ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • BioMed Central
Collection
Language
Years
  • 1
    Publication Date: 2024-02-07
    Description: Background Edema is commonly seen after surgical fixation of ankle fractures. Rest, ice, compression, and elevation (RICE) is an established combination to prevent swelling but hardly able to stimulate lymphatic resorption. Recently, an epicutaneously applied negative pressure suction apparatus (LymphaTouch®) has been introduced to stimulate lymphatic flow. While postoperative recovery, soft tissue, and osseous healing as well as functional outcome are probably linked to the amount of postoperative swelling, estimates on this relative to prevention (RICE) or prevention + stimulated resorption (RICE + ) of fluid are scarce. Methods and analysis This is a single-center, evaluator-blinded randomized pilot trial to investigate postoperative swelling in adults requiring surgical fixation of a closed unilateral ankle fracture. A total of 50 patients will be recruited and randomly assigned to RICE or RICE + prior to surgery. All patients will undergo evaluator-blinded measurements of the ankle volume the day before surgery and subsequently from the evening of the 2nd postoperative day every 24 h until discharge. RICE will be initiated right after surgery and continued until discharge from the hospital in all patients. Additional application of negative pressure therapy (RICE + ) will be initiated on the morning of the 2nd postoperative day and repeated every 24 h until the time of discharge from the hospital. Outcome measures are (i) the relative amount and the time course of the postoperative swelling, (ii) the demand for analgesic therapy (type and amount) together with the perception of pain, (iii) the rate of complications, and (iv) mobility of the ankle joint and the recovery of walking abilities during a 12-weeks follow-up period. Serum and urine samples taken prior to sugery and during postoperative recovery will allow to evaluate the ratio of naturally occurring stable calcium isotopes (δ 44/42 Ca) as a marker of skeletal calcium accrual.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Supratidal sands are vitally important for coastal defence in the German Wadden Sea. They are less affected by human activities than other areas as they are located far off the mainland shore, touristical and commercial activities are generally prohibited. Therefore, supratidal sands are of high ecological interest. Nevertheless, the faunal inventory and distribution pattern of microorganisms on these sands were studied very little. The composition of living and dead foraminiferal assemblages was therefore investigated along a transect from the supratidal sand Japsand up to Hallig Hooge. Both assemblages were dominated by calcareous foraminifera of which Ammonia batava was the most abundant species. Elphidium selseyense and Elphidium williamsoni were also common in the living assemblage, but Elphidium williamsoni was comparably rare in the dead assemblage. The high proportions of Ammonia batava and Elphidium selseyense in the living assemblage arose from the reproduction season that differed between species. While Ammonia batava and Elphidium selseyense just finished their reproductive cycles, Elphidium williamsoni was just about to start. This was also confirmed by the size distribution patterns of the different species. The dead assemblage revealed 20 species that were not found in the living assemblage of which some were reworked from older sediments (e.g., Bucella frigida) and some were transported via tidal currents from other areas in the North Sea (e.g., Jadammina macrescens). The living foraminiferal faunas depicted close linkages between the open North Sea and the mainland. Key species revealing exchange between distant populations were Haynesina germanica, Ammonia batava and different Elphidium species. All these species share an opportunistic behaviour and are able to inhabit a variety of different environments; hence, they well may cope with changing environmental conditions. The benthic foraminiferal association from Japsand revealed that transport mechanisms via tides and currents play a major ecological role and strongly influence the faunal composition at this site.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Marine sponges (phylum Porifera) form symbioses with diverse microbial communities that can be transmitted between generations through their developmental stages. Here, we integrate embryology and microbiology to review how symbiotic microorganisms are transmitted in this early-diverging lineage. We describe that vertical transmission is widespread but not universal, that microbes are vertically transmitted during a select developmental window, and that properties of the developmental microbiome depends on whether a species is a high or low microbial abundance sponge. Reproduction, development, and symbiosis are thus deeply rooted, but why these partnerships form remains the central and elusive tenet of these developmental symbioses.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Military field exercises are characterised by high volumes of exercise and prolonged periods of load carriage. Exercise can decrease circulating serum calcium and increase parathyroid hormone and bone resorption. These disturbances to calcium and bone metabolism can be attenuated with calcium supplementation immediately before exercise. This randomised crossover trial will investigate the effect of calcium supplementation on calcium and bone metabolism, and bone mineral balance, during load carriage exercise in women. Methods Thirty women (eumenorrheic or using the combined oral contraceptive pill, intrauterine system, or intrauterine device) will complete two experimental testing sessions either with, or without, a calcium supplement (1000 mg). Each experimental testing session will involve one 120 min session of load carriage exercise carrying 20 kg. Venous blood samples will be taken and analysed for biochemical markers of bone resorption and formation, calcium metabolism, and endocrine function. Urine will be collected pre- and post-load carriage to measure calcium isotopes for the calculation of bone calcium balance. Discussion The results from this study will help identify whether supplementing women with calcium during load carriage is protective of bone and calcium homeostasis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Background: Microbiome manipulation could enhance heat tolerance and help corals survive the pressures of ocean warming. We conducted coral microbiome transplantation (CMT) experiments using the reef-building corals, Pocillopora and Porites, and investigated whether this technique can benefit coral heat resistance while modifying the bacterial microbiome. Initially, heat-tolerant donors were identified in the wild. We then used fresh homogenates made from coral donor tissues to inoculate conspecific, heat-susceptible recipients and documented their bleaching responses and microbiomes by 16S rRNA gene metabarcoding. Results: Recipients of both coral species bleached at lower rates compared to the control group when exposed to short-term heat stress (34 °C). One hundred twelve (Pocillopora sp.) and sixteen (Porites sp.) donor-specific bacterial species were identified in the microbiomes of recipients indicating transmission of bacteria. The amplicon sequence variants of the majority of these transmitted bacteria belonged to known, putatively symbiotic bacterial taxa of corals and were linked to the observed beneficial effect on the coral stress response. Microbiome dynamics in our experiments support the notion that microbiome community evenness and dominance of one or few bacterial species, rather than host-species identity, were drivers for microbiome stability in a holobiont context. Conclusions: Our results suggest that coral recipients likely favor the uptake of putative bacterial symbionts, recommending to include these taxonomic groups in future coral probiotics screening efforts. Our study suggests a scenario where these donor-specific bacterial symbionts might have been more efficient in supporting the recipients to resist heat stress compared to the native symbionts present in the control group. These findings urgently call for further experimental investigation of the mechanisms of action underlying the beneficial effect of CMT and for field-based long-term studies testing the persistence of the effect. [MediaObject not available: see fulltext.].
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Background: Biomineralization by molluscs involves regulated deposition of calcium carbonate crystals within a protein framework to produce complex biocomposite structures. Effective biomineralization is a key trait for aquaculture, and animal resilience under future climate change. While many enzymes and structural proteins have been identified from the shell and in mantle tissue, understanding biomieralization is impeded by a lack of fundamental knowledge of the genes and pathways involved. In adult bivalves, shells are secreted by the mantle tissue during growth, maintenance and repair, with the repair process, in particular, amenable to experimental dissection at the transcriptomic level in individual animals. Results: Gene expression dynamics were explored in the adult blue mussel, Mytilus edulis, during experimentally induced shell repair, using the two valves of each animal as a matched treatment-control pair. Gene expression was assessed using high-resolution RNA-Seq against a de novo assembled database of functionally annotated transcripts. A large number of differentially expressed transcripts were identified in the repair process. Analysis focused on genes encoding proteins and domains identified in shell biology, using a new database of proteins and domains previously implicated in biomineralization in mussels and other molluscs. The genes implicated in repair included many otherwise novel transcripts that encoded proteins with domains found in other shell matrix proteins, as well as genes previously associated with primary shell formation in larvae. Genes with roles in intracellular signalling and maintenance of membrane resting potential were among the loci implicated in the repair process. While haemocytes have been proposed to be actively involved in repair, no evidence was found for this in the M. edulis data. Conclusions: The shell repair experimental model and a newly developed shell protein domain database efficiently identified transcripts involved in M. edulis shell production. In particular, the matched pair analysis allowed factoring out of much of the inherent high level of variability between individual mussels. This snapshot of the damage repair process identified a large number of genes putatively involved in biomineralization from initial signalling, through calcium mobilization to shell construction, providing many novel transcripts for future in-depth functional analyses
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Background: Animals are expected to adjust their social behaviour to cope with challenges in their environment. Therefore, for fish populations in temperate regions with seasonal and daily environmental oscillations, characteristic rhythms of social relationships should be pronounced. To date, most research concerning fish social networks and biorhythms has occurred in artificial laboratory environments or over confined temporal scales of days to weeks. Little is known about the social networks of wild, freely roaming fish, including how seasonal and diurnal rhythms modulate social networks over the course of a full year. The advent of high-resolution acoustic telemetry enables us to quantify detailed social interactions in the wild over time-scales sufficient to examine seasonal rhythms at whole-ecosystems scales. Our objective was to explore the rhythms of social interactions in a social fish population at various time-scales over one full year in the wild by examining high-resolution snapshots of a dynamic social network. Methods: To that end, we tracked the behaviour of 36 adult common carp, Cyprinus carpio, in a 25 ha lake and constructed temporal social networks among individuals across various time-scales, where social interactions were defined by proximity. We compared the network structure to a temporally shuffled null model to examine the importance of social attraction, and checked for persistent characteristic groups over time. Results: The clustering within the carp social network tended to be more pronounced during daytime than nighttime throughout the year. Social attraction, particularly during daytime, was a key driver for interactions. Shoaling behavior substantially increased during daytime in the wintertime, whereas in summer carp interacted less frequently, but the interaction duration increased. Therefore, smaller, characteristic groups were more common in the summer months and during nighttime, where the social memory of carp lasted up to two weeks. Conclusions: We conclude that social relationships of carp change diurnally and seasonally. These patterns were likely driven by predator avoidance, seasonal shifts in lake temperature, visibility, forage availability and the presence of anoxic zones. The techniques we employed can be applied generally to high-resolution biotelemetry data to reveal social structures across other fish species at ecologically realistic scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-03-09
    Description: Background: Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate [1] those genomic signatures that characterize a habitat-specific ecotype and [2] the source of genomic variation within this ecotype. Results: We found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~ 90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype. Conclusion We conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Background: Predators play a critical role in regulating larval mosquito prey populations in aquatic habitats. Understanding predator-prey responses to climate change-induced environmental perturbations may foster optimal efficacy in vector reduction. However, organisms may differentially respond to heterogeneous thermal environments, potentially destabilizing predator-prey trophic systems. Methods: Here, we explored the critical thermal limits of activity (CTLs; critical thermal-maxima [CTmax] and minima [CTmin]) of key predator-prey species. We concurrently examined CTL asynchrony of two notonectid predators (Anisops sardea and Enithares chinai) and one copepod predator (Lovenula falcifera) as well as larvae of three vector mosquito species, Aedes aegypti, Anopheles quadriannulatus and Culex pipiens, across instar stages (early, 1st; intermediate, 2nd/3rd; late, 4th). Results: Overall, predators and prey differed significantly in CTmax and CTmin. Predators generally had lower CTLs than mosquito prey, dependent on prey instar stage and species, with first instars having the lowest CTmax (lowest warm tolerance), but also the lowest CTmin (highest cold tolerance). For predators, L. falcifera exhibited the narrowest CTLs overall, with E. chinai having the widest and A. sardea intermediate CTLs, respectively. Among prey species, the global invader Ae. aegypti consistently exhibited the highest CTmax, whilst differences among CTmin were inconsistent among prey species according to instar stage. Conclusion: These results point to significant predator-prey mismatches under environmental change, potentially adversely affecting natural mosquito biocontrol given projected shifts in temperature fluctuations in the study region. The overall narrower thermal breadth of native predators relative to larval mosquito prey may reduce natural biotic resistance to pests and harmful mosquito species, with implications for population success and potentially vector capacity under global change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-12-22
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Venkataraman, Y. R., White, S. J., & Roberts, S. B. Differential DNA methylation in Pacific oyster reproductive tissue in response to ocean acidification. BMC Genomics, 23(1), (2022): 556, https://doi.org/10.1186/s12864-022-08781-5.
    Description: Background There is a need to investigate mechanisms of phenotypic plasticity in marine invertebrates as negative effects of climate change, like ocean acidification, are experienced by coastal ecosystems. Environmentally-induced changes to the methylome may regulate gene expression, but methylome responses can be species- and tissue-specific. Tissue-specificity has implications for gonad tissue, as gonad-specific methylation patterns may be inherited by offspring. We used the Pacific oyster (Crassostrea gigas) — a model for understanding pH impacts on bivalve molecular physiology due to its genomic resources and importance in global aquaculture— to assess how low pH could impact the gonad methylome. Oysters were exposed to either low pH (7.31 ± 0.02) or ambient pH (7.82 ± 0.02) conditions for 7 weeks. Whole genome bisulfite sequencing was used to identify methylated regions in female oyster gonad samples. C- 〉 T single nucleotide polymorphisms were identified and removed to ensure accurate methylation characterization. Results Analysis of gonad methylomes revealed a total of 1284 differentially methylated loci (DML) found primarily in genes, with several genes containing multiple DML. Gene ontologies for genes containing DML were involved in development and stress response, suggesting methylation may promote gonad growth homeostasis in low pH conditions. Additionally, several of these genes were associated with cytoskeletal structure regulation, metabolism, and protein ubiquitination — commonly-observed responses to ocean acidification. Comparison of these DML with other Crassostrea spp. exposed to ocean acidification demonstrates that similar pathways, but not identical genes, are impacted by methylation. Conclusions Our work suggests DNA methylation may have a regulatory role in gonad and larval development, which would shape adult and offspring responses to low pH stress. Combined with existing molluscan methylome research, our work further supports the need for tissue- and species-specific studies to understand the potential regulatory role of DNA methylation.
    Description: This work was funded by National Science Foundation award 1634167 to SBR. The Hall Conservation Genetics Research Fund (YRV) supported sequencing for this project.
    Keywords: Pacific oyster ; Bivalve ; Ocean acidification ; DNA methylation ; Gonad development
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...