ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • BioMed Central
  • 2010-2014  (39,661)
  • 2005-2009  (14,038)
Collection
Years
Year
  • 1
    Publication Date: 2022-05-26
    Description: This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0 which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in BMC Evolutionary Biology 8 (2008): 14, doi:10.1186/1471-2148-8-14.
    Description: Our understanding of the eukaryotic tree of life and the tremendous diversity of microbial eukaryotes is in flux as additional genes and diverse taxa are sampled for molecular analyses. Despite instability in many analyses, there is an increasing trend to classify eukaryotic diversity into six major supergroups: the 'Amoebozoa', 'Chromalveolata', 'Excavata', 'Opisthokonta', 'Plantae', and 'Rhizaria'. Previous molecular analyses have often suffered from either a broad taxon sampling using only single-gene data or have used multigene data with a limited sample of taxa. This study has two major aims: (1) to place taxa represented by 72 sequences, 61 of which have not been characterized previously, onto a well-sampled multigene genealogy, and (2) to evaluate the support for the six putative supergroups using two taxon-rich data sets and a variety of phylogenetic approaches.
    Description: This project was made possible by a collaborative grant from the National Science Foundation Assembling the Tree of Life program (EF 04-31117) that was awarded to L.A.K., D.B., J.L., D.J.P., and to the ATCC
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Biology 7 (2009): 72, doi:10.1186/1741-7007-7-72.
    Description: Recent advances in sequencing strategies make possible unprecedented depth and scale of sampling for molecular detection of microbial diversity. Two major paradigm-shifting discoveries include the detection of bacterial diversity that is one to two orders of magnitude greater than previous estimates, and the discovery of an exciting 'rare biosphere' of molecular signatures ('species') of poorly understood ecological significance. We applied a high-throughput parallel tag sequencing (454 sequencing) protocol adopted for eukaryotes to investigate protistan community complexity in two contrasting anoxic marine ecosystems (Framvaren Fjord, Norway; Cariaco deep-sea basin, Venezuela). Both sampling sites have previously been scrutinized for protistan diversity by traditional clone library construction and Sanger sequencing. By comparing these clone library data with 454 amplicon library data, we assess the efficiency of high-throughput tag sequencing strategies. We here present a novel, highly conservative bioinformatic analysis pipeline for the processing of large tag sequence data sets.The analyses of ca. 250,000 sequence reads revealed that the number of detected Operational Taxonomic Units (OTUs) far exceeded previous richness estimates from the same sites based on clone libraries and Sanger sequencing. More than 90% of this diversity was represented by OTUs with less than 10 sequence tags. We detected a substantial number of taxonomic groups like Apusozoa, Chrysomerophytes, Centroheliozoa, Eustigmatophytes, hyphochytriomycetes, Ichthyosporea, Oikomonads, Phaeothamniophytes, and rhodophytes which remained undetected by previous clone library-based diversity surveys of the sampling sites. The most important innovations in our newly developed bioinformatics pipeline employ (i) BLASTN with query parameters adjusted for highly variable domains and a complete database of public ribosomal RNA (rRNA) gene sequences for taxonomic assignments of tags; (ii) a clustering of tags at k differences (Levenshtein distance) with a newly developed algorithm enabling very fast OTU clustering for large tag sequence data sets; and (iii) a novel parsing procedure to combine the data from individual analyses. Our data highlight the magnitude of the under-sampled 'protistan gap' in the eukaryotic tree of life. This study illustrates that our current understanding of the ecological complexity of protist communities, and of the global species richness and genome diversity of protists, is severely limited. Even though 454 pyrosequencing is not a panacea, it allows for more comprehensive insights into the diversity of protistan communities, and combined with appropriate statistical tools, enables improved ecological interpretations of the data and projections of global diversity.
    Description: The International Census of Marine Microbes and the W.M. Keck Foundation award to the Marine Biological Laboratory at Woods Hole (MA) supported the pyrosequencing part of this study. Further financial support came from a grant from the Deutsche Forschungsgemeinschaft to TS (STO414/3-1). Support for the unpublished work on Cariaco Basin protists came from NSF MCB-0348407 to VE (collaborative project with S Epstein at Northeastern University, Boston, MA, USA). Financial support to AC was provided by NSF MCB-0348045. Financial support to RC was provided by the ANR-Biodiversité project Aquaparadox.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Microbiology 9 (2009): 16, doi:10.1186/1471-2180-9-16.
    Description: The Euglenozoa is a large group of eukaryotic flagellates with diverse modes of nutrition. The group consists of three main subclades – euglenids, kinetoplastids and diplonemids – that have been confirmed with both molecular phylogenetic analyses and a combination of shared ultrastructural characteristics. Several poorly understood lineages of putative euglenozoans live in anoxic environments, such as Calkinsia aureus, and have yet to be characterized at the molecular and ultrastructural levels. Improved understanding of these lineages is expected to shed considerable light onto the ultrastructure of prokaryote-eukaryote symbioses and the associated cellular innovations found within the Euglenozoa and beyond. We collected Calkinsia aureus from core samples taken from the low-oxygen seafloor of the Santa Barbara Basin (580 – 592 m depth), California. These biflagellates were distinctively orange in color and covered with a dense array of elongated epibiotic bacteria. Serial TEM sections through individually prepared cells demonstrated that C. aureus shares derived ultrastructural features with other members of the Euglenozoa (e.g. the same paraxonemal rods, microtubular root system and extrusomes). However, C. aureus also possessed several novel ultrastructural systems, such as modified mitochondria (i.e. hydrogenosome-like), an "extrusomal pocket", a highly organized extracellular matrix beneath epibiotic bacteria and a complex flagellar transition zone. Molecular phylogenies inferred from SSU rDNA sequences demonstrated that C. aureus grouped strongly within the Euglenozoa and with several environmental sequences taken from low-oxygen sediments in various locations around the world. Calkinsia aureus possesses all of the synapomorphies for the Euglenozoa, but lacks traits that are specific to any of the three previously recognized euglenozoan subgroups. Molecular phylogenetic analyses of C. aureus demonstrate that this lineage is a member of a novel euglenozoan subclade consisting of uncharacterized cells living in low-oxygen environments. Our ultrastructural description of C. aureus establishes the cellular identity of a fourth group of euglenozoans, referred to as the "Symbiontida".
    Description: This work was supported by grants to BSL from the Tula Foundation (Centre for Microbial Diversity and Evolution), the National Science and Engineering Research Council of Canada (NSERC 283091-04) and the Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity. Funding for the collection of sediments and participation of VPE and JMB in this research was provided by the US National Science Foundation grant MCB-060484.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Genomics 11 (2010): 643, doi:10.1186/1471-2164-11-643.
    Description: Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates. There are orthologous relationships for some CYP1 s and some CYP3 s between zebrafish and human. In contrast, zebrafish have 47 CYP2 genes, compared to 16 in human, with only two (CYP2R1 and CYP2U1) recognized as orthologous based on sequence. Analysis of shared synteny identified CYP2 gene clusters evolutionarily related to mammalian CYP2 s, as well as unique clusters. Transcript profiling by microarray and quantitative PCR revealed that the majority of zebrafish CYP genes are expressed in embryos, with waves of expression of different sets of genes over the course of development. Transcripts of some CYP occur also in oocytes. The results provide a foundation for the use of zebrafish as a model in toxicological, pharmacological and chemical disease research.
    Description: This work was supported by NIH grants R01ES015912 and P42ES007381 (Superfund Basic Research Program at Boston University) (to JJS). MEJ was a Guest Investigator at the Woods Hole Oceanographic Institution (WHOI) and was supported by grants from the Swedish research council Formas and Carl Trygger's foundation. AK was a Post-doctoral Fellow at WHOI, and was supported by a fellowship from the Japanese Society for Promotion of Science (JSPS). JZ and TP were Guest Students at the WHOI and were supported by a CAPES Ph.D. Fellowship and CNPq Ph.D. Sandwich Fellowship (JZ), and by a CNPq Ph.D. Fellowship (TP), from Brazil.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Genomics 14 (2013): 412, doi:10.1186/1471-2164-14-412.
    Description: Sexual reproduction is a widely studied biological process because it is critically important to the genetics, evolution, and ecology of eukaryotes. Despite decades of study on this topic, no comprehensive explanation has been accepted that explains the evolutionary forces underlying its prevalence and persistence in nature. Monogonont rotifers offer a useful system for experimental studies relating to the evolution of sexual reproduction due to their rapid reproductive rate and close relationship to the putatively ancient asexual bdelloid rotifers. However, little is known about the molecular underpinnings of sex in any rotifer species. We generated mRNA-seq libraries for obligate parthenogenetic (OP) and cyclical parthenogenetic (CP) strains of the monogonont rotifer, Brachionus calyciflorus, to identify genes specific to both modes of reproduction. Our differential expression analysis identified receptors with putative roles in signaling pathways responsible for the transition from asexual to sexual reproduction. Differential expression of a specific copy of the duplicated cell cycle regulatory gene CDC20 and specific copies of histone H2A suggest that such duplications may underlie the phenotypic plasticity required for reproductive mode switch in monogononts. We further identified differential expression of genes involved in the formation of resting eggs, a process linked exclusively to sex in this species. Finally, we identified transcripts from the bdelloid rotifer Adineta ricciae that have significant sequence similarity to genes with higher expression in CP strains of B. calyciflorus. Our analysis of global gene expression differences between facultatively sexual and exclusively asexual populations of B. calyciflorus provides insights into the molecular nature of sexual reproduction in rotifers. Furthermore, our results offer insight into the evolution of obligate asexuality in bdelloid rotifers and provide indicators important for the use of monogononts as a model system for investigating the evolution of sexual reproduction.
    Description: This work was funded by National Institutes of Health Institute of General Medical Sciences (grant number 5R01GM079484, to JML and DMW).
    Keywords: Evolution of sexual reproduction ; Differential expression analysis ; Gene ontology analysis ; Meiosis ; Gametogenesis ; Resting eggs ; Mixis induction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/fasta
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Bioinformatics 15 (2014): 41, doi:10.1186/1471-2105-15-41.
    Description: The advent of next-generation DNA sequencing platforms has revolutionized molecular microbial ecology by making the detailed analysis of complex communities over time and space a tractable research pursuit for small research groups. However, the ability to generate 105–108 reads with relative ease brings with it many downstream complications. Beyond the computational resources and skills needed to process and analyze data, it is difficult to compare datasets in an intuitive and interactive manner that leads to hypothesis generation and testing. We developed the free web service VAMPS (Visualization and Analysis of Microbial Population Structures, http://vamps.mbl.edu webcite) to address these challenges and to facilitate research by individuals or collaborating groups working on projects with large-scale sequencing data. Users can upload marker gene sequences and associated metadata; reads are quality filtered and assigned to both taxonomic structures and to taxonomy-independent clusters. A simple point-and-click interface allows users to select for analysis any combination of their own or their collaborators’ private data and data from public projects, filter these by their choice of taxonomic and/or abundance criteria, and then explore these data using a wide range of analytic methods and visualizations. Each result is extensively hyperlinked to other analysis and visualization options, promoting data exploration and leading to a greater understanding of data relationships. VAMPS allows researchers using marker gene sequence data to analyze the diversity of microbial communities and the relationships between communities, to explore these analyses in an intuitive visual context, and to download data, results, and images for publication. VAMPS obviates the need for individual research groups to make the considerable investment in computational infrastructure and bioinformatic support otherwise necessary to process, analyze, and interpret massive amounts of next-generation sequence data. Any web-capable device can be used to upload, process, explore, and extract data and results from VAMPS. VAMPS encourages researchers to share sequence and metadata, and fosters collaboration between researchers of disparate biomes who recognize common patterns in shared data.
    Description: Funding provided by the National Science Foundation [grant NSF/BDI 0960626 to SMH] and the Sloan Foundation through a collaborative project with the Microbiology of the Built Environment program.
    Keywords: Microbiome ; Microbial ecology ; Microbial diversity ; Data visualization ; Website ; Bacteria ; SSU rRNA ; Next-generation sequencing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Research Notes 7 (2014): 79, doi:10.1186/1756-0500-7-79.
    Description: As biological disciplines extend into the ‘big data’ world, they will need a names-based infrastructure to index and interconnect distributed data. The infrastructure must have access to all names of all organisms if it is to manage all information. Those who compile lists of species hold different views as to the intellectual property rights that apply to the lists. This creates uncertainty that impedes the development of a much-needed infrastructure for sharing biological data in the digital world. The laws in the United States of America and European Union are consistent with the position that scientific names of organisms and their compilation in checklists, classifications or taxonomic revisions are not subject to copyright. Compilations of names, such as classifications or checklists, are not creative in the sense of copyright law. Many content providers desire credit for their efforts. A ‘blue list’ identifies elements of checklists, classifications and monographs to which intellectual property rights do not apply. To promote sharing, authors of taxonomic content, compilers, intermediaries, and aggregators should receive citable recognition for their contributions, with the greatest recognition being given to the originating authors. Mechanisms for achieving this are discussed.
    Keywords: Scientific names ; Taxonomy ; Copyright ; Intellectual property rights ; Name-based infrastructure ; Big data
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © 2001 Samuel et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. The definitive version was published in BMC Microbiology 1 (2001): 4, doi:10.1186/1471-2180-1-4.
    Description: Many bacteria swim by rotating helical flagellar filaments. Waterbury et al. discovered an exception, strains of the cyanobacterium Synechococcus that swim without flagella or visible changes in shape. Other species of cyanobacteria glide on surfaces. The hypothesis that Synechococcus might swim using traveling surface waves prompted this investigation. Results Using quick-freeze electron microscopy, we have identified a crystalline surface layer that encloses the outer membrane of the motile strain Synechococcus sp. WH8113, the components of which are arranged in a rhomboid lattice. Spicules emerge in profusion from the layer and extend up to 150 nm into the surrounding fluid. These spicules also send extensions inwards to the inner cell membrane where motility is powered by an ion-motive force. Conclusion The envelope structure of Synechococcus sp. WH8113 provides new constraints on its motile mechanism. The spicules are well positioned to transduce energy at the cell membrane into mechanical work at the cell surface. One model is that an unidentified motor embedded in the cell membrane utilizes the spicules as oars to generate a traveling wave external to the surface layer in the manner of ciliated eukaryotes.
    Description: ADTS was supported by the Rowland Institute for Science and is an Amgen Fellow of the Life Sciences Research Foundation.
    Keywords: Synechococcus sp. ; Motile mechanism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 6106667 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © 2008 Sarkar et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Evolutionary Biology 8 (2008): 144, doi:10.1186/1471-2148-8-144.
    Description: Authority and year information have been attached to taxonomic names since Linnaean times. The systematic structure of taxonomic nomenclature facilitates the ability to develop tools that can be used to explore historical trends that may be associated with taxonomy. From the over 10.7 million taxonomic names that are part of the uBio system, approximately 3 million names were identified to have taxonomic authority information from the years 1750 to 2004. A pipe-delimited file was then generated, organized according to a Linnaean hierarchy and by years from 1750 to 2004, and imported into an Excel workbook. A series of macros were developed to create an Excel-based tool and a complementary Web site to explore the taxonomic data. A cursory and speculative analysis of the data reveals observable trends that may be attributable to significant events that are of both taxonomic (e.g., publishing of key monographs) and societal importance (e.g., world wars). The findings also help quantify the number of taxonomic descriptions that may be made available through digitization initiatives. Temporal organization of taxonomic data can be used to identify interesting biological epochs relative to historically significant events and ongoing efforts. We have developed an Excel workbook and complementary Web site that enables one to explore taxonomic trends for Linnaean taxonomic groupings, from Kingdoms to Families.
    Description: The work presented here was funded in part by the MBLWHOI Library and the DAB Lindberg Research Fellowship from the Medical Library Association to INS.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Genomics 14 (2013): 266, doi:10.1186/1471-2164-14-266.
    Description: Nematostella vectensis, a burrowing sea anemone, has become a popular species for the study of cnidarian development. In previous studies, the expression of a variety of genes has been characterized during N. vectensis development with in situ mRNA hybridization. This has provided detailed spatial resolution and a qualitative perspective on changes in expression. However, little is known about broad transcriptome-level patterns of gene expression through time. Here we examine the expression of N. vectensis genes through the course of development with quantitative RNA-seq. We provide an overview of changes in the transcriptome through development, and examine the maternal to zygotic transition, which has been difficult to investigate with other tools. We measured transcript abundance in N. vectensis with RNA-seq at six time points in development: zygote (2 hours post fertilization (HPF)), early blastula (7 HPF), mid-blastula (12 HPF), gastrula (24 HPF), planula (5 days post fertilization (DPF)) and young polyp (10 DPF). The major wave of zygotic expression appears between 7–12 HPF, though some changes occur between 2–7 HPF. The most dynamic changes in transcript abundance occur between the late blastula and early gastrula stages. More transcripts are upregulated between the gastrula and planula than downregulated, and a comparatively lower number of transcripts significantly change between planula and polyp. Within the maternal to zygotic transition, we identified a subset of maternal factors that decrease early in development, and likely play a role in suppressing zygotic gene expression. Among the first genes to be expressed zygotically are genes whose proteins may be involved in the degradation of maternal RNA. The approach presented here is highly complementary to prior studies on spatial patterns of gene expression, as it provides a quantitative perspective on a broad set of genes through time but lacks spatial resolution. In addition to addressing the problems identified above, our work provides an annotated matrix that other investigators can use to examine genes and developmental events that we do not examine in detail here.
    Description: This work was supported by seed funds from the Brown-MBL Partnership and the National Science Foundation Graduate Student Research Fellowship. Infrastructure for data transfer from the sequencer was supported by the National Science Foundation EPSCoR Program under Grant No. 1004057 (Infrastructure to Advance Life Sciences in the Ocean State).
    Keywords: Nematostella vectensis ; Transcriptome ; Gene expression ; Maternal to zygotic transition ; Development
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Format: image/png
    Format: application/x-sh
    Format: text/py
    Format: application/zip
    Format: text/r
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...