flux‐storage‐age‐RT from a model to understand the sensitivity and resilience of catchment functionality to hydroclimatic perturbations.
    Description: Key Points: Spatio‐temporal variability of soil storage and ecohydrological partitioning was modulated by vegetation characteristics. Transpiration, groundwater, and streamflow response times were distinct from water ages, with spatial differences driven by vegetation units. Lower model resolution reduced spatial variability and increased the difference of catchment response and water age of fluxes and storages.
    Description: FP7 Ideas: European Research Council (FP7 Ideas) http://dx.doi.org/10.13039/100011199
    Description: Leverhulme Trust http://dx.doi.org/10.13039/501100000275
    Description: http://bitbucket.igb-berlin.de:7990/users/ech2o/repos/ech2o_iso/browse
    Description: https://doi.org/10.5194/hess-25-2239-2021
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...