ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • climate change  (8)
  • English  (8)
  • Norwegian
  • Portuguese
  • 2020-2022  (8)
Collection
Keywords
Language
  • English  (8)
  • Norwegian
  • Portuguese
Years
Year
  • 1
    Publication Date: 2021-09-27
    Description: The magnitudes of river floods in Europe have been observed to change, but their alignment with changes in the spatial coverage or extent of individual floods has not been clear. We analyze flood magnitudes and extents for 3,872 hydrometric stations across Europe over the past five decades and classify each flood based on antecedent weather conditions. We find positive correlations between flood magnitudes and extents for 95% of the stations. In central Europe and the British Isles, the association of increasing trends in magnitudes and extents is due to a magnitude-extent correlation of precipitation and soil moisture along with a shift in the flood generating processes. The alignment of trends in flood magnitudes and extents highlights the increasing importance of transnational flood risk management.
    Keywords: 551.48 ; flood ; synchrony ; magnitude ; climate change ; classification ; spatial statistics
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-15
    Description: Wetlands such as bogs, swamps, or freshwater marshes are hotspots of biodiversity. For 5.1 million km2 of inland wetlands, the dynamics of area and water storage, which strongly impact biodiversity and ecosystem services, were simulated using the global hydrological model WaterGAP. For the first time, the impacts of both human water use and man-made reservoirs (WUR) and future climate change (CC) on wetlands around the globe were quantified. WUR impacts are concentrated in arid/semiarid regions, where WUR decreased mean wetland water storage by more than 5% on 8.2% of the mean wetland area during 1986–2005 (Am), with highest decreases in groundwater depletion area. Using output of three climate models, CC impacts on wetlands were quantified, distinguishing unavoidable impacts [i.e., at 2 °C global warming (GW)] from avoidable impacts (difference between 3 °C and 2 °C impacts). Even unavoidable CC impacts are projected to be much larger than WUR impacts, also in arid/semiarid regions. On most wetland area with reliable estimates, avoidable CC impacts are more than twice as large as unavoidable impacts. In case of 2 °C GW, half of Am is estimated to be unaffected by mean storage changes of more than 5%, but only one third in case of 3 °C GW. Temporal variability of water storage will increase for most wetlands. Wetlands in dry regions will be affected the most, particularly by water storage decreases in the dry season. Different from wealthier countries, low-income countries will dominantly suffer from a decrease in wetland water storage due to CC.
    Keywords: 333.7 ; climate change ; water storage ; water use ; wetland ; reservoirs ; global
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-12
    Description: Recent evidence shows that wind-driven ocean currents, like the western boundary currents, are strongly affected by global warming. However, due to insufficient observations both on temporal and spatial scales, the impact of climate change on large-scale ocean gyres is still not clear. Here, based on satellite observations of sea surface height and sea surface temperature, we find a consistent poleward shift of the major ocean gyres. Due to strong natural variability, most of the observed ocean gyre shifts are not statistically significant, implying that natural variations may contribute to the observed trends. However, climate model simulations forced with increasing greenhouse gases suggest that the observed shift is most likely to be a response of global warming. The displacement of ocean gyres, which is coupled with the poleward shift of extratropical atmospheric circulation, has broad impacts on ocean heat transport, regional sea level rise, and coastal ocean circulation.
    Keywords: 551.46 ; ocean gyre ; climate change ; poleward shift ; global warming ; ocean circulation ; sea level rise
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-24
    Description: Meteorological droughts have large impacts on society and the environment. A better understanding and quantification of their occurrences can be highly relevant for the development of proper climate change mitigation, adaptation and resilience strategies. Here we examine meteorological droughts from observed data covering the 1971–2000 period for the Fulda catchment in Germany by means of the Standardized Precipitation Index. The joint dependency of drought duration and severity is modelled by a copula function, which relates their univariate distributions in a functional relationship. Recurrence intervals are further calculated as a function of the joint relationship and univariate marginals. Future projections are investigated in which downscaled EURO-CORDEX Regional Climate Model (RCM) projections for the period 2021–2050 are used together with the three Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5, in order to analyse and compare future joint patterns of duration and severity of events. We find that drought duration and severity present a clear interdependency supporting the choice of a bivariate model. Results suggest substantial differences in the future joint relationship duration–severity. Depending on the RCM and RCP, drought patterns show different magnitude of changes in the future. The projected changes are different for the different returns periods. RCP8.5 shows more severe events and longer drought durations than RCP2.6 and RCP4.5. The uncertainties of the projected patterns also depend on the RCP and RCM and are larger for higher return periods.
    Keywords: 551.6 ; climate change ; copulas ; drought duration and severity ; drought events ; extremes ; Fulda catchment ; Standardized Precipitation Index
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-06
    Description: Abstract Global climate models provide only partial information on local-scale phenomenon, such as precipitation, primarily due to their coarse resolution. In this study, statistical downscaling algorithms, based on both weather regimes and past analogues, are operated for 18 Israeli rain gauges with an altitude ranging between −200 and ~1,000 m above sea level (ASL). To project seasonal precipitation over Israel and its hydrologic basins, the algorithms are applied to six Coupled Model Inter-comparison Project Phase 5 (CMIP5) models for the end of the 21st century, according to the RCP4.5 and RCP8.5 scenarios. The downscaled models can capture quite well the seasonal precipitation distribution, though with underestimation in winter and overestimation in spring. All models display a significant reduction of seasonal precipitation for the 21st century according to both scenarios. The winter reductions for the end of the century and the RCP8.5 scenario are found to be ~22 and ~37% according to the weather regimes and the analogues downscaling methods, respectively. Spring reductions are found to be ~10–20% larger than winter reductions. It is shown that the projected reduction results from a decrease in the frequency of the rain-bearing systems, as well as a decrease in the average daily precipitation intensity. The areas with the largest reductions in seasonal precipitation are found over the central mountains, the Mediterranean coastal area, and the Sea of Galilee hydrologic basins, which are the main fresh-water aquifers and reservoirs of Israel. The statistical downscaling methods applied in this study can be easily transferred to other regions where long-term data sets of observed precipitation are available. This study and others may serve as a basis for priority and policy setting toward better climate adaptation with associated uncertainties related to the methods used and nonstationary of the climate system.
    Keywords: 551.6 ; analogues downscaling ; climate change ; CMIP5 predictions ; Eastern Mediterranean ; seasonal precipitation ; synoptic classification ; weather regimes
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-06
    Description: Climate change is expected to enhance the hydrological cycle in northern latitudes reducing the salinity in the Baltic Sea, a land-locked marginal sea with a large catchment area located in northern Europe. With the help of ocean simulations forced by historical atmospheric and hydrological reconstructions and local observations, we analyzed long-term changes in the sea surface salinity of the Baltic Sea as well as its latitudinal gradient. The variability of both is dominated by multidecadal oscillations with a period of about 30 years, while both atmospheric variables, wind and river runoff, contribute to this variability. Centennial changes show a statistically significant positive trend in the North-South gradient of sea surface salinity for 1900–2008. This change is mainly attributed to increased river runoff from the northernmost catchment indicating a footprint of the anthropogenic impact on salinity with consequences for the marine ecosystem and species distributions.
    Keywords: 551.46 ; Baltic Sea ; salinity ; river runoff ; climate change
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-25
    Description: Ocean heat transport is often thought to play a secondary role for Arctic surface warming in part because warm water which flows northward is prevented from reaching the surface by a cold and stable halocline layer. However, recent observations in various regions indicate that occasionally, warm water is found directly below the surface mixed layer. Here we investigate Arctic Ocean surface energy fluxes and the cold halocline layer in climate model simulations from the Coupled Model Intercomparison Project Phase 5. An ensemble of 15 models shows decreased sea ice formation and increased ocean energy release during fall, winter, and spring for a high-emission future scenario. Along the main pathways for warm water advection, this increased energy release is not locally balanced by increased Arctic Ocean energy uptake in summer. Because during Arctic winter, the ocean mixed layer is mainly heated from below, we analyze changes of the cold halocline layer in the monthly mean Coupled Model Intercomparison Project Phase 5 data. Fresh water acts to stabilize the upper ocean as expected based on previous studies. We find that in spite of this stabilizing effect, periods in which warm water is found directly or almost directly below the mixed layer and which occur mainly in winter and spring become more frequent in high-emission future scenario simulations, especially along the main pathways for warm water advection. This could reduce sea ice formation and surface albedo.
    Keywords: 551.46 ; 551.6 ; Arctic ; climate change ; cold halocline ; climate modeling
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-25
    Description: Corporate carbon performance (CCP) has become a central topic in political, financial, and academic domains. At the same time, several characteristics of CCP data, including comparability and consistency, remain unresolved. The literature has extensively covered issues regarding the comparability of CCP data from a firm-internal perspective. However, it has not yet examined the consistency of CCP data between third-party data providers. This article investigates the degree of CCP data consistency between third-party providers according to three dimensions: scope (i.e., direct and indirect emissions), scheme (i.e., mandatory and voluntary reporting schemes), and source (i.e., data stemming from corporate reports and from third-party estimation methods). The results reveal that data on direct emissions are more consistent than data on indirect emissions, and they are especially inconsistent for Scope 3. Second, mandatory and voluntary reporting schemes do not substantially improve the consistency of CCP data, which is surprising. Third, third-party estimations are less consistent as compared to data stemming directly from corporate reports; however, the combination of Scopes 1 and 2 third-party estimated data raises consistency levels. On the basis of these results, we conclude the following key implications: academic researchers must be mindful of the consistency of CCP data, because it can significantly affect empirical results, corporate management should avoid situations where different CCP data are communicated externally, investors should engage firms to follow a standardized approach, data providers should increase the transparency about their estimation methods, and policy makers need to be aware of the importance of a sound and standardized methodology to determine CCP.
    Keywords: 304.2 ; climate change ; corporate carbon performance ; data consistency ; estimation method ; industrial ecology ; third-party provider
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...