ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (8,726)
  • Portuguese  (5)
  • Japanese  (2)
  • Norwegian
  • 2025-2025  (10)
  • 2015-2019  (8,733)
Collection
Language
Years
Year
  • 1
    Monograph available for loan
    Monograph available for loan
    Cambridge, Mass. [u.a.] : MIT Press
    Call number: PIK B 050-15-0039
    Description / Table of Contents: Contents: Part I: The economics of happiness and its most important results ; 1 The end of materialism? ; 2 Economists' way of thinking: 'More is better than less' ; 3 The Easterlin attack ; 4 If money doesn't make us happy, what then? ; 5 The economic determinants of happiness ; 6 What is to be done if money doesn't make us happy? ; Part II: What is happiness research telling us? ; 7 Are we measuring correctly? ; 8 How much truth is there in the Easterlin paradox? ; 9 Unemployed and happy? ; 10 The importance of relative position ; 11 Conclusion
    Type of Medium: Monograph available for loan
    Pages: X, 212 S. : graph. Darst.
    ISBN: 9780262028448
    Uniform Title: Geld macht doch glücklich
    Language: English
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Tokyo : National Institute for Polar Research
    Call number: AWI P5-15-0033
    Type of Medium: Monograph available for loan
    Pages: 26 S. : Ill., graph. Darst., Kt.
    Edition: 2014, rev. March 2015
    Language: English
    Note: Contents: 1. Introduction. - (1) The purposes of the long-term plan report. - (2) The background and particulars of this report. - (3) Contents of this report. - 2.Changes in the Arctic environment to date and in the near future. - 3. History of Arctic environmental research. - 4. Abstracts of all themes. - (1) Elucidation of abrupt environmental change in the Arctic associated with the on-going global warming. - Theme 1: Arctic amplification of global warming. - Theme 2: Mechanisms and influence of sea ice decline. - Theme 3: Biogeochemical cycles and ecosystem changes. - Theme 4: Ice sheet, glaciers, permafrost, snowfall, snow cover and hydrological cycle. - Theme 5: Interactions between the Arctic and the entire earth. - Theme 6: Predicting future environmental conditions of the Arctic based on paleoenvironmental records. - Theme 7: Effects of the Arctic environment on human society. - (2) Elucidation of environmental change concerning biodiversity. - Theme 8: Effects on terrestrial ecosystems and biodiversity. - Theme 9: Influence on marine ecosystem and biodiversity. - (3) Broad and important subjects on the Arctic environment. - Theme 10: Geospace environment. - Theme 11: Interaction of surface environment change with solid earth. - Theme 12: Basic understanding on formation and transition process of permafrost. - (4) Development of methods enabling breakthroughs in environmental research. - Theme A: Sustainable seamless monitoring. - Theme B: Earth system-modeling for inter-disciplinary research. - Theme C: Data assimilation to connect monitoring and modeling. - 5. Improvement of research foundation. - Authors and reviewers.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Hoboken, NJ : Wiley
    Call number: AWI A14-15-0008
    Description / Table of Contents: The cryosphere, that region of the world where water is temporarily or permanently frozen, plays a crucial role on our planet. Recent developments in remote sensing techniques, and the acquisition of new data sets, have resulted in significant advances in our understanding of all components of the cryosphere and its processes. This book, based on contributions from 40 leading experts, offers a comprehensive and authoritative overview of the methods, techniques and recent advances in applications of remote sensing of the cryosphere. Examples of the topics covered include: snow extent, depth, grain size and impurities; surface and subsurface melting; glaciers; accumulation over the Greenland and Antarctica ice sheets; ice thickness and velocities; gravimetric measurements from space; sea, lake and river ice; frozen ground and permafrost; fieldwork activities; recent and future cryosphere-oriented missions and experiments.
    Type of Medium: Monograph available for loan
    Pages: 408 Seiten , Illustrationen
    Edition: 1. edition
    ISBN: 9781118368855
    Series Statement: The cryosphere science series
    Language: English
    Note: Table of Contents: List of contributors. - Cryosphere Science: Series Preface. - Preface. - Acknowledgments. - About the companion website. - 1 Remote sensing and the cryosphere. - 1.1 Introduction. - 1.2 Remote sensing. - 1.2.1 The electromagnetic spectrum and blackbody radiation. - 1.2.2 Passive systems. - 1.2.3 Active systems. - 1.3 The cryosphere. - References. - 2 Electromagnetic properties of components of the cryosphere. - 2.1 Electromagnetic properties of snow. - 2.1.1 Visible/near-infrared and thermal infrared. - 2.1.2 Microwave region. - 2.2 Electromagnetic properties of sea ice. - 2.2.1 Visible/near-infrared and thermal infrared. - 2.2.2 Microwave region. - 2.3 Electromagnetic properties of freshwater ice. - 2.4 Electromagnetic properties of glaciers and ice sheets. - 2.4.1 Visible/near-infrared and thermal infrared. - 2.4.2 Microwave region. - 2.5 Electromagnetic properties of frozen soil. - 2.5.1 Visible/near-infrared and thermal infrared. - 2.5.2 Microwave region. - References. - Acronyms. - Websites cited. - 3 Remote sensing of snow extent. - 3.1 lntroduction. - 3.2 Visible/near-infrared snow products. - 3.2.1 The normalized difference snow index (NDSI). - 3.3 Passive microwave products. - 3.4 Blended VNIR/PM products. - 3.5 Satellite snow extent as input to hydrological models. - 3.6 Concluding remarks. - Acknowledgments. - References. - Acronyms. - Websites cited. - 4 Remote sensing of snow albedo, grain size, and pollution from space. - 4.1 Introduction. - 4.2 Forward modeling. - 4.3 Local optical properties of a snow layer. - 4.4 Inverse problem. - 4.5 Pitfalls of retrievals. - 4.6 Conclusions. - Acknowledgments. - References. - Acronyms. - Websites cited. - 5 Remote sensing of snow depth and snow water equivalent. - 5.1 Introduction. - 5.2 Photogrammetry. - 5.3 LiDAR. - 5.4 Gamma radiation. - 5.5 Gravity data. - 5.6 Passive microwave data. - 5.7 Active microwave data. - 5.8 Conclusions. - References. - Acronyms. - Websites cited. - 6 Remote sensing of melting snow and ice. - 6.1 Introduction. - 6.2 General considerations on optical/thermal and microwave sensors and techniques for remote sensing of melting. - 6.2.1 Optical and thermal sensors. - 6.2.2 Microwave sensors. - 6.2.3 Electromagnetic properties of dry and wet snow. - 6.3 Remote sensing of melting over land. - 6.4 Remote sensing of melting over Greenland. - 6.4.1 Thermal infrared sensors. - 6.4.2 Microwave sensors. - 6.5 Remote sensing of melting over Antarctica. - 6.6 Conclusions. - References. - Acronyms. - 7 Remote sensing of glaciers. - 7.1 Introduction. - 7.2 Fundamentals. - 7.3 Satellite instruments for glacier research. - 7.4 Methods. - 7.4.1 Image classification for glacier mapping. - 7.4.2 Mapping debris-covered glaciers. - 7.4.3 Glacier mapping with SAR data. - 7.4.4 Assessing glacier changes. - 7.4.5 Area and length changes. - 7.4.6 Volumetrie glacier changes. - 7.4.7 Glacier velocity. - 7.5 Glaciers of the Greenland ice sheet. - 7.5.1 Surface elevation. - 7.5.2 Glacier extent. - 7.5.3 Glacier dynamics. - 7.6 Summary. - References. - Acronyms. - Websites cited. - 8 Remote sensing of accumulation over the Greenland and Antarctic ice sheets. - 8.1 Introduction to accumulation. - 8.2 Spaceborne methods for determining accumulation over ice sheets. - 8.2.1 Microwave remote sensing. - 8.2.2 Other remote sensing techniques and combined methods. - 8.3 Airborne and ground-based measurements of accumulation. - 8.3.1 Ground-based. - 8.3.2 Airborne. - 8.4 Modeling of accumulation. - 8.5 The future for remote sensing of accumulation. - 8.6 Conclusions. - References. - Acronyms. - Website cited. - 9 Remote sensing of ice thickness and surface velocity. - 9.1 Introduction. - 9.1.1 Electrical properties of glacial ice. - 9.2 Radar principles. - 9.2.1 Radar sounder. - 9.2.2 Radar equation. - 9.3 Pulse compression. - 9.4 Antennas. - 9.5 Example results. - 9.6 SAR and array processing. - 9.7 SAR Interferometry. - 9. 7.1 Introduction. - 9.7.2 Basic theory. - 9.7.3 Practical considerations of InSAR systems. - 9.7.4 Application of InSAR to Cryosphere remote sensing. - 9.8 Conclusions. - References. - Acronyms. - 10 Gravimetry measurements from space. - 10.1 Introduction. - 10.2 Observing the Earth's gravity field with inter-satellite ranging. - 10.3 Surface mass variability from GRACE. - 10.4 Results. - 10.5 Conclusions. - References. - Acronyms. - 11 Remote sensing of sea ice. - 11.1 Introduction. - 11.2 Sea ice concentration and extent. - 11.2.1 Passive microwave radiometers. - 11.2.2 Active microwave - scatterometry and radar. - 11.2.3 Visible and infrared. - 11.2.4 Operational sea ice analyses. - 11.3 Sea ice drift. - 11.4 Sea ice thickness and age, and snow depth. - 11.4.1 Altimetric thickness estimates. - 11.4.2 Radiometric thickness estimates. - 11.4.3 Sea ice age estimates as a proxy for ice thickness. - 11.5 Sea ice melt onset and freeze-up, albedo, melt pond fraction and surface temperature. - 11.5.1 Melt onset and freeze-up. - 11.5.2 Sea ice albedo and melt pond fraction. - 11.5.3 Sea ice surface temperature. - 11.6 Summary, challenges and the road ahead. - References. - Acronyms. - Website cited. - 12 Remote sensing of lake and river ice. - 12.1 Introduction. - 12.2 Remote sensing of lake ice. - 12.2.1 Ice concentration, extent and phenology. - 12.2.2 Ice types. - 12.2.3 Ice thickness and snow on ice. - 12.2.4 Snow/ice surface temperature. - 12.2.5 Floating and grounded ice: the special case of shallow Arctic/sub-Arctic lakes. - 12.3 Remote sensing of river ice. - 12.3.1 Ice extent and phenology. - 12.3.2 lce types, ice jams and flooded areas. - 12.3.3 Ice thickness. - 12.3.4 Surface flow velocities. - 12.3.5 Incorporating SAR-derived ice information into a GIS-based system in support of river-flow modeling and flood forecasting. - 12.4 Conclusions and outlook. - Acknowledgments. - References. - Acronyms. - Websites cited. - 13 Remote sensing of permafrost and frozen ground. - 13.1 Permafrost - an essential climate variable of the "Global Climate Observing System". - 13.2 Mountain permafrost. - 13.2.1 Remote sensing of surface features and permafrost landforms. - 13.2.2 Generation of digital elevation models. - 13.2.3 Terrain elevation change and displacement. - 13.3 Lowland permafrost - identification and mapping of surface features. - 13.3.1 Land cover and vegetation. - 13.3.2 Permafrost landforms. - 13.3.3 Landforms and processes indicating permafrost degradation. - 13.4 Lowland permafrost - remote sensing of physical variables related to the thermal permafrost state. - 13.4.1 Land surface temperature through thermal remote sensing. - 13.4.2 Freeze-thaw state of the surface soil through microwave remote sensing. - 13.4.3 Permafrost mapping with airborne electromagnetic surveys. - 13.4.4 Regional surface deformation through radar interferometry. - 13.4.5 A gravimetric signal of permafrost thaw?. - 13.5 Outlook - remote sensing data and permafrost models. - References. - Acronyms. - 14 Field measurements for remote sensing of the cryosphere. - 14.1 Introduction. - 14.2 Physical properties of interest. - 14.2.1 Surface properties. - 14.2.2 Sub-surface properties. - 14.3 Standard techniques for direct measurements of physical properties. - 14.3.1 Topography. - 14.3.2 Snow depth. - 14.3.3 Snow water equivalent and density. - 14.3.4 Temperature. - 14.3.5 Stratigraphy. - 14.3.6 Sea ice depth and ice thickness. - 14.4 New techniques for high spatial resolution measurements. - 14.4.1 Topography. - 14.4.2 Surface properties. - 14.4.3 Sub-surface properties. - 14.5 Simulating airborne and spaceborne observations from the ground. - 14.5.1 Active microwave. - 14.5.2 Passive microwave. - 14.6 Sampling strategies for remote sensing field campaigns: concepts and examples. - 14.6.1 Ice sheet campaigns. - 14.6.2 Seasonal snow campaigns. - 14.6.3 Sea ice campaigns. - 14.7 Conclusions. - References. - Acronyms. - Websites cited. - 15 Remote sensing missions and the cryosphere. - 15.1 In
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    Dordrecht : Springer
    Call number: AWI A11-15-0048
    Description / Table of Contents: This textbook aims to be a one stop shop for those interested in aerosols and their impact on the climate system. It starts with some fundamentals on atmospheric aerosols, atmospheric radiation and cloud physics, then goes into techniques used for in-situ and remote sensing measurements of aerosols, data assimilation, and discusses aerosol-radiation interactions, aersol-cloud interactions and the multiple impacts of aerosols on the climate system. The book aims to engage those interested in aerosols and their impacts on the climate system: graduate and PhD students, but also post-doctorate fellows who are new to the field or would like to broaden their knowledge. The book includes exercises at the end of most chapters. Atmospheric aerosols are small (microscopic) particles in suspension in the atmosphere, which play multiple roles in the climate system. They interact with the energy budget through scattering and absorption of solar and terrestrial radiation. They also serve as cloud condensation and ice nuclei with impacts on the formation, evolution and properties of clouds. Finally aerosols also interact with some biogeochemical cycles. Anthropogenic emissions of aerosols are responsible for a cooling effect that has masked part of the warming due to the increased greenhouse effect since pre-industrial time. Natural aerosols also respond to climate changes as shown by observations of past climates and modelling of the future climate.
    Type of Medium: Monograph available for loan
    Pages: XVII, 311 Seiten , Illustrationen
    ISBN: 9789401796484
    Uniform Title: Aérosols atmosphériques : propriétés et impacts climatiques
    Language: English
    Note: Contents: 1 General Introduction. - 1.1 The Climate System. - 1.2 The Atmosphere. - 1.3 Energy Budget and Atmospheric Composition. - 1.4 The Water Cycle. - 1.5 Aerosols and Climate Change. - 1.6 Outline of this Textbook. - References. - Further Reading (Textbooks and Articles. - 2 Atmospheric Aerosols. - 2.1 Definitions. - 2.2 Sources of Aerosols and Aerosol Precursors. - 2.2.1 Marine Aerosols. - 2.2.2 Desert Dust. - 2.2.3 Volcanic Aerosols. - 2.2.4 Biogenic Aerosols. - 2.2.5 Biomass Burning Aerosols. - 2.2.6 Aerosols from Fossil Fuel Combustion. - 2.3 Spatial and Temporal Aerosol Distributions. - 2.4 Aerosol-Cloud-Radiation Interactions. - 2.5 Climate Effects of Aerosols. - References. - Further Reading (Textbooks and Articles). - 3 Physical, Chemical and Optical Aerosol Properties. - 3.1 Fine, Accumulation and Coarse Modes. - 3.2 Size Distribution. - 3.3 Chemical Composition. - 3.3.1 Aerosol Mixture. - 3.3.2 Inorganic Aerosols. - 3.3.3 Black Carbon Aerosols. - 3.3.4 Organic Aerosols. - 3.3.5 Geographic Distribution of Aerosol Chemical Composition. - 3.4 Refractive Index. - 3.5 Deliquescence, Efflorescence and Hysteresis. - 3.6 Definition of Aerosol Optical Properties. - 3.6.1 Absorption and Scattering Cross Sections. - 3.6.2 Phase Function. - 3.6.3 Upscatter Fractions. - 3.7 Calculation of Aerosol Optical Properties. - 3.7.1 Mie Theory. - 3. 7.2 Extinction, Scattering and Absorption. - 3.7.3 Optical Depth and Angström Coefficient. - 3.8 Optical Properties of Nonspherical Aerosols. - 3.9 Aerosols and Atmospheric Visibility. - References. - Further Reading (Textbooks and Articles). - 4 Aerosol Modelling. - 4.1 Introduction. - 4.2 Emissions. - 4.2.1 Generalities. - 4.2.2 Fossil Fuels, Biofuels, and Other Anthropogenic Sources. - 4.2.3 Vegetation Fires. - 4.2.4 Sea Spray. - 4.2.5 Desert Dust. - 4.2.6 Dimethylsulphide. - 4.2.7 Biogenic Volatile Organic Compounds. - 4.2.8 Volcanoes. - 4.2.9 Resuspension. - 4.3 Atmospheric Processes. - 4.3.1 Nucleation. - 4.3.2 Condensation of Semi-Volatile Compounds. - 4.3.3 Coagulation. - 4.3.4 In-Cloud Aerosol Production. - 4.3.5 Wet Deposition. - 4.3.6 Dry Deposition. - 4.3.7 Sedimentation. - 4.3.8 Aerosol Transport. - 4.4 Modelling Approaches. - 4.4.1 Bulk Approach. - 4.4.2 Sectional Approach. - 4.4.3 Modal Approach. - 4.5 Example: The Sulphur Budget. - References. - Further Reading (Textbooks and Articles). - 5 Interactions of Radiation with Matter and Atmospheric Radiative Transfer. - 5.1 Introduction. - 5.2 Electromagnetic Radiation. - 5.2.1 Generalities. - 5.2.2 Definitions. - 5.3 Interactions of Radiation with Matter. - 5.3.1 Matter, Energy and Spectral Lines. - 5.3.2 Intensity of Spectral Lines. - 5.3.3 Spectral Line Profiles. - 5.3.4 Processes of lnteractions of Radiation with Matter. - 5.4 Modelling of the Interaction Processes. - 5.4.1 Molecular Absorption Coefficient. - 5.4.2 Scattering Phase Function. - 5.4.3 Molecular Scattering. - 5.4.4 Absorption and Scattering by Aerosols. - 5.4.5 Thermal Emission. - 5.5 Atmospheric Radiative Transfer. - 5.5.1 Equation of Radiative Transfer. - 5.5.2 Extinction Only. - 5.5.3 Scattering Medium. - 5.5.4 Plane-Parallel Atmosphere. - 5.5.5 Resolution of the Equation of Radiative Transfer. - 5.6 Absorption Bands, Energy, and Actinic Fluxes. - 5.6.1 Main Molecular Absorption Bands in the Atmosphere. - 5.6.2 Radiative Flux. - 5.6.3 Two-Flux Method. - 5.6.4 Stefan-Boltzmann Law. - 5.6.5 Radiative Budget. - 5.6.6 Actinic Fluxes. - 5.6.7 Polarization of Radiation. - References. - Further Reading (Textbooks and Articles). - 6 In Situ and Remote Sensing Measurements of Aerosols. - 6.1 Introduction to Aerosol Remote Sensing. - 6.2 Passive Remote Sensing: Measurement of the Extinction. - 6.2.1 General Principles. - 6.2.2 Ground-Based Photometry. - 6.2.3 Spaceborne Occultation Measurements. - 6.2.4 Retrieval of Aerosol Size Distribution. - 6.3 Passive Remote Sensing: Measurement of the Scattering. - 6.3.1 General Principles. - 6.3.2 Ground-Based Measurement of Scattered Radiation. - 6.3.3 Spaceborne Measurements of Scattered Radiation. - 6.4 Measurement of Infrared Radiation. - 6.4.1 General Principles. - 6.4.2 Spaceborne Nadir Measurement of Infrared Radiation. - 6.4.3 Spaceborne Limb Measurement of Infrared Radiation. - 6.5 Active Remote Sensing: Lidar. - 6.5.1 General Principles. - 6.5.2 The Lidar Equation. - 6.5.3 Raman Lidar. - 6.6 In Situ Aerosol Measurements. - 6.6.1 Measurement of Aerosol Concentrations. - 6.6.2 Measurement of Aerosol Chemical Composition. - 6.6.3 Measurement of Aerosol Scattering. - 6.6.4 Measurement of Aerosol Absorption. - 6.7 Conclusions. - References. - Further Reading (Textbooks and Articles). - 7 Aerosol Data Assimilation. - 7.1 Introduction. - 7.2 Basic Principles of Data Assimilation. - 7.3 Applications of Data Assimilation for Aerosols. - References. - Further Reading (Textbooks and Articles). - 8 Aerosol-Radiation Interactions. - 8.1 Introduction. - 8.2 Atmospheric Radiative Effects Due to Aerosols. - 8.2.1 Simplified Equation for Scattering Aerosols. - 8.2.2 Simplified Equation for Absorbing Aerosols. - 8.2.3 Radiative Transfer Calculations. - 8.2.4 Global Estimates and Sources of Uncertainty. - 8.3 Rapid Adjustments to Aerosol-Radiation Interactions. - 8.4 Radiative Impact of Aerosols on Surface Snow and Ice. - References. - Further Reading (Textbooks and Articles). - 9 Aerosol-Cloud lnteractions. - 39.1 Introduction. - 9 .1.1 Cloud Formation. - 9 .1.2 Cloud Distribution. - 9 .1.3 Aerosol-Cloud Interactions. - 9.2 Aerosol Effects on Liquid Clouds. - 9 .2.1 Saturation Pressure of Water Vapour. - 9.2.2 Kelvin Effect. - 9.2.3 Raoult's Law. - . - 9.2.4 Köhler Theory. - 9.2.5 Extensions to the Köhler Theory. - 9.2.6 CCN and Supersaturation in the Cloud. - 9.2.7 Dynamical and Radiative Effects in Clouds. - 9.2.8 Principle of the Cloud Albedo Effect. - 9.2.9 Observations of the Cloud Albedo Effect. - 9.2.10 Adjustments in Liquid Water Clouds. - 9.2.11 Rapid Adjustments Occurring in Liquid Clouds. - 9.3 Aerosols Effects on Mixed-Phased and Ice Clouds. - 9.3.1 Elements of Microphysics of Ice Clouds. - 9.3.2 Impact of Anthropogenic Aerosols on Ice Clouds. - 9.4 Forcing Due to Aerosol-Cloud lnteractions. - 9.5 Aerosols, Contrails and Aviation-Induced Cloudiness. - 9.5.1 Formation of Condensation Trails. - 9.5.2 Estimate of the Climate Impact of Contrails. - References. - Further Reading (Textbooks and Articles). - 10 Climate Response to Aerosol Forcings. - 10.1 Introduction. - 10.2 Radiative Forcing, Feedbacks and Climate Response. - 10.2.1 Radiative Forcing. - 10.2.2 Climate Feedbacks. - 10.2.3 Rapid Adjustments and Effective Radiative Forcing. - 10.2.4 Climate Response and Climate Efficacy. - 10.3 Climate Response to Aerosol Forcings. - 10.3.1 Equilibrium Response. - 10.3.2 Past Emissions. - 10.3.3 Detection and Attribution of Aerosol Impacts. - 10.3.4 Future Emissions Scenarios. - 10.4 Nuclear Winter. - References. - Further Reading (Textbooks and Articles). - 11 Biogeochemical Effects and Climate Feedbacks of Aerosols. - 11 .1 Introduction. - 11.2 Impact of Aerosols on Terrestrial Ecosystems. - 11.2.1 Diffuse Radiation and Primary Productivity. - 11.2.2 Aerosols as a Source of Nutrients. - 11.2.3 Acidification of Precipitation. - 11.3 Impact of Aerosols on Marine Ecosystems. - 11.4 Aerosols-Atmospheric Chemistry Interactions. - 11.4.1 Interactions with Tropospheric Chemistry. - 11.4.2 Impact of Stratospheric Aerosols on the Ozone Layer and Ultravialet Radiation. - 11.5 Climate Feedbacks Involving Marine Aerosols. - 11.5.1 Sulphate Aerosols from DMS Emissions. - 11.5.2 Marine Aerosols. - 11.5.3 Other Aerosols of Maritime Origin. - 11.6 Climate Feedbacks Involving Continental Aerosols. - 11.6.1 Secondary Organic Aerosols. - 11.6.2 Primary Aerosols of Biogenic Origin. - 11.6.3 Aerosols from Vegetation Fires. - 11.6.4 Desert Dust. - 11.7 Climate Feedbacks Involving Stratospheric Aerosols. - References. - Further Reading (Textbooks and Articles). - 12 Strato
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Princeton [u.a.] : Princeton University Press
    Call number: PIK D 024-15-0121
    Description / Table of Contents: Contents: Introduction: Globalization and Inequality ; Chapter 1 Global Inequality ; Appendix to Chapter 1 Detailed Evidence on the Recent Changes in Global Inequality ; Chapter 2 Are Countries Becoming More Unequal? ; Chapter 3 Globalization and the Forces behind the Rise in Inequality ; Chapter 4 Toward a Fair Globalization: Prospects and Principles ; Chapter 5 Which Policies for a Fairer Globalization? ; Conclusion Globalizing Equality?
    Type of Medium: Monograph available for loan
    Pages: 210 S. : graph. Darst.
    ISBN: 9780691160528
    Uniform Title: La mondialisation de l'inégalité
    Language: English
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Potsdam : Potsdam Institute for Climate Impact Research
    Call number: PIK R 11-16-89778 ; PIK R 11-16-89778 (2. Ex.) ; PIK R 11-16-89778 (3. Ex.)
    Type of Medium: Monograph available for loan
    Pages: 264 S.
    Edition: 1. edition
    ISBN: 9783942955522
    Uniform Title: Alice, der Klimawandel und die Katze Zeta
    Language: English
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: S 90.0006(212)
    In: Memoir
    Description / Table of Contents: "This memoir brings together results from a multidisciplinary study of the processes that have formed the highest, widest part of the Andean Cordilleran orogenic belt in northern Argentina and Chile. The region features a tectonically erosive forearc, protracted arc magmatism, a high-elevation hinterland plateau and strongly shortened retroarc thrust belt, and a Paleocene-Recent foreland basin system"--
    Type of Medium: Series available for loan
    Pages: V, 490 S. , Ill., graph. Darst. , 29 cm
    ISBN: 9780813712123
    Series Statement: Memoir / Geological Society of America 212
    Classification:
    Geodynamics
    Language: English
    Note: Geodynamic models of Cordilleran orogens : gravitational instability of magmatic arc roots / Heather M. McPherson, Jonathan R. Pratt, Sharon Bywater-Reyes, and Estelle MortimerImaging the Nazca slab and surrounding mantle to 700 km depths beneath the central Andes (18°S to 28°S) / Alissa Scire, C. Berki Biryol, George Zandt, and Susan Beck -- Multiple styles and scales of lithospheric foundering beneath the Puna Plateau, central Andes / Susan L. Beck, George Zandt, Kevin M. Ward, and Alissa Scire -- Along-strike variation in crustal seismicity and modern lithospheric structure of the central Andes forearc / Kathryn Metcalf and Paul Kapp -- Along-strike variation in structural styles and hydrocarbon occurrences, Subandean fold-and-thrust belt and inner foreland, Colombia to Argentina / Michael F. McGroder, Richard O. Lease, and David M. Pearson -- U-Pb zircon geochronology of Neoproterozoic-Paleozoic sandstones and Paleozoic plutonic rocks in the central Andes (21°S-26°S) / Jesse C. Einhorn, George E. Gehrels, Antoine Vernon, and Peter G. DeCelles -- The origin and petrologic evolution of the Ordovician Famatinian-Puna arc / M.N. Ducea, J.E. Otamendi, G.W. Bergantz, D. Jianu, and L. Petrescu -- Foundering-driven lithospheric melting : the source of central Andean mafic lavas on the Puna Plateau (22°S-27°S) / Kendra E. Murray, Mihai N. Ducea, and Lindsay Schoenbohm -- Miocene-Pliocene shortening, extension, and mafic magmatism support small-scale lithospheric foundering in the central Andes, NW Argentina / Lindsay M. Schoenbohm and Barbara Carrapa -- Exhumation of the Precordillera and northern Sierras Pampeanas and along-strike correlation of the Andean orogenic front, northwestern Argentina / Roxana Safipour, Barbara Carrapa, Peter G. DeCelles, and Stuart N. Thomson -- Regional exhumation and kinematic history of the central Andes in response to cyclical orogenic processes / Barbara Carrapa and Peter G. Decelles -- Low-temperature thermochronologic trends across the central Andes, 21°S-28°S / P.W. Reiners, S.N. Thomson, A. Vernon, S.D. Willett, M. Zattin, J. Einhorn, G. Gehrels, J. Quade, D. Pearson, K.E. Murray, and W. Cavazza -- Climate and tectonics along the southern margin of the Puna Plateau, NW Argentina : origin of the late cenozoic Punaschotter conglomerates / Lindsay M. Schoenbohm, Barbara Carrapa, Heather M. McPherson, Jonathan R. Pratt, Sharon Bywater-Reyes, and Estelle Mortimer -- Testing the analytical protocols and calibration of volcanic glass for the reconstruction of hydrogen isotopes in paleoprecipitation / Matthew P. Dettinger and Jay Quade -- The growth of the central Andes, 22°S-26°S / J. Quade, M.P. Dettinger, B. Carrapa, P. DeCelles, K.E. Murray, K.W. Huntington, A. Cartwright. R.R. Canavan, G. Gehrels, and M. Clementz -- Lake formation, characteristics, and evolution in retroarc deposystems : a synthesis of the modern Andean orogen and its associated basins / Andrew Cohen, Michael M. McGlue, Geoffrey S. Ellis, Hiran Zani, Peter W. Swarzenski, Mario L. Assine, and Aguinaldo Silva -- Simulating foreland basin response to mountain belt kinematics and climate change in the Eastern Cordillera and Subandes : an analysis of the Chaco foreland basin in southern Bolivia / Todd M. Engelder and Jon D. Pelletier -- The Miocene Arizaro Basin, central Andean hinterland : response to partial lithosphere removal? / P.G. DeCelles, B. Carrapa, B.K. Horton, J. McNabb, G.E. Gehrels, and J. Boyd -- Hinterland basin formation and gravitational instabilities in the central Andes : constraints from gravity data and geodynamic models / Huilin Wang, Claire A. Currie, and Peter G. DeCelles -- Temporal growth of the Puna Plateau and its bearing on the post-Salta Rift system subsidence of the Andean foreland basin at 25°30°S / Thomas P. Becker, G. Gray, and D. Awwiller -- Cyclical orogenic processes in the Cenozoic central Andes / P.G. DeCelles, G. Zandt, S.L. Beck, C.A. Currie, M.N. Ducea, P. Knapp, G.E. Gehrels, B. Carrapa, J. Quade, and L.M. Schoenbohm..
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: 4/N 16.89579
    Description / Table of Contents: "This volume provides an overview of (1) the physical and chemical foundations of dating methods and (2) the applications of dating methods in the geological sciences, biology, and archaeology, in almost 200 articles from over 200 international authors. It will serve as the most comprehensive treatise on widely accepted dating methods in the earth sciences and related fields."--
    Type of Medium: Monograph available for loan
    Pages: XXV, 978 S. , Ill., graph. Darst., Kt. , 29 cm
    ISBN: 9789400763036 (Gb.) , 9789400763067 (Print + eBook) , 9789400763043 (electr.; eBook)
    Series Statement: Encyclopedia of earth sciences series
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: AWI A11-16-90009
    In: Forschungsbericht / Deutsches Zentrum für Luft- und Raumfahrt ; 2016-01, 2016-01
    Description / Table of Contents: Recent climate model simulations indicated that sulfate (SO4) formed from ship emissions may be one of the major contributors to the negative anthropogenic aerosol radiative forcing. Due to increasingly stringent regulations on the maximum sulfur content of ship fuels this contribution is expected to decrease strongly in the future. Possibly, nitrate (NO3) formation will compensate for part of the reduction, but measurements indicate that it may be crucial to include coarse mode particle interactions with condensable trace gases in order to quantify this effect. However, none of the aerosol (sub)models previously used for such assessments accounted for the coarse mode particle effects. This provided the motivation to extend one of those submodels, namely MADE, in the present work. The new submodel, MADE3, is based on the second generation of MADE, called MADE-in. It includes nine lognormal modes to represent three size ranges with three types of aerosol particles each. The associated increase in complexity w.r.t. to MADE and MADE-in required a complete revision of the code and careful reexamination of the underlying physical assumptions, as only the fine modes had been considered in the gas–particle interactions in the predecessor submodels. The main new features of MADE3 are the ability of coarse mode particles to take up condensing vapors and to coagulate with fine mode particles, and the gas–particle partitioning of chlorine, which is mainly contained in sea spray (SS) particles. In order to test the algorithms used in the new submodel it was run in a box model setup and the results were compared to those obtained in an analogous setup with the much more detailed, particle-resolved aerosol model PartMC-MOSAIC. The comparison was performed for an idealized marine boundary layer test case and showed improved performance of MADE3 over MADE in the representation of coarse mode particles and total aerosol composition. Subsequently, MADE3 was implemented into the atmospheric chemistry general circulation model EMAC. Due to the new mode structure this required extensive adaptations to other submodels, specifically to the one used for cloud and precipitation processing of aerosol particles. EMAC does not track interstitial aerosol particles separately from those immersed in cloud droplets, ice crystals, or precipitation. Hence, a sophisticated scheme was devised and implemented for the assignment of the in-cloud or in-precipitation aerosol to one of four possible modes, instead of just one possible mode in the MADE case. The coupled model, EMAC with MADE3, was thoroughly evaluated by comparison of simulation output to station network measurements of near-surface aerosol component mass concentrations, to airborne measurements of vertical aerosol mass mixing ratio and number concentration profiles, to ground-based and airborne measurements of particle size distributions, and to station network and satellite measurements of aerosol optical depth. Satisfactory agreement with the observations was obtained and it was thus shown that MADE3 is ready for application within EMAC. The results from an identically designed simulation with the predecessor submodel MADE led to the conclusion that a fraction of the secondary aerosol species partitions to the coarse modes in MADE3 and is thus removed more quickly from the atmosphere. Furthermore, a new evaluation method was developed, which allows for comparison of model output to size-resolved electron microscopy measurements of particle composition. Both submodels, MADE3 and MADE, were finally used in EMAC simulations of the effect of ship emissions on the atmospheric aerosol. As in previous studies for year 2000 conditions, SO4 was found to be the dominant species in the fine modes in this context. In contrast to SO4, the major fraction of ship emissions-induced near-surface NO3 was found to partition to the coarse modes in the MADE3 simulations. A similar amount of fine mode NO3 as in the present and former MADE simulations was also formed. Hence, fine mode particle growth due to ship emissions was also similar, and was reduced in idealized simulations of a future low-sulfur fuel scenario. Particle volume concentration decreased by about 1 % due to ship emissions in the MADE3 simulations, but not in the MADE simulations. This finding was independent of the fuel sulfur content. In summary, the inclusion of coarse mode particle interactions and the gas–particle partitioning of chlorine could alter prior conclusions on the climate effect of ship emissions-induced aerosol perturbations, mainly due to the differences in NO3 formation. This climate effect will be re-quantified in a follow-up study by coupling the MADE3 aerosol to a two-moment cloud microphysics scheme. Further planned applications of the new submodel include the quantification of climate effects of aerosol perturbations via their influence on ice clouds as well as simulations with boundary conditions specific to measurement campaigns. Results from the latter may lead to further model improvements and can also provide guidance for the interpretation of measurement results.
    Type of Medium: Dissertations
    Pages: xiv, 170 Seiten , 42 Illustrationen und Diagramme
    Edition: Als Manuskript gedruckt
    Series Statement: Forschungsbericht / DLR, Deutsches Zentrum für Luft- und Raumfahrt 2016-01
    Language: English
    Note: Contents: Abstract. - Kurzfassung. - 1 Introduction. - 1.1 Motivation. - 1.2 Scientific questions. - 1.3 Method. - 2 Background and state of the science. - 2.1 The atmospheric aerosol. - 2.1.1 Relevance. - 2.1.2 Aerosol processes. - 2.1.3 Aerosol properties. - 2.2 The influence of ship emissions. - 2.3 Aerosol modeling. - 2.3.1 Selected results. - 2.3.2 Motivation to expand on previous work. - 2.3.3 The computational approach. - 2.3.4 Existing aerosol microphysics submodels. - 2.3.5 MADE3 as a successor of MADE and MADE-in. - 3 The aerosol submodel MADE3. - 3.1 Aerosol characteristics. - 3.1.1 Modes. - 3.1.2 Species. - 3.1.3 Mathematical representation of aerosol characteristics. - 3.2 Aerosol processes. - 3.2.1 Gas–particle partitioning. - 3.2.2 Condensation of H2SO4 and organic vapors. - 3.2.3 New particle formation. - 3.2.4 Coagulation. - 3.2.5 Renaming. - 3.2.6 Aging of insoluble particles. - 4 Box model tests. - 4.1 Model description: MADE vs. MADE3. - 4.2 Model description: PartMC-MOSAIC. - 4.3 Test case scenario. - 4.4 Results: MADE3 vs. MADE. - 4.4.1 Size distributions. - 4.4.2 Composition. - 4.5 Results: MADE3 vs. PartMC-MOSAIC. - 4.5.1 Size distributions. - 4.5.2 Composition. - 4.6 Summary and conclusions. - 5 MADE3 in the atmospheric chemistry general circulation model EMAC. - 5.1 Basic settings. - 5.2 Emissions. - 5.3 Transport. - 5.4 Gas phase chemistry. - 5.5 Cloud formation. - 5.5.1 Stratiform clouds. - 5.5.2 Convective clouds. - 5.6 Cloud and precipitation processing of the aerosol. - 5.7 Wet deposition. - 5.8 Dry deposition. - 5.9 Sedimentation. - 5.10 Optical properties. - 6 Evaluation of simulated tropospheric aerosol properties. - 6.1 Data comparability. - 6.2 The MADE3 aerosol within EMAC. - 6.2.1 Near-surface mass concentrations. - 6.2.2 Vertical distributions. - 6.2.3 Size distributions. - 6.2.4 Aerosol optical depth. - 6.2.5 Global tropospheric burdens and residence times. - 6.2.6 Summary and conclusions. - 6.3 Comparison to MADE. - 6.4 New features of MADE3. - 7 Effects of oceanic ship emissions on atmospheric aerosol particles. - 7.1 Effects of year 2000 emissions. - 7.1.1 Near-surface concentrations. - 7.1.2 Near-surface size distributions. - 7.1.3 Tropospheric burdens. - 7.2 Effects of an idealized fuel sulfur content reduction. - 7.3 Summary and conclusions. - 8 Summary, conclusions, and outlook. - Appendix. - A.1 Particle evolution in the box model study. - A.2 Gas phase chemical mechanism. - A.3 Liquid phase chemical mechanism. - A.4 Mode assignment of cloud residual aerosol. - A.4.1 Terminology. - A.4.2 Basic assumptions. - A.4.3 Algorithm for residual assignment. - A.5 Year 2000 aerosol in EMAC with MADE3. - A.6 Near-surface mass concentration evaluation. - References. - Acronyms, symbols, and species names. - Acronyms. - Symbols. - Tracers and chemical species. - Danksagung.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: PIK N 071-16-90035
    Description / Table of Contents: "Sustainability is a global imperative and a scientific challenge like no other. This concise guide provides students and practitioners with a strategic framework for linking knowledge with action in the pursuit of sustainable development, and serves as an invaluable companion to more narrowly focused courses dealing with sustainability in particular sectors such as energy, food, water, and housing, or in particular regions of the world. Written by leading experts, Pursuing Sustainability shows how more inclusive and interdisciplinary approaches and systems perspectives can help you achieve your sustainability objectives. It stresses the need for understanding how capital assets are linked to sustainability goals through the complex adaptive dynamics of social-environmental systems, how committed people can use governance processes to alter those dynamics, and how successful interventions can be shaped through collaborations among researchers and practitioners on the ground. The ideal textbook for undergraduate and graduate students and an invaluable resource for anyone working in this fast-growing field, Pursuing Sustainability also features case studies, a glossary, and suggestions for further reading. Provides a strategic framework for linking knowledge with action Draws on the latest cutting-edge science and practices. Serves as the ideal companion text to more narrowly focused courses. Utilizes interdisciplinary approaches and systems perspectives. Illustrates concepts with a core set of case studies used throughout the book. Written by world authorities on sustainability. An online illustration package is available to professors."
    Type of Medium: Monograph available for loan
    Pages: x, 231 Seiten , Illustrationen
    ISBN: 9780691157610
    Language: English
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...