ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:631.4
  • English  (39)
  • Russian
Collection
Language
Years
  • 1
    Publication Date: 2022-04-07
    Description: The role of soil moisture for organic matter decomposition rates remains poorly understood and underrepresented in Earth System Models (ESMs). We apply the Dual Arrhenius Michaelis‐Menten (DAMM) model to a selection of ESM soil temperature and moisture outputs to investigate their effects on decomposition rates, at different soil depths, for a historical period and a future climate period. Our key finding is that the inclusion of soil moisture controls has diverging effects on both the speed and direction of projected decomposition rates (up to ±20%), compared to a temperature‐only approach. In the top soil, the majority of these changes is driven by substrate availability. In deeper soil layers, oxygen availability plays a relatively stronger role. Owing to these different moisture controls along the soil depth, our study highlights the need for depth‐resolved inclusion of soil moisture effects on decomposition rates within ESMs. This is particularly important for C‐rich soils in regions which may be subject to strong future warming and vertically opposing moisture changes, such as the peat soils at northern high latitudes.
    Description: Plain Language Summary: Soils contain a lot of carbon (C). Earth System Models (ESMs) predict that the amount of C released from soils into the atmosphere as CO2 will increase in response to increased warming and microbial activity. Soil moisture also controls microbial C decomposition, but most ESMs do not yet describe this process very well. In this study we apply a simple equation to different ESMs, to see how both temperature and soil moisture change microbial decomposition under future climate. First, we show that the speed of C released into the atmosphere changes when we include soil moisture changes, compared to what is expected due to warming alone. Second, we found that the future speed at which carbon that can be decomposed in the topsoil mainly depends on how much carbon microbes have access to, but that in the deeper soil this process becomes much more affected by the absence/presence of oxygen. Including these soil moisture interactions in ESMs for different soil depths is important to predict whether soils will store more or less C in the future. Our findings are particularly relevant for high latitude soils which store large amounts of C, will warm fast, and experience frequent (re)wetting and drying.
    Description: Key Points: Considering soil moisture effects can change modeled decomposition rates by up to ±20% compared to considering only temperature effects. The majority of these changes are driven by substrate availability, in particular in the top soil. In the subsoil, oxygen availability becomes an increasingly important factor.
    Description: Norwegian Research Council
    Description: https://doi.org/10.5281/zenodo.5654554
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-01
    Description: The interaction between the land surface and the atmosphere is a crucial driver of atmospheric processes. Soil moisture and precipitation are key components in this feedback. Both variables are intertwined in a cycle, that is, the soil moisture – precipitation feedback for which involved processes and interactions are still discussed. In this study the soil moisture – precipitation feedback is compared for the sempiternal humid Ammer catchment in Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa during the warm season, using precipitation datasets from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), from the German Weather Service (REGNIE) and simulation datasets from the Weather Research and Forecasting (WRF) model and the hydrologically enhanced WRF‐Hydro model. WRF and WRF‐Hydro differ by their representation of terrestrial water flow. With this setup we want to investigate the strength, sign and variables involved in the soil moisture – precipitation feedback for these two regions. The normalized model spread between the two simulation results shows linkages between precipitation variability and diagnostic variables surface fluxes, moisture flux convergence above the surface and convective available potential energy in both study regions. The soil moisture – precipitation feedback is evaluated with a classification of soil moisture spatial heterogeneity based on the strength of the soil moisture gradients. This allows us to assess the impact of soil moisture anomalies on surface fluxes, moisture flux convergence, convective available potential energy and precipitation. In both regions the amount of precipitation generally increases with soil moisture spatial heterogeneity. For the Ammer region the soil moisture – precipitation feedback has a weak negative sign with more rain near drier patches while it has a positive signal for the Sissili region with more rain over wetter patches. At least for the observed moderate soil moisture values and the spatial scale of the Ammer region, the spatial variability of soil moisture is more important for surface‐atmosphere interactions than the actual soil moisture content. Overall, we found that soil moisture heterogeneity can greatly affect the soil moisture – precipitation feedback.
    Description: WRF and WRF‐hydro model simulations are used to determine the sign and analyse the mechanisms of the soil moisture ‐ precipitation feedback for the sempiternal humid Ammer catchment in Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa during the warm season. The generation of moist convection is favoured over surfaces with moderately high soil moisture gradients in the Ammer region, while for the Sissili region the location of precipitation tends to be related to areas with high soil moisture gradients. For the Ammer region the soil moisture – precipitation feedback has a weak negative sign with more rain near drier patches while it has a positive signal for the Sissili region with more rain over wetter patches.
    Description: Untersuchung des Klimas des südlichen Afrikas – ein Brückenschlag vom frühen Holozän bis heute
    Description: Transregional Collaborative Research Center
    Keywords: ddc:551.57 ; ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-01
    Description: In designed experiments, different sources of variability and an adequate scale of measurement need to be considered, but not all approaches in common usage are equally valid. In order to elucidate the importance of sources of variability and choice of scale, we conducted an experiment where the effects of biochar and slurry applications on soil properties related to soil fertility were studied for different designs: (a) for a field‐scale sampling design with either a model soil (without natural variability) as an internal control or with composited soils, (b) for a design with a focus on amendment variabilities, and (c) for three individual field‐scale designs with true field replication and a combined analysis representative of the population of loess‐derived soils. Three silty loam sites in Germany were sampled and the soil macroaggregates were crushed. For each design, six treatments (0, 0.15 and 0.30 g slurry‐N kg−1 with and without 30 g biochar kg−1) were applied before incubating the units under constant soil moisture conditions for 78 days. CO2 fluxes were monitored and soils were analysed for macroaggregate yields and associated organic carbon (C). Mixed‐effects models were used to describe the effects. For all soil properties, results for the loess sites differed with respect to significant contributions of fixed effects for at least one site, suggesting the need for a general inclusion of different sites. Analysis using a multilevel model allowed generalizations for loess soils to be made and showed that site:slurry:biochar and site:slurry interactions were not negligible for macroaggregate yields. The use of a model soil as an internal control enabled observation of variabilities other than those related to soils or amendments. Experiments incorporating natural variability in soils or amendments resulted in partially different outcomes, indicating the need to include all important sources of variability. Highlights Effects of biochar and slurry applications were studied for different designs and mixed‐effects models were used to describe the effects. Including an internal control allowed observation of, e.g., methodological and analytical variabilities. The results suggested the need for a general inclusion of different sites. Analysis using a multilevel model allowed generalizations for loess soils. The results indicated the need to include all important sources of variability.
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-25
    Description: Fast and accurate large‐scale localization and quantification of harmfully compacted soils in recultivated post‐mining landscapes are of particular importance for mining companies and the following farmers. The use of heavy machinery during recultivation imposes soil stress and can cause irreversible subsoil compaction limiting crop growth in the long term. To overcome or guide classical point‐scale methods to determine compaction, fast methods covering large areas are required. In our study, a recultivated field of the Garzweiler mine in North Rhine‐Westphalia, Germany, with known variability in crop performance was intensively studied using non‐invasive electromagnetic induction (EMI) and electrode‐based electrical resistivity tomography (ERT). Additionally, soil bulk density, volumetric soil water content and soil textures were analysed along two transects covering different compaction levels. The results showed that the measured EMI apparent electrical conductivity (ECa) along the transects was highly correlated (R2 〉 .7 for different dates and depths below 0.3 m) to subsoil bulk density. Finally, the correlations established along the transects were used to predict harmful subsoil compaction within the field, whereby a spatial probabilistic map of zones of harmful compaction was developed. In general, the results revealed the feasibility of using the EMI derived ECa to predict harmful compaction. They can be the basis for quick monitoring of the recultivation process and implementation of necessary melioration to return a well‐structured soil with good water and nutrient accessibility, and rooting depths for increased crop yields to the farmers.
    Description: BonaRes (Module A)
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-23
    Description: The earthworm Eisenia fetida is a commonly used model organism for unspecific soil feeders in ecotoxicological studies. Its intestinal cells are the first to encounter possible pollutants co-ingested by the earthworm, which makes them prime candidates for studies of toxic effects of environmental pollutants on the cellular as compared to the organismic level. In this context, the aim of this study was to demonstrate the suitability of preparations of primary intestinal E. fetida cells for in vitro ecotoxicological studies. For this purpose, a suitable isolation and cultivation protocol was established. Cells were isolated directly from the intestine, maintaining 〉85% viability during subsequent cultivations (up to 144 h). Exposure to established pollutants and soil elutriates comprising silver nanoparticles and metal ions (Cu2+, Cd2+) induced a significant decrease in the metabolic activity of the cells. In case of microplastic particles (MP particles), namely 0.2, 0.5, 2.0, and 3.0 µm diameter polystyrene (PS) beads as well as 0.5 and 2.0 µm diameter polylactic acid (PLA) beads, no active uptake was observed. Slight positive as well as negative dose and size dependent effects on the metabolism were seen, which to some extent might correlate with effects on the organismic level.
    Keywords: ddc:631.4 ; Earthworm ; Eisenia fetida ; Environmental pollutants ; Microplastic ; Cytotoxicity ; Primary cells
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-11-23
    Description: Managed grasslands have the potential to store carbon (C) and partially mitigate climate change. However, it remains difficult to predict potential C storage under a given soil or management practice. To study C storage dynamics due to long-term (1952–2009) phosphorus (P) fertilizer and irrigation treatments in New Zealand grasslands, we measured radiocarbon (〈sup〉14〈/sup〉C) in archived soil along with observed changes in C stocks to constrain a compartmental soil model. Productivity increases from P application and irrigation in these trials resulted in very similar C accumulation rates between 1959 and 2009. The ∆〈sup〉14〈/sup〉C changes over the same time period were similar in plots that were both irrigated and fertilized, and only differed in a non-irrigated fertilized plot. Model results indicated that decomposition rates of fast cycling C (0.1 to 0.2 year〈sup〉−1〈/sup〉) increased to nearly offset increases in inputs. With increasing P fertilization, decomposition rates also increased in the slow pool (0.005 to 0.008 year〈sup〉−1〈/sup〉). Our findings show sustained, significant (i.e. greater than 4 per mille) increases in C stocks regardless of treatment or inputs. As the majority of fresh inputs remain in the soil for less than 10 years, these long term increases reflect dynamics of the slow pool. Additionally, frequent irrigation was associated with reduced stocks and increased decomposition of fresh plant material. Rates of C gain and decay highlight trade-offs between productivity, nutrient availability, and soil C sequestration as a climate change mitigation strategy.
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: GNS Science
    Description: Max Planck Institute for Biogeochemistry (2)
    Description: https://github.com/ShaneStoner/Winchmore14C
    Keywords: ddc:631.4 ; Radiocarbon ; Soil carbon ; Soil modeling ; Carbon sequestration ; Transit time ; SoilR
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-11-02
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Rice is a staple crop in the Vietnam Mekong Delta (VMD) in which more than half of Vietnam's rice is produced. However, rice production in the VMD is threatened by increasing saltwater intrusion due to land subsidence and climate change induced sea level rise. Saltwater intrusion into lowland areas through the canal system or capillary rise of saline water from near surface saline water tables may result in salt accumulation in the topsoil. Therefore, it is important to disentangle the two effects and their relative importance to implement appropriate strategies for water and salinity management for adapting rice production systems of the VMD to climate change. Here, we report on the possibility of using geoelectrical methods to evaluate the potential threat of subsoil salinity to rice production. To evaluate the level of subsoil salinity, we measured soil electrical resistivity using an ARES II to a depth of 40 m in a case study comprising five locations in the VMD. Electrical resistivity measurements were calibrated to soil types, which were identified through evaluating 1 m core sections obtained by drilling down to 40 m depth. The relationship between drilling data and soil resistivity was determined by applying clustering and principal component analysis. Resistivity values smaller than 3 Ω m were clearly identified as indicative for a saline water table. The results show a direct link between the depth of the saline water table and the proximity to the sea, but not to the rice production system (single, double, or triple cropping). This study proved for the first time the applicability of the electrical resistivity tomography method for identifying groundwater tables and evaluating subsoil salinity on an agricultural field scale in the VMD.〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Federal Ministry of Education and Research (BMBF, Germany)
    Keywords: ddc:631.4 ; conductivity ; electrical resistivity tomography ; groundwater ; site effect
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-11-15
    Description: Changes in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.
    Description: BMBF
    Description: BMBF
    Description: ERA.net
    Description: danish ERC program
    Description: Ural Branch, Russian Academy of Sciences https://doi.org/10.13039/501100006422
    Description: BMBF
    Description: Potsdam-Institut für Klimafolgenforschung (PIK) e.V. (3500)
    Keywords: ddc:631.4 ; Carbon emissions ; Soil carbon stocks ; Model simulations ; Steppe region ; Cropland expansion
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-12-12
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Infrared spectroscopy in the visible to near‐infrared (vis–NIR) and mid‐infrared (MIR) regions is a well‐established approach for the prediction of soil properties. Different data fusion and training approaches exist, and the optimal procedures are yet undefined and may depend on the heterogeneity present in the set and on the considered scale. The objectives were to test the usefulness of partial least squares regressions (PLSRs) for soil organic carbon (SOC), total carbon (C〈sub〉t〈/sub〉), total nitrogen (N〈sub〉t〈/sub〉) and pH using vis–NIR and MIR spectroscopy for an independent validation after standard calibration (use of a general PLSR model) or using memory‐based learning (MBL) with and without spiking for a national spectral database. Data fusion approaches were simple concatenation of spectra, outer product analysis (OPA) and model averaging. In total, 481 soils from an Austrian forest soil archive were measured in the vis–NIR and MIR regions, and regressions were calculated. Fivefold calibration‐validation approaches were carried out with a region‐related split of spectra to implement independent validations with n ranging from 47 to 99 soils in different folds. MIR predictions were generally superior over vis–NIR predictions. For all properties, optimal predictions were obtained with data fusion, with OPA and spectra concatenation outperforming model averaging. The greatest robustness of performance was found for OPA and MBL with spiking with 〈italic toggle="no"〉R〈/italic〉〈sup〉2〈/sup〉 ≥ 0.77 (N), 0.85 (SOC), 0.86 (pH) and 0.88 (C〈sub〉t〈/sub〉) in the validations of all folds. Overall, the results indicate that the combination of OPA for vis–NIR and MIR spectra with MBL and spiking has a high potential to accurately estimate properties when using large‐scale soil spectral libraries as reference data. However, the reduction of cost‐effectiveness using two spectrometers needs to be weighed against the potential increase in accuracy compared to a single MIR spectroscopy approach.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4 ; data fusion ; independent validation ; infrared spectroscopy ; MBL ; nitrogen ; outer product analysis ; pH ; soil organic carbon ; spiking ; total carbon
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-21
    Description: Charcoal‐rich Technosols on century‐old relict charcoal hearths (RCHs) are the subject of ongoing research regarding potential legacy effects that result from historic charcoal production and subsequent charcoal amendments on forest soil properties and forest ecosystems today. RCHs consist mostly of Auh horizons that are substantially enriched in soil organic carbon (SOC), of which the largest part seems to be of pyrogenic origin (PyC). However, the reported range of SOC and PyC contents in RCH soil also suggests that they are enriched in nonpyrogenic SOC. RCH soils are discussed as potential benchmarks for the long‐term influence of biochar amendment and the post‐wildfire influences on soil properties. In this study, we utilised a large soil sample dataset (n = 1245) from 52 RCH sites in north‐western Connecticut, USA, to quantify SOC contents by total element analysis. The contents of condensed highly aromatic carbon as a proxy for black carbon (BC) were predicted by using a modified benzene polycarboxylated acid (BPCA) marker method in combination with diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy‐based partial least square regression (r2 = 0.89). A high vertical spatial sampling resolution allowed the identification of soil organic matter (SOM) enrichment and translocation processes. The results show an average 75% and 1862% increase in TOC and BPCA‐derived carbon, respectively, for technogenic Auh horizons compared to reference soils. In addition to an increase in aromatic properties, increased carboxylic properties of the RCH SOC suggest self‐humification effects of degrading charcoal and thereby the continuing formation of leachable aromatic carbon compounds, which could have effects on pedogenic processes in buried soils. Indeed, we show BPCA‐derived carbon concentrations in intermediate technogenic Cu horizons and buried top/subsoils that suggest vertical translocation of highly aromatic carbon originating in RCH Auh horizons. Topmost Auh horizons showed a gradual decrease in total organic carbon (TOC) contents with increasing depth, suggesting accumulation of recent, non‐pyrogenic SOM. Lower aliphatic absorptions in RCH soil spectra suggest different SOM turnover dynamics compared to reference soils. Furthermore, studied RCH soils featured additional TOC enrichment, which cannot be fully explained now. Highlights BC to TOC ratio and high resolution vertical SOC distribution in 52 RCH sites were studied. RCH soils non‐BC pool was potentially different to reference soils. RCH soils feature TOC accumulation in the topmost horizon. There is BC translocation into buried soils on RCH sites.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4 ; benzene polycarboxylated acid marker (BPCA) ; black carbon ; charcoal degradation ; charcoal kiln ; pyrogenic carbon ; relict charcoal hearth ; biochar
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Wangari, E. G. ; Mwanake, R. M. ; Kraus, D. ; [et al.]
    Publication Date: 2023-01-17
    Description: Accurate quantification of landscape soil greenhouse gas (GHG) exchange from chamber measurements is challenging due to the high spatial‐temporal variability of fluxes, which results in large uncertainties in upscaled regional and global flux estimates. We quantified landscape‐scale (6 km2 in central Germany) soil/ecosystem respiration (SR/ER‐CO2), methane (CH4), and nitrous oxide (N2O) fluxes at stratified sites with contrasting landscape characteristics using the fast‐box chamber technique. We assessed the influence of land use (forest, arable, and grassland), seasonality (spring, summer, and autumn), soil types, and slope on the fluxes. We also evaluated the number of chamber measurement locations required to estimate landscape fluxes within globally significant uncertainty thresholds. The GHG fluxes were strongly influenced by seasonality and land use rather than soil type and slope. The number of chamber measurement locations required for robust landscape‐scale flux estimates depended on the magnitude of fluxes, which varied with season, land use, and GHG type. Significant N2O‐N flux uncertainties greater than the global mean flux (0.67 kg ha−1 yr−1) occurred if landscape measurements were done at 〈4 and 〈22 chamber locations (per km2) in forest and arable ecosystems, respectively, in summer. For CO2 and CH4 fluxes, uncertainties greater than the global median CO2‐C flux (7,500 kg ha−1 yr−1) and the global mean forest CH4‐C uptake rate (2.81 kg ha−1 yr−1) occurred at 〈2 forest and 〈6 arable chamber locations. This finding suggests that more chamber measurement locations are required to assess landscape‐scale N2O fluxes than CO2 and CH4, based on these GHG‐specific uncertainty thresholds.
    Description: Plain Language Summary: Greenhouse gas emissions are subject to high spatial and temporal variability, leading to large uncertainties in regional and global estimates. We quantified fluxes of soil and ecosystem respiration (SR/ER‐CO2), methane (CH4) and nitrous oxide (N2O) at the landscape scale (6 km2 in central Germany). We determine the number of measurement chambers required to estimate landscape fluxes within globally significant uncertainty thresholds. Our results show a stronger influence of season and land use, as opposed to soil type and topography. The number of chambers required for robust landscape‐wide flux estimates depended on the size of the fluxes, which varied by season, land use and GHG type. An increase in the number of monitoring sites significantly reduced the uncertainties estimation on the whole landscape. Significant uncertainties in N2O fluxes above the global annual mean was found when landscape measurements were made at 〈4 monitoring sites in forests and 〈22 monitoring sites (per km2) in cropland ecosystems during the summer period. For SR/ER‐CO2 fluxes, as few as 〈2 was sufficient in forest ecosystems and under 〈6 in cropland ecosystems. This result implies that in general more monitoring sites are needed to assess landscape‐scale N2O fluxes than for CO2 and CH4 fluxes.
    Description: Key Points: Land use and seasonality rather than soil type and slope strongly influenced soil greenhouse gas (GHG) fluxes at a landscape‐scale. The minimum number of chamber locations required for robust landscape‐scale flux estimates depends on the season, land use, and GHG type. Chamber locations required to reduce uncertainties of landscape flux estimates declined as follows N2O 〉 CO2 〉 CH4.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5281/zenodo.6821111
    Keywords: ddc:631.4 ; soil respiration ; ecosystem respiration ; methane uptake ; nitrous oxide fluxes ; spatial‐temporal variability ; stratfied sampling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-06-23
    Description: This Best Practice Guideline was been initiated by the Working Group Soil Gases (AG Bodengase) of the German Soil Science Society (Deutsche Bodenkundliche Gesellschaft). Our intention was to collect and aggregate the expertise of different working groups in our field. As a compendium, this guideline may help both beginners and experts to meet the practical and theoretical challenges of measuring soil gas fluxes with non-steady state chamber systems.
    Description: German Soil Science Society, Working Group Soil Gases
    Description: manual
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:book
    Format: 70
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-10-01
    Description: Copper (Cu) is an essential element for plants and microorganisms and at larger concentrations a toxic pollutant. A number of factors controlling Cu dynamics have been reported, but information on quantitative relationships is scarce. We aimed to (i) quantitatively describe and predict soil Cu concentrations (CuAR) in aqua regia considering site‐specific effects and effects of pH, soil organic carbon (SOC) and cation exchange capacity (CEC), and (ii) study the suitability of mixed‐effects modelling and rule‐based models for the analysis of long‐term soil monitoring data. Thirteen uncontaminated long‐term monitoring soil profiles in southern Germany were analysed. Since there was no measurable trend of increasing CuAR concentrations with time in the respective depth ranges of the sites, data from different sampling dates were combined and horizon‐specific regression analyses including model simplifications were carried out for 10 horizons. Fixed‐ and mixed‐effects models with the site as a random effect were useful for the different horizons and significant contributions (either of main effects or interactions) of SOC, CEC and pH were present for 9, 8 and 7 horizons, respectively. Horizon‐specific rule‐based cubist models described the CuAR data similarly well. Validations of cubist models and mixed‐effects models for the CuAR concentrations in A horizons were successful for the given population after random splitting into calibration and validation samples, but not after independent validations with random splitting according to sites. Overall, site, CEC, SOC and pH provide important information for a description of CuAR concentrations using the different regression approaches. Highlights: Information on quantitative relationships for factors controlling Cu dynamics is scarce. Site, CEC, SOC and pH provide important information for a description of Cu concentrations. Validations of cubist models and mixed‐effects models for A horizons were successful for a closed population of sites.
    Description: Bavarian State Ministry of the Environment and Consumer Protection http://dx.doi.org/10.13039/501100010219
    Description: Ministry of Agriculture and Environment Mecklenburg‐Western Pomerania
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-10-04
    Description: Soil aeration is a critical factor for oxygen‐limited subsoil processes, as transport by diffusion and advection is restricted by the long distance to the free atmosphere. Oxygen transport into the soil matrix is highly dependent on its connectivity to larger pore channels like earthworm and root colonised biopores. Here we hypothesize that the soil matrix around biopores represents different connectivity depending on biopore genesis and actual coloniser. We analysed the soil pore system of undisturbed soil core samples around biopores generated or colonised by roots and earthworms and compared them with the pore system of soil, not in the immediacy of a biopore. Oxygen partial pressure profiles and gas relative diffusion was measured in the rhizosphere and drilosphere from the biopore wall into the bulk soil with microelectrodes. The measurements were linked with structural features such as porosity and connectivity obtained from X‐ray tomography and image analysis. Aeration was enhanced in the soil matrix surrounding biopores in comparison to the bulk soil, shown by higher oxygen concentrations and higher relative diffusion coefficients. Biopores colonised by roots presented more connected lateral pores than earthworm colonised ones, which resulted in enhanced aeration of the rhizosphere compared to the drilosphere. This has influenced biotic processes (microbial turnover/mineralization or root respiration) at biopore interfaces and highlights the importance of microstructural features for soil processes and their dependency on the biopore's coloniser.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-08-09
    Description: Organic matter management can improve soil structural properties. This is crucial for agricultural soils in tropical regions threatened by high rainfall intensities. Compared to conventional farming, organic farming is usually deemed to increase organic carbon and improve soil structural properties such as stability and permeability. However, how much, if any, buildup of organic carbon is possible or indeed occurring also depends on soil type and environmental factors. We compared the impact of seven years of organic farming (annually 13.6 t ha−1 of composted manure) with that of conventional practices (2 t ha−1 of farmyard manure with 150–170 kg N ha−1 of mineral fertilizers) on soil structural properties. The study was conducted on a Vertisol in India with a two‐year crop rotation of cotton soybean wheat. Despite large differences in organic amendment application, organic carbon was not significantly different at 9.6 mg C g−1 on average in the topsoil. However, the size distribution of water‐stable aggregates shifted toward more aggregates 〈137 μm in the organic systems. Cumulative water intake was lower compared to the conventional systems, leading to higher runoff and erosion. These changes might be related to the lower pH and higher exchangeable sodium in the organic systems. Our results indicate that higher application of organic amendments did not lead to higher soil organic carbon and associated improvement in soil structures properties compared to integrated fertilization in this study. Chemical properties may dominate soil aggregation retarding the uptake and integration of organic amendments for sustainable agricultural intensification in tropical, semiarid climates.
    Description: Biovision Foundation for Ecological Development http://dx.doi.org/10.13039/501100015593
    Description: Coop Sustainability Fund
    Description: Swiss Agency for Development and Cooperation (SDC)
    Description: Foundation fiat panis http://dx.doi.org/10.13039/501100011087
    Description: Liechtenstein Development Service http://dx.doi.org/10.13039/501100015698
    Description: https://doi.org/10.6084/m9.figshare.18665612
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-07-26
    Description: Application of farmyard manure (FYM) is common practice to improve physical and chemical properties of arable soil and crop yields. However, studies on effects of FYM application mainly focussed on topsoils, whereas subsoils have rarely been addressed so far. We, therefore, investigated the effects of 36‐year FYM application with different rates of annual organic carbon (OC) addition (0, 469, 938 and 1875 g C m−2 a−1) on OC contents of a Chernozem in 0–30 cm (topsoil) and 35–45 cm (subsoil) depth. We also investigated its effects on soil structure and hydraulic properties in subsoil. X‐ray computed tomography was used to analyse the response of the subsoil macropore system (≥19 μm) and the distribution of particulate organic matter (POM) to different FYM applications, which were related to contents in total OC (TOC) and water‐extractable OC (WEOC). We show that FYM‐C application of 469 g C m−2 a−1 caused increases in TOC and WEOC contents only in the topsoil, whereas rates of ≥938 g C m−2 a−1 were necessary for TOC enrichment also in the subsoil. At this depth, the subdivision of TOC into different OC sources shows that most of the increase was due to fresh POM, likely by the stimulation of root growth and bioturbation. The increase in subsoil TOC went along with increases in macroporosity and macropore connectivity. We neither observed increases in plant‐available water capacity nor in unsaturated hydraulic conductivity. In conclusion, only very high application of FYM over long periods can increase OC content of subsoil at our study site, but this increase is largely based on fresh, easily degradable POM and likely accompanied by high C losses when considering the discrepancy between OC addition rate by FYM and TOC response in soil. Highlights A new image processing procedure to distinguish fresh and decomposed POM. The increase of subsoil C stock based to a large extend on fresh, labile POM. Potential of arable subsoils for long‐term C storage by large FYM application rates is limited. The increase in TOC has no effect on hydraulic properties of the subsoil.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-01-26
    Description: Erosion is a severe threat to the sustainable use of agricultural soils. However, the structural resistance of soil against the disruptive forces steppe soils experience under field conditions has not been investigated. Therefore, 132 topsoils under grass‐ and cropland covering a large range of physico‐chemical soil properties (sand: 2–76%, silt: 18–80%, clay: 6–30%, organic carbon: 7.3–64.2 g kg−1, inorganic carbon: 0.0–8.5 g kg−1, pH: 4.8–9.5, electrical conductivity: 32–946 μS cm−1) from northern Kazakhstan were assessed for their potential erodibility using several tests. An adjusted drop‐shatter method (low energy input of 60 Joule on a 250‐cm3 soil block) was used to estimate the stability of dry soil against weak mechanical forces, such as saltating particles striking the surface causing wind erosion. Three wetting treatments with various conditions and energies (fast wetting, slow wetting, and wet shaking) were applied to simulate different disruptive effects of water. Results indicate that aggregate stability was higher for grassland than cropland soils and declined with decreasing soil organic carbon content. The results of the drop‐shatter test suggested that 29% of the soils under cropland were at risk of wind erosion, but only 6% were at high risk (i.e. erodible fraction 〉60%). In contrast, the fast wetting treatment revealed that 54% of the samples were prone to become “very unstable” and 44% “unstable” during heavy rain or snowmelt events. Even under conditions comparable to light rain events or raindrop impact, 53–59% of the samples were “unstable.” Overall, cropland soils under semi‐arid conditions seem much more susceptible to water than wind erosion. Considering future projections of increasing precipitation in Kazakhstan, we conclude that the risk of water erosion is potentially underestimated and needs to be taken into account when developing sustainable land use strategies. Highlights Organic matter is the important binding agent enhancing aggregation in steppe topsoils. Tillage always declines aggregate stability even without soil organic carbon changes. All croplands soil are prone to wind or water erosion independent of their soil properties. Despite the semi‐arid conditions, erosion risk by water seems higher than by wind.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:631.4 ; climate change ; land use ; soil organic carbon ; soil texture ; water erosion ; wind erosion
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-01-26
    Description: Cosmic‐ray neutron sensors (CRNS) enable noninvasive determination of field‐scale soil moisture content by exploiting the dependence of the intensity of aboveground epithermal neutrons on the hydrogen contained in soil moisture. However, there are other hydrogen pools besides soil moisture (e.g., biomass). Therefore, these hydrogen pools should be considered for accurate soil moisture content measurements, especially when they are changing dynamically (e.g., arable crops, deforestation, and reforestation). In this study, we test four approaches for the correction of biomass effects on soil moisture content measurements with CRNS using experiments with three crops (sugar beet, winter wheat, and maize) based on high‐quality reference soil moisture: (a) site‐specific functions based on in‐situ measured biomass, (b) a generic approach, (c) the thermal‐to‐epithermal neutron ratio (Nr), and (d) the thermal neutron intensity. Bare soil calibration of the CRNS resulted in high root mean square errors (RMSEs) of 0.097, 0.041, and 0.019 m³/m³ between estimated and reference soil moisture content for sugar beet, winter wheat, and maize, respectively. Considering in‐situ measured biomass for correction reduced the RMSE to 0.015, 0.018, and 0.009 m³/m³. The consideration of thermal neutron intensity for correction was similarly accurate. We also explored the use of CRNS for biomass estimation and found that Nr only provided accurate biomass estimates for sugar beet. In contrast, we found significant site‐specific relationships between biomass and thermal neutron intensity for all three crops, suggesting that thermal neutron intensity can be used both to improve CRNS‐based soil moisture content measurements and to quantify crop biomass.
    Description: Plain Language Summary: Water availability is a key challenge in agriculture, especially given the expected increase of droughts related to climate change. A promising noninvasive technique to monitor soil moisture content is cosmic‐ray neutron sensing (CRNS), which is based on the negative correlation between the number of near‐surface fast neutrons originating from cosmic radiation and the amount of hydrogen stored as soil moisture. However, hydrogen is also stored in other pools, such as biomass. These additional pools of hydrogen must be considered to accurately determine soil moisture content with CRNS. In this study, we used data from three experiments with different crops for comparing four methods for the correction of biomass effects on the measurement of soil moisture content with CRNS. We found that soil moisture content measurements were most accurate when locally measured biomass was considered for correction. We also found that changes in the amount of biomass of different crops can be quantified using thermal neutrons additionally detected by CRNS, that is, neutrons from cosmic rays that have a lower energy than fast neutrons. A correction of biomass effects using thermal neutron measurements also provided accurate soil moisture content measurements.
    Description: Key Points: Cosmic ray soil moisture measurements were most accurate when corrected with in‐situ biomass measurements or thermal neutron intensity. The effect of biomass on epithermal and thermal neutron intensity is plant‐specific. Biomass could be estimated from thermal neutron intensity for three crops, but not with the thermal‐to‐epithermal neutron ratio.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: EU‐FP7
    Description: https://doi.org/10.34731/qb7h-6287
    Keywords: ddc:631.4 ; soil moisture ; cosmic ray neutron sensing ; biomass influence ; biomass estimation ; thermal neutrons
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-01-26
    Description: The dynamics of soil carbon in grassland are partly determined by soil organic matter (SOM) composition. However, it remains unclear which role grassland management plays in the interplay between SOM composition and carbon dynamics. Using pyrolysis‐field ionization mass spectrometry (Py‐FIMS), we studied the effect of meadow, mown pasture and pasture on the molecular SOM composition in German topsoils. In sandy soils of the Schorfheide‐Chorin region, SOM composition and stability were strongly affected by clay contents and concentrations of crystalline Fe‐oxides. Here, the grassland management type influenced lipid proportions, which accounted for a maximum of 11.1% of the total ion intensity (TII) under mown pasture. In the Hainich‐Dün region, SOM composition was mainly related to the SOM decomposition stage (abundance of potentially recalcitrant compounds) but not to minerals. Compound classes of carbohydrates (4.3% TII), phenols and lignin monomers (8.5% TII), N‐containing compounds (2.2% TII) and peptides (4.6% TII) were highest under meadow, while compound classes of lignin dimers (3.4% TII) and lipids (8.1% TII) were highest under pasture. In the Schwäbische Alb region, the proportion of free fatty acids (1.6 to 2.3% TII) was positively related to the C/N ratio (r = 0.86); SOM stability was positively affected by poorly crystalline Fe‐oxide content (r = 0.85). The results suggest that grassland management is affecting SOM composition and stability and thus influence SOM dynamics in grasslands. However, the proportion and composition (Fe‐oxide content) of the soil clay fraction overrode grassland management effects if soil clay/OC ratios were 〈10.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: UNIVERSITAET ROSTOCK.
    Description: https://www.bexis.uni-jena.de/ddm/data/Showdata/14446
    Description: https://www.bexis.uni-jena.de/ddm/data/Showdata/14447
    Description: https://www.bexis.uni-jena.de/ddm/data/Showdata/14868
    Description: https://www.bexis.uni-jena.de/ddm/data/Showdata/19346
    Keywords: ddc:631.4 ; clay ; decomposability ; grassland ; grassland management ; Py‐FIMS ; soil organic matter
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-06-08
    Description: Purpose: In urban areas, humans shape the surface, (re-)deposit natural or technogenic material, and thus become the dominant soil formation factor. The 2015 edition of the World Reference Base for Soil Resources (WRB) describes anthropogenic urban soils as Anthrosols or Technosols, but the methodological approaches and classification criteria of national soil classification systems are rather inconsistent. Stringent criteria for describing and mapping anthropogenic soils in urban areas and their application are still lacking, although more than half (53%) of the urban soils in Berlin are built-up by or contain anthropogenic material.
    Description: Materials and methods: On behalf of the Berlin Senate Department for the Environment, Transport and Climate Protection and in close cooperation with the German Working Group for Urban Soils, a comprehensive guideline for soil description in the Berlin metropolitan area (BMA), with special regard to anthropogenic/technogenic parent material and anthropogenic soils, has been developed. Our approach includes all previous standard works for soil description and mapping and is based on studies that have been conducted in the BMA over the last five decades. Special emphasis was placed on the integration of our manual into the classification system of the German soil mapping guideline (KA5).
    Description: Results and discussion: The extension of existing data fields (e.g., the further subdivision of land use types) as well as the creation of new data fields (e.g., pH value) adapted to the requirements of urban soil mapping has been carried out. Additional technogenic materials that occur in urban environments have been added to the list of anthropogenic parent materials. Furthermore, we designed appendices that clearly characterize typical soil profiles of the BMA and depict technogenic materials, their physical and chemical characteristics, as well as their origin and distribution. Our approach will set new benchmarks for soil description and mapping in urban environments, which will improve the quality of urban soil research in the BMA. It is expected that our approach will provide baselines for urban soil mapping in other metropolitan areas.
    Description: Conclusions: Our guideline is a comprehensive manual for the description of urban soils within a national soil classification system. This mapping guideline will be the future standard work for soil surveys and soil mapping in the federal state of Berlin. Currently, representatives from federal and state authorities are reviewing our guideline, with a view to potentially integrating key components into the classification system of the forthcoming 6th edition of the German soil mapping guideline (KA6).
    Description: Senate Department for the Environment, Transport and Climate Protection
    Keywords: ddc:631.4 ; Anthrosols ; Soil mapping guideline ; Soil classification ; Technogenic material ; Technosols ; Urban structure types
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2023-06-08
    Description: Purpose: Sorption of organic compounds to soil largely determines their mobility and bioavailability in ecosystems. It is well known that molecular properties of the organic sorbates affect the sorbed amounts and sorption kinetics. But also changes in the hydration status of soils alter the physicochemical and sorptive properties of soil organic matter (SOM), which is the main sorbent for organic compounds in soils. This study elucidates the effects of varying SOM prehydration status on sorption of PAHs and PAH derivatives in peat soil.
    Description: Materials and methods: For sorption experiments, topsoil samples of a peat soil with 51% SOM were adjusted to water contents of 15, 30, and 50% (w/w based on dry soil mass) and conditioned for different water contact times of up to 2 years at one constant water content. Sorption kinetics and isotherms of naphthalene, three naphthalene derivatives, phenanthrene, and pyrene to these samples were investigated in batch experiments. Effects of the sorbates’ properties and SOM hydration on sorption were analyzed.
    Description: Results and discussion: Sorption to the peat soil was nonlinear and varied among sorbates and differently prehydrated soil samples. Sorbate polarizability, molecular volume, and weight increased the sorbed amount. Sorption kinetics were two-phased with a fast and a slow sorbing fraction. Hydroxyl groups in sorbates acting as H-donor or acceptor led to an increase of the slow sorbing fraction. Increasing total water contents, amounts of non-freezable water in SOM, increasing pore sizes, and decreasing hydrophobicity of SOM decreased the total sorbed amount and the fast sorbing fraction while increasing the slow sorbing fraction. The latter effects increased with increasing polarity and dipole moment of the sorbate. The SOM matrix rigidity varied with prehydration status; higher SOM matrix rigidity led to non-ideal sorption processes, namely, higher sorption nonlinearity and slower sorption.
    Description: Conclusions; The study revealed the effects and interplay of SOM prehydration status and molecular properties of the sorbates on sorption of PAHs and PAH derivatives. As sorbed amounts may decrease and become non-ideal upon aging at the presence of water, estimations of the mobility of organic compounds in the environment need to consider SOM prehydration status in high organic soils.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4 ; Sorption kinetics ; Sorption isotherms ; Hydration history ; Non-freezable water ; Differential scanning calorimetry ; 1H-NMR
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-06-08
    Description: Purpose: Alluvial gold mining leaves a vast amount of dredged sediment that covers the natural soil, destroys riparian ecosystems, and impacts riverbeds and valleys. In Colombia, more than 80,000 ha are covered by dredged sediment. Technosols developed from such deposits undergo strong transformations during the early stages of formation due to the diverse nature of the constituents. The aims of this study are (i) to investigate changes in soil morphological and physicochemical properties at early stages of pedogenesis, (ii) to estimate the variability of size structure distribution of the new plant cover as affected by the time period since establishment and deposit type, and (iii) to determine which soil parameters correlate best with the size structure distribution of vegetation.
    Description: Materials and methods: Soil characterization through morphological and physicochemical analysis was conducted on Technosols developed from gravel and sandy deposits of different ages (0–12 years). A vegetation survey was conducted to measure tree dimensions and identify the most common species. Data were analyzed using non-parametric tests to avoid the loss of information due to data smoothing.
    Description: Results and discussion: The studied Technosols are subject to processes similar to those occurring in natural parent materials such as mineral transformations, changes in redox conditions, organic matter accumulation in the topsoil, and a rapid differentiation of horizons. However, the Technosols in our study sites show an unusually fast development not often observed in natural soils, with drastic changes observed at very early stages of formation. Gravel deposits offer more favorable conditions for plant growth, and marked changes in pedogenic processes can be observed compared with sandy deposits, which are reflected in changes of chemical properties.
    Description: Conclusions: Factors such as the technology used for mining and the continuous deposition of dredged sediments in a cumulative way during the exploitation period, as well as the disturbances after deposition, result in a high diversity of constituents and high heterogeneity of dredged sediment deposits. Gravel and sand deposits, originated from the same sections of the river and after similar separation processes for ore extraction, undergo divergent pedogenic processes at different rates, which could be explained by a remarkable effect of particle size distribution. For vegetation establishment, the selection of tree species should be based on their capacity for nutrient pumping through deep rooting to sequester carbon and to adapt morphologically to heterogeneity in nutrient availability by growing roots in nutrient-rich zones.
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Description: Stiftung fiat panis http://dx.doi.org/10.13039/501100011087
    Description: Mineros S.A.
    Keywords: ddc:631.4 ; Pedogenic trends ; Post-mining land use ; Technogenic materials ; Vegetation size structure ; Variability and heterogeneity
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2023-06-08
    Description: Elevated soil loss and runoff rates can reduce soil fertility; therefore, soil erosion control strategies must be implemented at the hillslope and watershed scale when plantations are established and the soil is bare. In this research, we propose the use of the Vicia sativa Roth. to reduce the soil losses during the first year to control the peak of soil erosion after the plantation in tilled vineyards. To test its efficiency, rainfall simulation experiments were carried out with field surveys in The Casa Pago Gran, in the Eastern Iberian Peninsula. Our results demonstrate that soil properties (organic matter and soil bulk density) and soil erosion (soil loss, runoff and sediment concentration) were significantly different between the control plot (tilled) and with cover crops along with August 2016, 2017 and 2018 measurement periods, but not during January 2016, coinciding with the initial survey before the vetch sown. Runoff initiation was delayed in 3.7 times after 3 years (from 190 till 709 s). The runoff discharge was reduced by the Vicia sativa from 32.87 till 13.68%, the sediment concentration went down from 18.54 till 3.81 gr l−1 and the soil erosion from 3.36 to 0.29 Mg ha−1 year−1. An increase in soil bulk density was registered but did not affect the runoff generation either the soil losses, that was reduced by the plant cover. We conclude that it is necessary to include soil erosion control measures such as the use of Vicia sativa to reduce soil erosion processes during the first stages of the vineyard plantations due to the soil quality improvements and the reduction in soil and water losses.
    Description: European Union Seventh Framework Programme (FP7/2007-2013)
    Description: OECD (Biological Resource Management for Sustainable Agricultural Systems)
    Description: Universität Trier (3163)
    Keywords: ddc:631.4 ; Soil erosion ; Vineyards ; Soil management system ; Land degradation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-06-20
    Description: Plant litter decomposition is a key ecological process that is mostly studied at the forest floor. However, decomposition generally starts in the canopy. In this study, we evaluated the effect of litter composition and climate on the initial phase of decomposition in the soil and two contrasting types of canopy microsites along an elevational gradient (0–2200 m a.s.l.). To this end, we incubated standard material composed by green (fast decomposing) and rooibos (slow decomposing) tea bags for three months. Tea bags were placed in soil (buried at 5 cm) and in the canopy at ca. 5 m above the ground in “micro-wetlands” (tank bromeliads) and dry crown microsites (branches). Along the elevational gradient, green tea decomposed faster than rooibos tea in all microsites and forests. Mass loss for both tea types was lowest on branches at all sites, except for green tea in a wet forest where decomposition did not significantly differ among microsites. In wet forests, decomposition did not differ between bromeliads and soil, while in a dry forest, decomposition was faster in bromeliads. We found that the effects of climatic variables [monthly average temperature (TEMP) and total precipitation (PREC) for the incubation months] on decomposition differed between microsites. Along the elevational gradient, the mass loss in soil was positively correlated with TEMP but not with PREC, whereas on branches, mass loss was negatively correlated with TEMP and positively correlated with PREC. Unlike on branches, mass loss in bromeliads slightly decreased with PREC and increased with TEMP. Our study shows that microsite conditions interact with climate (TEMP and PREC) leading to differences in the general decomposition patterns in the forest canopy.
    Description: CONACYT
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Description: Heinz Neumüller Stiftung
    Description: Carl von Ossietzky Universität Oldenburg (3092)
    Keywords: ddc:631.4 ; Arboreal soil ; Elevational gradient ; Tea bag index ; Epiphytes ; Bromeliads
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2023-06-20
    Description: Selective logging is among the main causes of tropical forest degradation, but little is known about its effects on greenhouse gas (GHG) fluxes from highly weathered Ferralsol soils in Africa. We measured soil CO2, N2O, and CH4 fluxes, and their soil controlling factors at two forests that had undergone conventional selective logging and reduced-impact logging in Cameroon. Each logging system had four replicate plots, each included the disturbed strata (road, logging deck, skidding trail, and felling gap) and an undisturbed reference area. Measurements were conducted monthly from September 2016 to October 2017. Annual GHG fluxes ranged from 4.9 to 18.6 Mg CO2–C, from 1.5 to 79 kg N2O–N, and from − 4.3 to 71.1 kg CH4–C ha−1 year−1. Compared to undisturbed areas, soil CO2 emissions were reduced and soil CH4 emissions increased in skidding trails, logging decks and roads (P 〈 0.01) whereas soil N2O emissions increased in skidding trails (P = 0.03–0.05). The combined disturbed strata had 28% decrease in soil CO2 emissions, 83% increase in soil N2O emissions, and seven times higher soil CH4 emissions compared to undisturbed area (P ≤ 0.01). However, the disturbed strata represented only 4–5% of the area impacted in both logging systems, which reduced considerably the changes in soil GHG fluxes at the landscape level. Across all strata, soil GHG fluxes were regulated by soil bulk density and water-filled pore space, indicating the influence of soil aeration and gas diffusion, and by soil organic carbon and nitrogen, suggesting the control of substrate availability on microbial processes of these GHG.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Description: Georg-August-Universität Göttingen (1018)
    Description: https://doi.org/10.25625/TWSFRU
    Keywords: ddc:631.4 ; Ferralsols ; Selective logging ; Soil CH4 fluxes ; Soil CO2 emissions ; Soil N2O emissions ; Tropical forest
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-06-19
    Description: Despite the importance of phosphorus (P) as a macronutrient, the factors controlling the pool sizes of organic and inorganic P (OP and IP) in soils are not yet well understood. Therefore, the aim of this study was to gain insights into the pools sizes of OP, IP and organic carbon (OC) in soils and soil particle size fractions. For this purpose, I analyzed the distribution of OP, IP, and OC among particle size fractions depending on geographical location, climate, soil depth, and land use, based on published data. The clay size fraction contained on average 8.8 times more OP than the sand size fraction and 3.9 and 3.2 times more IP and OC, respectively. The OP concentrations of the silt and clay size fraction were both negatively correlated with mean annual temperature (R2 = 0.30 and 0.31, respectively, p 〈 0.001). The OC:OP ratios of the silt and clay size fraction were negatively correlated with latitude (R2 = 0.49 and 0.34, respectively, p 〈 0.001). Yet, the OC:OP ratio of the clay size fraction changed less markedly with latitude than the OC:OP ratio of the silt and the sand size fraction. The OC concentrations of all three particle size fractions were significantly (p 〈 0.05) lower in soils converted to cropland than in adjacent soils under natural vegetation. In contrast, the OP concentration was only significantly (p 〈 0.05) decreased in the sand size fraction but not in the other two particle size fractions due to land-use change. Thus, the findings suggest that OP is more persistent in soil than OC, which is most likely due to strong sorptive stabilization of OP compounds to mineral surfaces.
    Description: German Research Foundation
    Keywords: ddc:631.4 ; Ecological stoichiometry ; Soil nutrients ; Organo-mineral interactions ; Land-use change ; Soil organic matter stabilization ; Persistence ; Soil particle size fractions ; Element ratios ; Organic phosphorus
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2023-06-19
    Description: Calcium (Ca) plays a crucial role for plant nutrition, soil aggregation, and soil organic matter (SOM) stabilization. Turnover and ecological functions of Ca in soils depend on soil Ca speciation. For the first time, we used synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy at the Ca K-edge (4038 eV) to investigate Ca speciation in soils. We present Ca K-edge XANES spectra of standard compounds with relevance in soils (e.g. calcite, dolomite, hydroxyapatite, anorthite, clay mineral-adsorbed Ca; Ca oxalate, formate, acetate, citrate, pectate, phytate). Calcium XANES spectra with good signal-to-noise ratios were acquired in fluorescence mode for Ca concentrations between 1 and 10 mg g−1. Most standard spectra differed markedly among each other, allowing the identification of different Ca species in soils and other environmental samples as well as Ca speciation by linear combination fitting. Calcium XANES spectra obtained for samples from different horizons of twelve temperate forest soils revealed a change from dominating lithogenic Ca to clay mineral-bound and/or organically bound Ca with advancing pedogenesis. O layer Ca was almost exclusively organically bound. With increasing SOM decomposition, shares of oxalate-bound Ca decreased. Oxalate-bound Ca was absent in calcareous, but not in silicate subsoil horizons, which can be explained by microbial decomposition in the former vs. stabilization by association to pedogenic minerals in the latter soils. Synchrotron-based Ca XANES spectroscopy is a promising novel tool to investigate the fate of Ca during pedogenesis and—when performed with high spatial resolution (µ-XANES), to study aggregation and SOM stabilization mechanisms produced by Ca.
    Description: BLE Waldklimafonds
    Description: Projekt DEAL
    Keywords: ddc:631.4 ; Ca speciation ; Calcareous soils ; Plant foliage ; Silicate soils ; Soil Ca forms ; XANES spectroscopy
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2023-08-24
    Description: Purpose: The present study provides quantitative data on the degree of macroplastic contamination of two conventionally treated arable areas in North Rhine-Westphalia (Germany), which differ only in the use of organic fertilizers (e.g., compost). Methods: The plastic contamination of both areas was determined by means of field sampling. The study areas were divided into edge and central areas to minimize and identify direct influences from the boundaries. After cleaning and drying, the collected macroplastic particles were analyzed by phototechnical and optical methods for number and size of particles. Results: The arable area with compost fertilization showed a substantially higher macroplastic pollution with 9247 particles per hectare compared to the 220 particles per hectare found on the arable land without compost application. Furthermore, the differences in plastic forms and types on both areas, the presence of plastic directly related to household and garden products, and the homogeneous distribution of plastic particles on the arable area with compost application allow to conclude that compost can be regarded as reason for substantially higher pollution. Areas close to a road showed a higher degree of contamination and differences in the found plastic products compared to the center areas, which indicates littering as a further considerable entry path. Conclusions: The causes of plastic contamination of the investigated arable areas (e.g., contaminated compost by improper waste management and littering) are predominantly external to agricultural practices. The knowledge gained contributes to the knowledge about quantities, impacts, and fate of plastic in the environment.
    Description: Leuphana Universität Lüneburg (3117)
    Keywords: ddc:631.4 ; Macroplastic coverage ; Pollution ; Agricultural activities ; Arable area
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-11-18
    Description: Purpose: The application of plastic mulching differs globally as well as climate, soils, crops, and agricultural practices, making it difficult to generalize the reported impacts on soil. Because literature is scarce about the influence of plastic mulching on soil under temperate, humid climate, the objective of this study was to understand how multiannual plastic mulching influences central soil parameters and processes under Central European cultivation conditions to evaluate its impact on soil quality in the long term. Materials and methods: Central soil parameters and processes like leaching, aggregation, soil organic matter (SOM), and microbial biomass were investigated in a strawberry cultivation in Southwestern Germany. The field experiment compared a plastic-covered ridge–furrow system with subsurface drip irrigation (PC) to the same system with straw coverage (SC) in three soil layers (0–10, 10–30, and 30–60 cm) at seven dates within a 3-year period. Soil analyses comprised soil temperature and moisture, pH, bulk density, water-stable aggregates, soil organic carbon, dissolved organic carbon, and microbial biomass carbon and nitrogen. Results: Rainfall infiltration impeded by PC reduces soil moisture but neither reduces leaching nor promotes (macro-)aggregate formation or stability; however, it maintains a loose and friable soil structure in surface soil (0–5 cm), compared to SC. PC promotes SOM accumulation and shifted SOM composition to a more hardly degradable SOM, especially below the topsoil (10–60 cm). Furthermore, PC revealed no indications of an increased microbial biomass or activity accompanied with an enhanced SOM decomposition due to the shifted microclimate. The seasonal, time- and depth-dependent effects, observed in some parameters, emphasize the importance to include them in future studies for a more holistic process understanding. Conclusion: Our study showed no indications that multiannual plastic mulching influences soil quality within the 3 years of this study. Further research is advisable to support our findings on a larger scale and longer time periods and across various soil and crop types.
    Description: Universität Koblenz-Landau (3155)
    Keywords: ddc:631.4 ; Drip-irrigated ridge-furrow mulching ; Humid region ; Soil structure ; Aggregate stability ; Soil organic matter ; Soil microbial biomass
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-11-18
    Description: Spatiotemporal characterisation of the soil redox status within the capillary fringe (CF) is a challenging task. Air‐filled porosities (ε), oxygen concentration (O〈sub〉2〈/sub〉) and soil redox potential (EH) are interrelated soil variables within active biogeochemical domains such as the CF. We investigated the impact of water table (WT) rise and drainage in an undisturbed topsoil and subsoil sample taken from a Calcaric Gleysol for a period of 46 days. We merged 1D (EH and matric potential) and 2D (O〈sub〉2〈/sub〉) systems to monitor at high spatiotemporal resolution redox dynamics within self‐constructed redoxtron housings and complemented the data set by a 3D pore network characterization using X‐ray microtomography (X‐ray μCT). Depletion of O〈sub〉2〈/sub〉 was faster in the organic matter‐ and clay‐rich aggregated topsoil and the CF extended 〉10 cm above the artificial WT. The homogeneous and less‐aggregated subsoil extended only 4 cm above the WT as indicated by ε–O〈sub〉2〈/sub〉–EH data during saturation. After drainage, 2D O〈sub〉2〈/sub〉 imaging revealed a fast aeration towards the lower depths of the topsoil, which agrees with the connected ε derived by X‐ray μCT (ε〈sub〉CT_conn〈/sub〉) of 14.9% of the total porosity. However, small‐scaled anoxic domains with O〈sub〉2〈/sub〉 saturation 〈5% were apparent even after lowering the WT (down to 0.25 cm〈sup〉2〈/sup〉 in size) for 23 days. These domains remained a nucleus for reducing soil conditions (E〈sub〉H〈/sub〉 〈 −100 mV), which made it challenging to characterise the soil redox status in the CF. In contrast, the subsoil aeration reached O〈sub〉2〈/sub〉 saturation after 8 days for the complete soil volume. Values of ε〈sub〉CT_conn〈/sub〉 around zero in the subsoil highlighted that soil aeration was independent of this parameter suggesting that other variables such as microbial activity must be considered when predicting the soil redox status from ε alone. The use of redoxtrons in combination with localised redox‐measurements and image based pore space analysis resulted in a better 2D/3D characterisation of the pore system and related O〈sub〉2〈/sub〉 transport properties. This allowed us to analyse the distribution and activity of microbiological niches highly associated with the spatiotemporal variable redox dynamics in soil environments. Highlights: The time needed to turn from reducing to oxidising (period where all platinum electrodes feature E〈sub〉H〈/sub〉 〉 300 mV) condition differ for two samples with contrasting soil structure. The subsoil with presumably low O〈sub〉2〈/sub〉 consumption rates aerated considerably faster than the topsoil and exclusively by O〈sub〉2〈/sub〉 diffusion through medium‐ and fine‐sized pores. To derive the soil redox status based upon the triplet ε–O〈sub〉2〈/sub〉–E〈sub〉H〈/sub〉 is challenging at present in heterogeneous soil domains and larger soil volumes than 250 cm〈sup〉3〈/sup〉. Undisturbed soil sampling along with 2D/3D redox measurement systems (e.g., redoxtrons) improve our understanding of redox dynamics within the capillary fringe.
    Keywords: ddc:631.4 ; environmental monitoring ; incubation experiments ; redox processes ; soil reducing conditions ; undisturbed soil ; X‐ray microtomography
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-11-18
    Description: Phosphorus is a nonrenewable resource, which is required for crop growth and to maintain high yields. The soil P cycle is very complex, and new model approaches can lead to a better understanding of those processes and further guide to research gaps. The objective of this study was to present a P‐submodel, which has been integrated in the existing Carbon Candy Balance (CCB) model that already comprises a C and N module. The P‐module is linked to the C mineralization and the associated C‐pools via the C/P ratio of fresh organic material. Besides the organic P cycling, the module implies a plant‐available P‐pool (P〈sub〉av〈/sub〉), which is in a dynamic equilibrium with the nonavailable P‐pool (P〈sub〉na〈/sub〉) that comprises the strongly sorbed and occluded P fraction. The model performance was tested and evaluated on four long‐term field experiments with mineral P fertilization, farmyard manure as organic fertilizer and control plots without fertilization. The C dynamics and the P〈sub〉av〈/sub〉 dynamics were modelled with overall good results. The relative RMSE for the C was below 10% for all treatments, while the relative RMSE for P〈sub〉av〈/sub〉 was below 15% for most treatments. To accommodate for the rather small variety of available P‐models, the presented CNP‐model is designed for agricultural field sites with a relatively low data input, namely air temperature, precipitation, soil properties, yields and management practices. The CNP‐model offers a low entry threshold model approach to predict the C‐N and now the P dynamics of agricultural soils.
    Description: Fachagentur Nachwachsende Rohstoffe http://dx.doi.org/10.13039/501100010812
    Keywords: ddc:631.4 ; CNP‐model ; soil P dynamics ; soil process modelling ; total P and available P
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-11-17
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈sec xmlns:mml="http://www.w3.org/1998/Math/MathML" id="ejss13362-sec-1003" xml:lang="en"〉 〈p xml:lang="en"〉Long‐term experiments (LTEs) have provided data to modellers and agronomists to investigate changes and dynamics of soil organic carbon (SOC) under different cropping systems. As treatment changes have occurred due to agricultural advancements, so too have analytical soil methods. This may lead to method bias over time, which could affect the robust interpretation of data and conclusions drawn. This study aims to quantify differences in SOC due to changes in dry combustion methods over time, using soil samples of a LTE established in 1963 that focuses on mineral and organic fertilizer management in the temperate zone of Northeast Germany. For this purpose, 1059 soil samples, collected between 1976 and 2008, have been analysed twice, once with their historical laboratory method right after sampling, and a second time in 2016 when all samples were analysed using the same elementary analyser. In 9 of 11 soil sampling campaigns, a paired 〈italic toggle="no"〉t〈/italic〉‐test provided evidence for significant differences in the historical SOC values when compared with the re‐analysed concentrations of the same LTE sample. In the sampling years 1988 and 2004, the historical analysis obtained about 0.9 g kg〈sup〉−1〈/sup〉 lower SOC compared with the re‐analysed one. For 1990 and 1998, this difference was about 0.4 g kg〈sup〉−1〈/sup〉. Correction factors, an approach often used to correct for different analytical techniques, could only be applied for 5 of 11 sampling campaigns to account for constant and proportional systematic method error. For this particular LTE, the interpretation of SOC changes due to agronomic management (here fertilization) deviates depending on the analytical method used, which may weaken the explanatory power of the historical data. We demonstrate that analytical method changes over time present one of many challenges in the interpretation of time series data of SOC dynamics. Therefore, LTE site managers need to ensure providing all necessary protocols and data in order to retrace method changes and if necessary recalculate SOC.〈/p〉 〈/sec〉〈sec xmlns:mml="http://www.w3.org/1998/Math/MathML" id="ejss13362-sec-0003" xml:lang="en"〉 〈title〉Highlights〈/title〉 〈p xml:lang="en"〉〈list list-type="bullet" id="ejss13362-list-0001"〉 〈list-item id="ejss13362-li-0001"〉〈p〉A total of 1059 LTE soil samples taken between 1976 and 2008 were re‐analysed for SOC in 2016〈/p〉〈/list-item〉 〈list-item id="ejss13362-li-0002"〉〈p〉Several methodological changes for SOC determination led to significant different SOC concentration in the same sample〈/p〉〈/list-item〉 〈list-item id="ejss13362-li-0003"〉〈p〉Interpretation and time series of LTE soil data suffer from consideration of analytical method changes and poor documentation of the same〈/p〉〈/list-item〉 〈list-item id="ejss13362-li-0004"〉〈p〉Soil archive establishment, thorough method protocols and diligent proficiency testing after soil method changes ameliorate the dilemma〈/p〉〈/list-item〉 〈/list〉〈/p〉 〈/sec〉
    Description: Brandenburger Staatsministerium für Wissenschaft, Forschung und Kultur http://dx.doi.org/10.13039/501100004581
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100004937
    Description: https://doi.org/10.4228/zalf-acge-b683
    Keywords: ddc:631.4 ; Bland–Altman ; carbon stocks ; data trueness ; Deming regression ; method bias ; soil archive ; soil survey
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2024-01-26
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The increasing demand for biomass for food, animal feed, fibre and bioenergy requires optimization of soil productivity, while at the same time, protecting other soil functions such as nutrient cycling and buffering, carbon storage, habitat for biological activity and water filter and storage. Therefore, one of the main challenges for sustainable agriculture is to produce high yields while maintaining all the other soil functions. Mechanistic simulation models are an essential tool to fully understand and predict the complex interactions between physical, biological and chemical processes of soils that generate those functions. We developed a soil model to simulate the impact of various agricultural management options and climate change on soil functions by integrating the relevant processes mechanistically and in a systemic way. As a special feature, we include the dynamics of soil structure induced by tillage and biological activity, which is especially relevant in arable soils. The model operates on a 1D soil profile consisting of a number of discrete layers with dynamic thickness. We demonstrate the model performance by simulating crop growth, root growth, nutrient and water uptake, nitrogen cycling, soil organic matter turnover, microbial activity, water distribution and soil structure dynamics in a long‐term field experiment including different crops and different types and levels of fertilization. The model is able to capture essential features that are measured regularly including crop yield, soil organic carbon, and soil nitrogen. In this way, the plausibility of the implemented processes and their interactions is confirmed. Furthermore, we present the results of explorative simulations comparing scenarios with and without tillage events to analyse the effect of soil structure on soil functions. Since the model is process‐based, we are confident that the model can also be used to predict quantities that have not been measured or to estimate the effect of management measures and climate states not yet been observed. The model thus has the potential to predict the site‐specific impact of management decisions on soil functions, which is of great importance for the development of a sustainable agriculture that is currently also on the agenda of the ‘Green Deal’ at the European level.〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://git.ufz.de/bodium/bodium_v1.0
    Keywords: ddc:631.4 ; agriculture ; computational model ; simulation ; soil microbiology ; soil structure ; sustainable soil
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-03-22
    Description: Soil fauna drives crucial processes of energy and nutrient cycling in agricultural systems, and influences the quality of crops and pest incidence. Soil tillage is the most influential agricultural manipulation of soil structure, and has a profound influence on soil biology and its provision of ecosystem services. The objective of this study was to quantify through meta‐analyses the effects of reducing tillage intensity on density and diversity of soil micro‐ and mesofaunal communities, and how these effects vary among different pedoclimatic conditions and interact with concurrent management practices. We present the results of a global meta‐analysis of available literature data on the effects of different tillage intensities on taxonomic and functional groups of soil micro‐ and mesofauna. We collected paired observations (conventional vs. reduced forms of tillage/no‐tillage) from 133 studies across 33 countries. Our results show that reduced tillage intensity or no‐tillage increases the total density of springtails (+35%), mites (+23%), and enchytraeids (+37%) compared to more intense tillage methods. The meta‐analyses for different nematode feeding groups, life‐forms of springtails, and taxonomic mite groups showed higher densities under reduced forms of tillage compared to conventional tillage on omnivorous nematodes (+53%), epedaphic (+81%) and hemiedaphic (+84%) springtails, oribatid (+43%) and mesostigmatid (+57%) mites. Furthermore, the effects of reduced forms of tillage on soil micro‐ and mesofauna varied with depth, climate and soil texture, as well as with tillage method, tillage frequency, concurrent fertilisation, and herbicide application. Our findings suggest that reducing tillage intensity can have positive effects on the density of micro‐ and mesofaunal communities in areas subjected to long‐term intensive cultivation practices. Our results will be useful to support decision making on the management of soil faunal communities and will facilitate modelling efforts of soil biology in global agroecosystems. HIGHLIGHTS Global meta‐analysis to estimate the effect of reducing tillage intensity on micro‐ and mesofauna Reduced tillage or no‐tillage has positive effects on springtail, mite and enchytraeid density Effects vary among nematode feeding groups, springtail life forms and mite suborders Effects vary with texture, climate and depth and depend on the tillage method and frequency
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://doi.org/10.20387/bonares-eh0f-hj28
    Keywords: ddc:631.4 ; agricultural land use ; conservation agriculture ; conventional agriculture ; soil biodiversity ; soil cultivation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-02-21
    Description: Long-term exposure to polycyclic aromatic hydrocarbons (PAHs) and their nitrated (NPAHs) and oxygenated (OPAHs) derivatives can cause adverse health effects due to their carcinogenicity, mutagenicity and oxidative potential. The distribution of PAH derivatives in the terrestrial environment has hardly been studied, although several PAH derivatives are ubiquitous in air and long-lived in soil and water. We report the multi-annual variations in the concentrations of NPAHs, OPAHs and PAHs in soils sampled at a semi-urban (Mokrá, Czech Republic) and a regional background site (Košetice, Czech Republic) in central Europe. The concentrations of the Σ〈sub〉18〈/sub〉NPAHs and the Σ〈sub〉11+2〈/sub〉OPAHs and O-heterocycles were 0.31 ± 0.23 ng g〈sup〉−1〈/sup〉 and 4.03 ± 3.03 ng g〈sup〉−1〈/sup〉, respectively, in Košetice, while slightly higher concentrations of 0.54 ± 0.45 ng g〈sup〉−1〈/sup〉 and 5.91 ± 0.45 ng g〈sup〉−1〈/sup〉, respectively, were found in soil from Mokrá. Among the 5 NPAHs found in the soils, 1-nitropyrene and less so 6-nitrobenzo(a)pyrene were most abundant. The OPAHs were more evenly distributed. The ratios of the PAH derivatives to their parent PAHs in Košetice indicate that they were long-range transported to the background site. Our results show that several NPAHs and OPAHs are abundant in soil and that gas-particle partitioning is a major factor influencing the concentration of several semi-volatile NPAHs and OPAHs in the soils. Complete understanding of the long-term variations of NPAH and OPAH concentrations in soil is limited by the lack of kinetic data describing their formation and degradation.
    Description: Max-Planck-Gesellschaft http://dx.doi.org/10.13039/501100004189
    Description: Czech Science Foundation
    Description: Ministerstvo Školství, Mládeže a Tělovýchovy (CZ)
    Description: Ministerstvo Školství, Mládeže a Tělovýchovy http://dx.doi.org/10.13039/501100001823
    Description: Českomoravský Cement a.s.
    Description: Horizon 2020 http://dx.doi.org/10.13039/501100007601
    Description: Max Planck Institute for Chemistry (2)
    Keywords: ddc:631.4 ; Polycyclic aromatic compounds, soil pollution ; Nitrated PAHs ; Soil exposure ; Background ; Temporal variation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-02-21
    Description: Purpose: Organochlorine pesticides (OCPs) like lindane and DDT have been used extensively after World War II until the 1990s. Still, residues of these pesticides can be found in agricultural soils all over the world, especially in developing countries. Often, they occur in extensive areas and elevated concentrations so that food safety is jeopardized. Hence, simple, cheap, and fast analytical methods are needed for a straight-forward assessment of risks. A miniaturized solid–liquid extraction combined with solid-phase microextraction (SPME) based on a proven ISO method is presented. Methods: The performance of the method is evaluated by extracting three different soils which were spiked with HCH and DDT congeners, and trifluralin, and aged for 35 days. The results are compared with those of a modified quick, easy, cheap, efficient, rugged, and safe (QuEChERS) method. For further validation, both methods are applied to three environmental soil samples. Results: Validation results show limits of detection and quantification as well as recovery rates in good agreement with standard requirements. The new method was found to be quicker than QuEChERS, which requires time-consuming preparation of reagents. Conclusion: Merits include low time and sample volume requirements (0.5 g) and the possibility to extract many samples simultaneously, which allows the screening of large sample sizes to determine the pollution status of whole landscape regions. However, access to an automated SPME apparatus is assumed. The authors can recommend this method as a cheap and fast alternative where SPME is available.
    Description: bundesministerium für bildung und forschung http://dx.doi.org/10.13039/501100002347
    Description: Justus-Liebig-Universität Gießen (3114)
    Keywords: ddc:631.4 ; Organochlorine pesticides (OCPs) ; Dichlorodiphenyltrichloroethane (DDT) ; Hexachlorocyclohexane (HCH) ; Trifluralin ; Solid-phase microextraction (SPME) ; Gas chromatography mass spectrometry (GC–MS)
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-03-18
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Temperature and soil moisture are known to control pesticide mineralization. Half‐life times (DT〈sub〉50〈/sub〉) derived from pesticide mineralization curves generally indicate longer residence times at low soil temperature and moisture but do not consider potential changes in the microbial allocation of pesticide‐derived carbon (C). We aimed to determine carbon use efficiency (CUE, formation of new biomass relative to total C uptake) to better understand microbial utilization of pesticide‐derived C under different environmental conditions and to support the conventional description of degradation dynamics based on mineralization. We performed a microcosm experiment at two MCPA (2‐methyl‐4‐chlorophenoxyacetic acid) concentrations (1 and 20 mg kg〈sup〉−1〈/sup〉) and defined 20°C/pF 1.8 as optimal and 10°C/pF 3.5 as limiting environmental conditions. After 4 weeks, 70% of the initially applied MCPA was mineralized under optimal conditions but MCPA mineralization reached less than 25% under limiting conditions. However, under limiting conditions, an increase in CUE was observed, indicating a shift towards anabolic utilization of MCPA‐derived C. In this case, increased C assimilation implied C storage or the formation of precursor compounds to support resistance mechanisms, rather than actual growth since we did not find an increase in the 〈italic toggle="no"〉tfdA〈/italic〉 gene relevant to MCPA degradation. We were able to confirm the assumption that under limiting conditions, C assimilation increases relative to mineralization and that C redistribution, may serve as an explanation for the difference between mineralization and MCPA dissipation‐derived degradation dynamics. In addition, by introducing CUE to the temperature‐ and moisture‐dependent degradation of pesticides, we can capture the underlying microbial constraints and adaptive mechanisms to changing environmental conditions.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Changing environmental conditions alter the MCPA degradation dynamics and the allocation of pesticide‐derived carbon to anabolic or catabolic metabolism.〈boxed-text position="anchor" content-type="graphic" id="ejss13417-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:13510754:media:ejss13417:ejss13417-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Collaborative Research Center 1253 CAMPOS (DFG)
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: DFG Priority Program 2322 “Soil System”
    Description: Ellrichshausen Foundation
    Description: Research Training Group “Integrated Hydrosystem modeling”
    Description: https://doi.org/10.5281/zenodo.5081655
    Keywords: ddc:631.4 ; anabolism ; carbon use efficiency ; catabolism ; effect of soil moisture and temperature ; gene‐centric process model ; MCPA biodegradation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-02-09
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Gas transport in soils is usually assumed to be purely diffusive, although several studies have shown that non‐diffusive processes can significantly enhance soil gas transport. These processes include barometric air pressure changes, wind‐induced pressure pumping and static air pressure fields generated by wind interacting with obstacles. The associated pressure gradients in the soil can cause advective gas fluxes that are much larger than diffusive fluxes. However, the contributions of the respective transport processes are difficult to separate. We developed a large chamber system to simulate pressure fields and investigate their influence on soil gas transport. The chamber consists of four subspaces in which pressure is regulated by fans that blow air in or out of the chamber. With this setup, we conducted experiments with oscillating and static pressure fields. CO〈sub〉2〈/sub〉 concentrations were measured along two soil profiles beneath the chamber. We found a significant relationship between static lateral pressure gradients and the change in the CO〈sub〉2〈/sub〉 profiles (R〈sup〉2〈/sup〉 = 0.53; 〈italic toggle="no"〉p〈/italic〉‐value 〈2e‐16). Even small pressure gradients between −1 and 1 Pa relative to ambient pressure resulted in an increase or decrease in CO〈sub〉2〈/sub〉 concentrations of 8% on average in the upper soil, indicating advective flow of air in the pore space. Positive pressure gradients resulted in decreasing, negative pressure gradients in increasing CO〈sub〉2〈/sub〉 concentrations. The concentration changes were probably caused by an advective flow field in the soil beneath the chamber generated by the pressure gradients. No effect of oscillating pressure fields was observed in this study. The results indicate that static lateral pressure gradients have a substantial impact on soil gas transport and therefore are an important driver of gas exchange between soil and atmosphere. Lateral pressure gradients in a comparable range can be induced under windy conditions when wind interacts with terrain features. They can also be caused by chambers used for flux measurements at high wind speed or by fans used for head‐space mixing within the chambers, which yields biased flux estimates.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4 ; advective flux ; chamber flux measurements ; static air pressure fields ; wind‐induced pressure pumping
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-03-05
    Description: Arctic warming causes permafrost thaw and accelerates microbial decomposition of soil organic matter (SOM) to carbon dioxide (CO〈sub〉2〈/sub〉) and methane (CH〈sub〉4〈/sub〉). The determining factors for the ratio between CO〈sub〉2〈/sub〉 and CH〈sub〉4〈/sub〉 formation are still not well understood due to scarce in situ measurements, particularly in remote Arctic regions. We quantified the CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios of SOM decomposition in wet and dry tundra soils by using CO〈sub〉2〈/sub〉 fluxes from clipped plots and in situ CH〈sub〉4〈/sub〉 fluxes from vegetated plots. At the water‐saturated site, CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios decreased sharply from 95 at beginning of July to about 10 in August and September with a median of 12.2 (7.70–17.1; 25%–75% quartiles) over the whole vegetation period. When considering CH〈sub〉4〈/sub〉 oxidation, estimated to reduce in situ CH〈sub〉4〈/sub〉 fluxes by 10%–31%, even lower CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios were calculated (median 10.9–8.41). Active layer depth and soil temperature were the main factors controlling these ratios. Methane production was associated with subsoil (40 cm) temperature, while heterotrophic respiration was related to topsoil (5 cm) temperatures. As expected, CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios were substantially higher at the dry site (median 373, 292–500, 25%–75% quartiles). Both tundra types lost carbon preferentially in form of CO〈sub〉2〈/sub〉, and CH〈sub〉4〈/sub〉‐C represented only 0.27% of the dry tundra total carbon loss and 6.91% of the wet tundra total carbon loss. The current study demonstrates the dynamic of in situ CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios from SOM decomposition and will help improve simulations of future CO〈sub〉2〈/sub〉 and CH〈sub〉4〈/sub〉 fluxes from thawing tundra soils.
    Description: Plain Language Summary: Global warming causes the thaw of the permanently frozen soil in Arctic regions, exposing soil organic matter (SOM) previously frozen to decomposition, increasing the emission of carbon dioxide (CO〈sub〉2〈/sub〉) and methane (CH〈sub〉4〈/sub〉), which are greenhouse gases. It is crucial to quantify the ratio of CO〈sub〉2〈/sub〉 and CH〈sub〉4〈/sub〉 produced because CH〈sub〉4〈/sub〉 has a stronger global warming potential than CO〈sub〉2〈/sub〉. We partitioned SOM decomposition into CO〈sub〉2〈/sub〉 and CH〈sub〉4〈/sub〉 formation (CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios) in wet and dry tundra soils on Samoylov Island, Northeastern Siberia, and we related these ratios to environmental variables. Deeper active layer, which is the topsoil layer that freezes and thaws annually, and higher subsoil (40 cm) temperature at the interface between the active layer and the permafrost, foster CH4 production and decrease CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios. Carbon was preferentially lost in form of CO〈sub〉2〈/sub〉 by the soils, but CH〈sub〉4〈/sub〉 had a larger contribution to the carbon loss in the wet tundra. Our study indicates that warming and deepening of the active layer can result in rising CH〈sub〉4〈/sub〉 production. Further understanding of in situ CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 ratios from SOM decomposition will help improve simulations on future CO〈sub〉2〈/sub〉 and CH〈sub〉4〈/sub〉 fluxes from thawing tundra soils.
    Description: Key Points: Topsoil (5 cm) warming increases the CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 production ratio, while warming of subsoil (40 cm) leads to lower CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 production ratios. The CO〈sub〉2〈/sub〉:CH〈sub〉4〈/sub〉 production ratio is associated with active‐layer depth (ALD) due to a direct effect of ALD on CH〈sub〉4〈/sub〉 production. Carbon was preferentially lost in form of CO〈sub〉2〈/sub〉 at wet and dry sites, but CH〈sub〉4〈/sub〉 had a higher contribution at the wet tundra site.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Clusters of Excellence CliSAP
    Description: https://doi.pangaea.de/10.1594/PANGAEA.944841
    Description: https://doi.pangaea.de/10.1594/PANGAEA.944844
    Keywords: ddc:631.4 ; thaw depth ; methanogenesis ; heterotrophic respiration ; chamber ; greenhouse gases ; active layer thickening
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...