ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 551.9  (18)
  • English  (18)
  • Danish
  • 2020-2022  (18)
Collection
Keywords
Language
  • English  (18)
  • Danish
Years
Year
  • 1
    Publication Date: 2021-07-26
    Description: We present new geochemical and isotopic data for rock samples from two island arc volcanoes, Erromango and Vulcan Seamount, and from a 500 m thick stratigraphic profile of lava flows exposed on the SW flank of Vate Trough back-arc rift of the New Hebrides Island Arc (NHIA). The basalts from the SW rift flank of Vate Trough have ages of ~0.5 Ma but are geochemically similar to those erupting along the active back-arc rift. The weak subduction component in the back-arc basalts implies formation by decompression melting during early rifting and rifting initiation by tectonic processes rather than by lithosphere weakening by arc magma. Melting beneath Vate Trough is probably caused by chemically heterogeneous and hot mantle that flows in from the North Fiji Basin in the east. The melting zone beneath Vate Trough back-arc is separate from that of the arc front, but a weak slab component suggests fluid transport from the slab. Immobile incompatible element ratios in South NHIA lavas overlap with those of the Vate Trough depleted back-arc basalts, suggesting that enriched mantle components are depleted by back-arc melting during mantle flow. The slab component varies from hydrous melts of subducted sediments in the Central NHIA to fluids from altered basalts in the South NHIA. The volcanism of Erromango shows constant compositions for 5 million years, that is, there is no sign for variable depletion of the mantle or for a change of slab components due to collision of the D'Entrecasteaux Ridge as in lava successions further north.
    Keywords: 551.9 ; subduction zone ; back-arc basalt ; sediment subduction
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-23
    Description: Soil water stable isotopes are widely used across disciplines (e.g., hydrology, ecology, soil science, and biogeochemistry). However, the full potential of stables isotopes as a tool for characterizing the origin, flow path, transport processes and residence times of water in different eco-, hydro-, and geological compartments has not yet been exploited. This is mainly due to the large variety of different methods for pore water extraction. While recent work has shown that matric potential affects the equilibrium fractionation, little work has examined how different water retention characteristics might affect the sampled water isotopic composition. Here, we present a simple laboratory experiment with two well-studied standard soils differing in their physico-chemical properties (e.g., clayey loam and silty sand). Samples were sieved, oven-dried and spiked with water of known isotopic composition to full saturation. For investigating the effect of water retention characteristics on the extracted water isotopic composition, we used pressure extractors to sample isotopically labelled soil water along the pF curve. After pressure extraction, we further extracted the soil samples via cryogenic vacuum extraction. The null hypothesis guiding our work was that water held at different tensions shows the same isotopic composition. Our results showed that the sampled soil water differed isotopically from the introduced isotopic label over time and sequentially along the pF curve. Our and previous studies suggest caution in interpreting isotope results of extracted soil water and a need to better characterize processes that govern isotope fractionation with respect to soil water retention characteristics. In the future, knowledge about soil water retention characteristics with respect to soil water isotopic composition could be applied to predict soil water fractionation effects under natural and non-stationary conditions. In this regard, isotope retention characteristics as an analog to water retention characteristics have been proposed as a way forward since matric potential affects the equilibrium fractionation between the bound water and the water vapour.
    Keywords: 551.9 ; pF value ; soil water isotopes ; soil water pool ; δ2H and δ18O analysis
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-26
    Description: Garnet of eclogite (formerly termed garnet clinopyroxenite) hosted in lenses of orogenic garnet peridotite from the Granulitgebirge, NW Bohemian Massif, contains unique inclusions of granitic melt, now either glassy or crystallized. Analysed glasses and re-homogenized inclusions are hydrous, peraluminous, and enriched in highly incompatible elements characteristic of the continental crust such as Cs, Li, B, Pb, Rb, Th, and U. The original melt thus represents a pristine, chemically evolved metasomatic agent, which infiltrated the mantle via deep continental subduction during the Variscan orogeny. The bulk chemical composition of the studied eclogites is similar to that of Fe-rich basalt and the enrichment in LILE and U suggest a subduction-related component. All these geochemical features confirm metasomatism. In comparison with many other garnet+clinopyroxene-bearing lenses in peridotites of the Bohemian Massif, the studied samples from Rubinberg and Klatschmühle are more akin to eclogite than pyroxenites, as reflected in high jadeite content in clinopyroxene, relatively low Mg, Cr, and Ni but relatively high Ti. However, trace elements of both bulk rock and individual mineral phases show also important differences making these samples rather unique. Metasomatism involving a melt requiring a trace element pattern very similar to the composition reported here has been suggested for the source region of rocks of the so-called durbachite suite, that is, ultrapotassic melanosyenites, which are found throughout the high-grade Variscan basement. Moreover, the Th, U, Pb, Nb, Ta, and Ti patterns of these newly studied melt inclusions (MI) strongly resemble those observed for peridotite and its enclosed pyroxenite from the T-7 borehole (Staré, České Středhoři Mountains) in N Bohemia. This suggests that a similar kind of crustal-derived melt also occurred here. This study of granitic MI in eclogites from peridotites has provided the first direct characterization of a preserved metasomatic melt, possibly responsible for the metasomatism of several parts of the mantle in the Variscides.
    Keywords: 551.9 ; clinopyroxenite ; eclogite ; melt inclusions ; metasomatism ; orogenic peridotite
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-27
    Description: Three synthetic reference glasses were prepared by directly fusing and stirring 3.8 kg of high-purity oxide powders to provide reference materials for microanalytical work. These glasses have andesitic major compositions and are doped with fifty-four trace elements in nearly identical abundance (500, 50, 5 µg g−1) using oxide powders or element solutions, and are named ARM-1, 2 and 3, respectively. We further document that sector-field (SF) ICP-MS (Element 2 or Element XR) is capable of sweeping seventy-seven isotopes (from 7Li to 238U, a total of sixty-eight elements) in 1 s and, thus, is able to quantify up to sixty-eight elements by laser sampling. Micro- and bulk analyses indicate that the glasses are homogeneous with respect to major and trace elements. This paper provides preliminary data for the ARM glasses using a variety of analytical techniques (EPMA, XRF, ICP-OES, ICP-MS, LA-Q-ICP-MS and LA-SF-ICP-MS) performed in ten laboratories. Discrepancies in the data of V, Cr, Ni and Tl exist, mainly caused by analytical limitations. Preliminary reference and information values for fifty-six elements were calculated with uncertainties [2 relative standard error (RSE)] estimated in the range of 1–20%.
    Keywords: 551.9 ; glass reference materials ; microanalysis ; sector-field ICP-MS ; LA-ICP-MS ; multiple-element quantification
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-27
    Description: Basalts are ubiquitous in volcanic systems on several planetary bodies, including the Earth, Mars, Venus, and Jupiter's moon Io, and are commonly associated with sulfur dioxide (SO2) degassing. We present the results of an experimental study of reactions between SO2 and basaltic glasses. We examined Fe-free basalt, and Fe-bearing tholeiitic and alkali basalts with a range of Fe3+/Fetotal (0.05 to 0.79) that encompass the oxygen fugacities proposed for most terrestrial planetary bodies. Tholeiitic and alkali basalts were exposed to SO2 at 600, 700, and 800 °C for 1 hr and 24 hr. Surface coatings formed on the reacted basalts; these contain CaSO4, MgSO4, Na2SO4, Na2Ca(SO4)2, Fe2O3, Fe3O4, Fe-Ti-(Al)-oxides, and TiO2. Additionally, the SO2-basalt reaction drives nucleation of crystalline phases in the substrate to form pyroxenes and possible Fe-oxides. A silica-rich layer forms between the substrate and sulfate coatings. More oxidized basalts may readily react with SO2 to form coatings dominated by large Ca-sulfate and oxide grains. On less oxidized basalts (NNO−1.5 to NNO−5), reactions with SO2 will form thin, fine-grained aggregates of sulfates; such materials are less readily detected by spectroscopy and spectrometry techniques. In contrast, in very reduced basalts (lower than NNO−5), typical of the Moon and Mercury, SO2 is typically a negligible component in the magmatic gas, and sulfides are more likely.
    Keywords: 552.26 ; 551.9 ; gas-solid reaction ; sulfur dioxide ; planetary crust ; sulfate ; volcanology ; geochemistry
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-23
    Description: The in situ measurement of Sr isotopes in carbonates by MC-ICP-MS is limited by the availability of suitable microanalytical reference materials (RMs), which match the samples of interest. Whereas several well-characterised carbonate reference materials for Sr mass fractions 〉 1000 µg g−1 are available, there is a lack of well-characterised carbonate microanalytical RMs with lower Sr mass fractions. Here, we present a new synthetic carbonate nanopowder RM with a Sr mass fraction of ca. 500 µg g−1 suitable for microanalytical Sr isotope research (‘NanoSr’). NanoSr was analysed by both solution-based and in situ techniques. Element mass fractions were determined using EPMA (Ca mass fraction), as well as laser ablation and solution ICP-MS in different laboratories. The 87Sr/86Sr ratio was determined by well-established bulk methods for Sr isotope measurements and is 0.70756 ± 0.00003 (2s). The Sr isotope microhomogeneity of the material was determined by LA-MC-ICP-MS, which resulted in 87Sr/86Sr ratios of 0.70753 ± 0.00007 (2s) and 0.70757 ± 0.00006 (2s), respectively, in agreement with the solution data within uncertainties. Thus, this new reference material is well suited to monitor and correct microanalytical Sr isotope measurements of low-Sr, low-REE carbonate samples. NanoSr is available from the corresponding author.
    Keywords: 551.9 ; strontium isotopes ; laser ablation ; reference material ; calcium carbonate ; nanopowder ; MC-ICP-MS
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-07-21
    Description: The continuous improvement of analytical procedures using multi-collector technologies in ICP-mass spectrometry has led to an increased demand for isotope standards with improved homogeneity and reduced measurement uncertainty. For magnesium, this has led to a variety of available standards with different quality levels ranging from artefact standards to isotope reference materials certified for absolute isotope ratios. This required an intercalibration of all standards and reference materials, which we present in this interlaboratory comparison study. The materials Cambridge1, DSM3, ERM-AE143, ERM-AE144, ERM-AE145, IRMM-009 and NIST SRM 980 were cross-calibrated with expanded measurement uncertainties (95% confidence level) of less than 0.030‰ for the δ25/24Mg values and less than 0.037‰ for the δ26/24Mg values. Thus, comparability of all magnesium isotope delta (δ) measurements based on these standards and reference materials is established. Further, ERM-AE143 anchors all magnesium δ-scales to absolute isotope ratios and therefore establishes SI traceability, here traceability to the SI base unit mole. This applies especially to the DSM3 scale, which is proposed to be maintained. With ERM-AE144 and ERM-AE145, which are product and educt of a sublimation–condensation process, for the first time a set of isotope reference materials is available with a published value for the apparent triple isotope fractionation exponent θapp, the fractionation relationship ln α(25/24Mg)/ln α(26/24Mg).
    Keywords: 551.9 ; delta scale ; traceability ; scale anchor ; absolute isotope ratio ; comparability ; triple isotope fractionation
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-27
    Description: In the Antarctic ozone hole, ozone mixing ratios have been decreasing to extremely low values of 0.01–0.1 ppm in nearly all spring seasons since the late 1980s, corresponding to 95–99% local chemical loss. In contrast, Arctic ozone loss has been much more limited and mixing ratios have never before fallen below 0.5 ppm. In Arctic spring 2020, however, ozonesonde measurements in the most depleted parts of the polar vortex show a highly depleted layer, with ozone loss averaged over sondes peaking at 93% at 18 km. Typical minimum mixing ratios of 0.2 ppm were observed, with individual profiles showing values as low as 0.13 ppm (96% loss). The reason for the unprecedented chemical loss was an unusually strong, long-lasting, and cold polar vortex, showing that for individual winters the effect of the slow decline of ozone-depleting substances on ozone depletion may be counteracted by low temperatures.
    Keywords: 551.9 ; ozone ; stratosphere ; ozone loss ; Arctic ; ozone hole ; temperature
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-27
    Description: Micron-sized HNO3-containing particles in polar stratospheric clouds are known to denitrify the polar winter stratosphere and support chemical ozone loss. We show that populations of nitric acid trihydrate (NAT) particles with volume-equivalent median radii of 3–7 μm can be detected vortex-wide by means of infrared limb sounding. Key for detection are the applied optical characteristics of highly aspherical particles consisting of the β-NAT phase. Spectroscopic signatures and ambient conditions of detected populations show that these particles play a key role in denitrification of the Arctic winter stratosphere. Complementary gas-phase HNO3 observations indicate collocated highly efficient HNO3 sequestration within days and are consistent with measured spectral signals of populations of large NAT particles. High amounts of condensed gas-phase equivalent HNO3 exceeding 10 ppbv and long persistence of detected populations, despite expected gravitational settling, imply that our understanding of the particles is incomplete.
    Keywords: 551.9 ; polar winter ; stratosphere ; denitrification ; nitric acid trihydrate ; infrared limb sounding
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-09-27
    Description: The Global Carbon Budget 2018 (GCB2018) estimated by the atmospheric CO 2 growth rate, fossil fuel emissions, and modeled (bottom-up) land and ocean fluxes cannot be fully closed, leading to a “budget imbalance,” highlighting uncertainties in GCB components. However, no systematic analysis has been performed on which regions or processes contribute to this term. To obtain deeper insight on the sources of uncertainty in global and regional carbon budgets, we analyzed differences in Net Biome Productivity (NBP) for all possible combinations of bottom-up and top-down data sets in GCB2018: (i) 16 dynamic global vegetation models (DGVMs), and (ii) 5 atmospheric inversions that match the atmospheric CO 2 growth rate. We find that the global mismatch between the two ensembles matches well the GCB2018 budget imbalance, with Brazil, Southeast Asia, and Oceania as the largest contributors. Differences between DGVMs dominate global mismatches, while at regional scale differences between inversions contribute the most to uncertainty. At both global and regional scales, disagreement on NBP interannual variability between the two approaches explains a large fraction of differences. We attribute this mismatch to distinct responses to El Niño–Southern Oscillation variability between DGVMs and inversions and to uncertainties in land use change emissions, especially in South America and Southeast Asia. We identify key needs to reduce uncertainty in carbon budgets: reducing uncertainty in atmospheric inversions (e.g., through more observations in the tropics) and in land use change fluxes, including more land use processes and evaluating land use transitions (e.g., using high-resolution remote-sensing), and, finally, improving tropical hydroecological processes and fire representation within DGVMs.
    Keywords: 551.9 ; atmospheric inversions ; global carbon budget ; dynamic global vegetation models ; carbon cycle
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...