ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Environmental Pollution 84 (1994), S. 159-166 
    ISSN: 0269-7491
    Keywords: children ; dust ; lead ; pollution ; soil
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Environmental Pollution 83 (1994), S. 245-250 
    ISSN: 0269-7491
    Keywords: GIS ; climate change ; moisture ; soil
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 4 (1993), S. 141-153 
    ISSN: 1572-9729
    Keywords: bioavailability ; biodegradation ; sorption ; oil ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 7 (1996), S. 329-333 
    ISSN: 1572-9729
    Keywords: biodegradation ; modelling ; rubber ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The biodegradation of rubber particles in rubber-soil mixtures at different rubber contents was monitored by the carbon dioxide production. The cumulative carbon dioxide production was modelled according to a two parameter exponential function. The model provides an excellent fit (R2〉0.98) for the observed data. The two parameters yield a reliable estimate of the half-life for the process observed, but estimation of the true half-life of rubber in soil will need more research.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 8 (1997), S. 349-356 
    ISSN: 1572-9729
    Keywords: biodegradation ; bioremediation ; acclimation ; Everglades ; mineralization ; nitrophenol ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The Everglades in South Florida are a unique ecologicalsystem. As a result of the widespread use of pesticides andherbicides in agricultural areas upstream from these wetlands,there is a serious potential for pollution problems in theEverglades. The purpose of this study was to evaluate theability of indigenous microbial populations to degradexenobiotic organic compounds introduced by agricultural andother activities. Such biodegradation may facilitate theremediation of contaminated soils and water in the Everglades.The model compound selected in this study is 4-nitrophenol, achemical commonly used in the manufacture of pesticides. Themineralization of 4-nitrophenol at various concentrations wasstudied in soils collected from the Everglades. Atconcentrations of 10 and 100 µg/g soil, considerablemineralization occurred within a week. At a higherconcentration, i.e., 10 mg/g soil, however, no mineralizationof 4-nitrophenol occurred over a 4-month period; such a highconcentration apparently produced an inhibitory effect. Therate and extent of 4-nitrophenol mineralization was enhancedon inoculation with previously isolated nitrophenol-degradingmicroorganisms. The maximum mineralization extent measured,however, was less than 30% suggesting conversion to biomassand/or unidentified intermediate products. These resultsindicate the potential for natural mechanisms to mitigate theadverse effects of xenobiotic pollutants in a complex systemsuch as the Everglades.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1572-9729
    Keywords: bioavailability ; builders ; detergents ; kinetics ; mineralization ; sewage sludge ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Tetradecenyl succinic acid (TSA) is the major component of a detergent builder (C12-C14 alkenyl succinic acid), which is inherently biodegradable. 14C-TSA was dosed as a component of sewage sludge into a soil with a history of sludge amendment at final added concentrations of 1.5 and 30 mg (kg soil)-1. In addition, it was dosed to the soil in an aqueous solution to a final added concentration of 30 mg (kg soil)-1. Dose and form were found to have a pronouced effect on the mineralization kinetics. When dosed in a realistic form and concentration (i.e. 1.5 mg (kg soil)-1 as a component of sludge), TSA was mineralized at its highest rate and to its greatest extent, and the mineralization half-life was 2.4 days. When dosed at 30 mg (kg soil)-1 as a component of sludge, mineralization began immediately, and the half-life was 23 days. In contrast, when dosed at this concentration in aqueous solution, the onset of mineralization was preceded by a 13 day lag period and the mineralization half-life was 69 days. Primary biodegradation and mineralization rates of TSA were very similar. Approximately, half the radioactivity was evolved as 14CO2, while the remaining radioactivity became non-extractable, having presumably been incorporated into biomass or natural soil organic matter (humics). This study demonstrated that TSA is effectively removed from sludge-amended soils as a result of biodegradation. Furthermore, it showed the effect that dose form and concentration have on the biodegradation kinetics and the importance of dosing a chemical not only at a relevant concentration but also in the environmental form in which it enters the soil environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-9729
    Keywords: Desulfomonile tiedjei ; soil ; PCR ; reductive dechlorination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The aim of this work was to test the feasibility ofintroducing an anaerobic microbial reductivedechlorination activity into non sterile soil slurrymicrocosms by inoculation with the pure anaerobicbacterial strain Desulfomonile tiedjei, which iscapable of dechlorinating 3-chlorobenzoate tobenzoate. To show that the bacterium was establishedin the microcosms we followed the expression of thereductive dechlorination activity and a molecularprobe based on PCR amplification of the 16S rDNA genewas developed. However, the success of PCRamplification of the 16S rDNA gene depends on the DNAextraction and purification methodologies applied, asshown through the use of several protocols. In thisstudy we report a DNA extraction and purificationmethod which generates sufficient and very clean DNAsuitable for PCR amplification of the D. tiedjei16S rDNA gene. The threshold of detection was about5.103 bacteria per gram of soil slurry.Introduction of D. tiedjei in soil slurrymicrocosms proved successful since 3-chlorobenzoatedechlorination activity was established with thisbacterium in microcosms normally devoid of thisdechlorination capacity. Indeed, the addition of D. tiedjei to microcosms supplemented with acetateplus formate as cosubstrate, at their respectiveconcentrations of 5 and 6 mM, led to a totalbiotransformation of 2.5 mM of 3-chlorobenzoate within12 days. After complete 3-chlorobenzoatedechlorination, the 16S rDNA gene of this bacteriumwas specifically detected only in the inoculatedmicrocosms as shown by PCR amplification followed byrestriction mapping confirmation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 9 (1998), S. 327-336 
    ISSN: 1572-9729
    Keywords: fungi ; organophosphate insecticides ; phosphorus mineralization ; sulfur mineralization ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Thirteen fungal species isolated from soil treated with pesticides were tested for their ability to mineralize and degrade three organophosphate insecticides currently used in Egypt (Cyolan®, Malathion® and Dursban®) in liquid media free from phosporus (P) and sulfur (S). All fungal species grew successfully on the culture media treated with the three used doses of insecticides (10, 50 and 100 ppm active ingredient) but the growth rate varied with the species, the insecticide and the doses. At 10 ppm level, insecticide degradation expressed in term of organic P mineralization (calculated as % of applied P) was the highest with all fungi tested. Organic P mineralization from pesticides was decreased by increasing the dose used to 50 and 100 ppm. The highest amount of P mineralized was observed with Cyolan® followed by Malathion® whilst P mineralization from Dursban® proceeded very slowly. Aspergillus terreus showed the greatest potential to mineralize organic P followed by A. tamarii, A. niger, Trichoderma harzianum and Penicillium brevicompactum whilst the remaining fungi only moderately mineralized the organic P component of the insecticides tested. Organic sulfur mineralization by the used fungal species paralleled, to some extent, organic P mineralization. The extracellular protein content of culture filtrates in the presence of various doses of insecticides was also decreased by increasing insecticide concentrations. The extracellular protein was significantly correlated with P and S mineralization (r = 0.89** and 0.64**, respectively) whilst correlation with cell dry mass was not significant (r = 0.03 and 0.003) suggesting a direct relationship between pesticide degradation and microbial protein production. The addition of P or S to the growth media enhanced extracellular protein excretion, and increased organic P and S mineralization by the most potent species tested (A. niger, A. tamarii, A. terreus and T. harzianum). This increment was significant in most cases, especially at the higher application rates. The relationship between extracellular protein excretion and organic P and S mineralization from insecticides was highly significant with the addition of inorganic phosphorus (r = 0.96** and 0.83**, respectively) or sulfur (r = 0.85** and 0.89**, respectively) to the growth media.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1572-9729
    Keywords: bioremediation ; composting ; petroleum ; soil ; thermophilic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of the C/N ratio, CaCO3 and PO4 addition, and temperature profile on reactor-based composting of weathered hydrocarbon-contaminated soil were evaluated in a series of 30-day tests in temperature-controlled mini-composters. Soil containing 17,000 mg (kg dry soil)−1 mineral oil and grease (MOG) was composted with maple leaves and alfalfa. Although the leaves and alfalfa also contained MOG, degradation of contaminated soil derived MOG (total MOG degradation minus MOG degradation in a control with no soil) increased from 0 to 45% as the quantity of co-substrate increased from 0 to 63%. Simulation of biopile conditions (i.e., aeration and addition of mineral salts but no co-substrate) resulted in only 6% MOG degradation. Addition of CaCO3 before composting increased total MOG degradation from 23% to 43%. Total MOG degradation increased with decreasing C/N ratio. At a molar C/N ratio of 17, 43% of the total MOG was degraded in 30 days, while at a C/N ratio of 40 there was no total MOG degradation. When temperatures ranging from 23 to 60 °C were investigated, 50 °C maintained for 29 days resulted in the maximum degradation which was 68% of total initial MOG.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1572-9729
    Keywords: 2,4-dichlorophenoxyacetic acid ; bacterial growth ; biodegradation ; Pseudomonas cepacia ; soil ; survival
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The 2,4-dichlorophenoxyacetic acid (2,4-D) degrading pseudomonad, Pseudomonas cepacia DBO1(pRO101), was inoculated at approximately 107 CFU/g into sterile and non-sterile soil amended with 0, 5 or 500 ppm 2,4-D and the survival of the strain was studied for a period of 44 days. In general, the strain survived best in sterile soil. When the sterile soil was amended with 2,4-D, the strain survived at a significantly higher level than in non-amended sterile soil. In non-sterile soil either non-amended or amended with 5 ppm 2,4-D the strain died out, whereas with 500 ppm 2,4-D the strain only declined one order of magnitude through the 44 days. The influence of 0,0.06, 12 and 600 ppm 2,4-D on short-term (48 h) survival of P. cepacia DBO1(pRO101) inoculated to a level of 6×104, 6×106 or 1×108 CFU/g soil was studied in non-sterile soil. Both inoculum level and 2,4-D concentration were found to have a positive influence on numbers of P. cepacia DBO1(pRO101). At 600 ppm 2,4-D growth was significant irrespective of the inoculation level, and at 12 ppm growth was stimulated at the two lowest inocula levels. P. cepacia DBO1(pRO101) was able to survive for 15 months in sterile buffers kept at room temperature. During this starvation, cells shrunk to about one third the volume of exponentially growing cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...