ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 550 - Earth sciences  (4)
  • English  (4)
  • Danish
  • 2000-2004  (4)
  • 2003  (4)
Collection
Language
  • English  (4)
  • Danish
Years
  • 2000-2004  (4)
Year
  • 1
    Publication Date: 2020-02-12
    Description: Late Miocene to Quaternary volcanic rocks from the frontal arc to the back-arc region of the Central Volcanic Zone in the Andes show a wide range of δ11B values (+4 to −7 ‰) and boron concentrations (6 to 60 ppm). Positive δ11B values of samples from the volcanic front indicate involvement of a 11B-enriched slab component, most likely derived from altered oceanic crust, despite the thick Andean continental lithosphere, and rule out a pure crust-mantle origin for these lavas. The δ11B values and boron concentrations in the lavas decrease with increasing depth of the Wadati-Benioff Zone. This across-arc variation in δ11B values and decreasing B/Nb ratios from the arc to the back-arc samples are attributed to the combined effects of boron-isotope fractionation during progressive dehydration in the slab and a steady decrease in slab-fluid flux toward the back arc, coupled with a relatively constant degree of crustal contamination as indicated by similar Sr, Nd and Pb isotope ratios in all samples. Three-component mixing calculations for slab-derived fluid, the mantle wedge and the continental crust based on B, Sr and Nd isotope data indicate that the slab-fluid component dominates the boron composition of the fertile mantle and that the primary arc magmas were contaminated by an average addition of 15 to 30% crustal material. Modeling of fluid-mineral boron-isotope fractionation as a function of temperature shows that dehydration reactions liberate continuously changing fluid compositions from the slab during progressive subduction. A combination of a boron-isotope fractionation model and a temperature model for the Central Andean subduction zone fits the across-arc variation in δ11B and we conclude that the boron-isotope composition of arc volcanic rocks, especially in island arcs, is dominated by changing δ11B-composition of boron-rich slab-fluids during progressive dehydration. Owing to the decrease in slab-derived fluid flux crustal contamination becomes more important toward the back-arc. Because of the boron-isotope fractionation effect, across-arc variations in δ11B need not necessarily reflect different mixing proportions between boron derived from the slab-fluid and the mantle wedge.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: Two passive seismic experiments have been carried out across the Trans European Suture Zone (TESZ) from northern Germany to southern Sweden (TOR) and across the Proterozoic-Archaean suture in Finland (SVEKALAPKO) to improve our understanding of the processes involved in the creation of the European continent. Teleseismic earthquakes recorded by the studies of the crust-mantle, and upper mantle seismic discontinuities with the receiver function method. Along the TOR network the depth to the Moho increases from 30 km at the southern edge of the profile to 40 km at the Elbe Line. Between the Elbe Line and TESZ the Moho branches off and whereas the deeper branch continues at 40 km depth to the TESZ a second branch appears at 30.35 km depth. The upper branch descends north of the TESZ to below 55 km under the northern end of the TOR profile. The crustal thickening north of the TESZ is accompanied by an increase in average Vp/Vs values, appearance of intracrustal conversion zones and north dipping features which we interpret as remnants of the subduction and subsequent collision between Avalonia and Baltica. In southern Finland beneath the SVEKALAPKO network the Moho starts in the south at the depth of 40-45 km, plunges to about 65 km depth south of the Archaean-Proterozoic suture. This deepening of the Moho is coincident with a north dipping intracrustal structure apparently related to the subduction and collision and of the Proterozoic and Archaean provinces in Proterozoic. North of the line of the suture the Moho rises smoothly to 45-50 km depth in the Archaean province. Along the TOR profile, 410 and 660 discontinuities were hard to detect. However, manyfold stacking of receiver functions revealed that the conversions from the two discontinuities arrive more or less accordingto IASP91 predicted time. Across the SVEKALAPKO network 410 and 660 discontinuities arrive markedly earlier than IASP91 theoretical arrival times. In particular north of the Archaean-Proterozoic suture in Finland the 410 and 660 km conversions arrive about 2s earlier, indicating about 5 per cent higher average upper mantle velocities and lower temperatures than what IASP91 global model predicts. Test
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: The GLATIS project (Greenland Lithosphere Analysed Teleseismically on the Ice Sheet) with collaborators has operated a total of 16 temporary broadband seismographs for periods from 3 months to 2 years distributed over much of Greenland from late 1999 to the present. The very first results are presented in this paper, where receiver-function analysis has been used to map the depth to Moho in a large region where crustal thicknesses were previously completely unknown. The results suggest that the Proterozoic part of central Greenland consists of two distinct blocks with different depths to Moho. North of the Archean core in southern Greenland is a zone of very thick Proterozoic crust with an average depth to Moho close to 48 km. Further to the north the Proterozoic crust thins to 37–42 km. We suggest that the boundary between thick and thin crust forms the boundary between the geologically defined Nagssugtoqidian and Rinkian mobile belts, which thus can be viewed as two blocks, based on the large difference in depth to Moho (over 6 km). Depth to Moho on the Archean crust is around 40 km. Four of the stations are placed in the interior of Greenland on the ice sheet, where we find the data quality excellent, but receiver-function analyses are complicated by strong converted phases generated at the base of the ice sheet, which in some places is more than 3 km thick.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...