ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (14,888)
  • American Institute of Physics (AIP)  (14,888)
  • Journal of Chemical Physics  (14,888)
  • 807
  • 1
    Publication Date: 2016-12-09
    Description: Structural properties of brushes which are composed of weak acidic and basic polyelectrolytes are studied in the framework of a particle-based approach that implicitly accounts for the solvent quality. Using a semi-grandcanonical partition function in the framework of the Single-Chain-in-Mean-Field (SCMF) algorithm, the weak polyelectrolyte is conceived as a supramolecular mixture of polymers in different dissociation states, which are explicitly treated in the partition function and sampled by the SCMF procedure. One obtains a local expression for the equilibrium acid-base reaction responsible for the regulation of the charged groups that is also incorporated to the SCMF sampling. Coupled to a simultaneous treatment of the electrostatics, the approach is shown to capture the main features of weak polyelectrolyte brushes as a function of the bulk pH in the solution, the salt concentration, and the grafting density. Results are compared to experimental and theoretical works from the literature using coarse-grained representations of poly(acrylic acid) (PAA) and poly(2-vinyl pyridine) (P2VP) polymer-based brushes. As the Born self-energy of ions can be straightforwardly included in the numerical approach, we also study its effect on the local charge regulation mechanism of the brush. We find that its effect becomes significant when the brush is dense and exposed to high salt concentrations. The numerical methodology is then applied (1) to the study of the kinetics of collapse/swelling of a P2VP brush and (2) to the ability of an applied voltage to induce collapse/swelling of a PAA brush in a pH range close to the p K a value of the polymer.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-09
    Description: The dynamics of water within ionic polymer networks formed by sulfonated poly(phenylene) (SPP), as revealed by quasi-elastic neutron scattering (QENS), is presented. These polymers are distinguished from other ionic macromolecules by their rigidity and therefore in their network structure. QENS measurements as a function of temperature as the fraction of ionic groups and humidity were varied have shown that the polymer molecules are immobile while absorbed water molecules remain dynamic. The water molecules occupy multiple sites, either bound or loosely constrained, and bounce between the two. With increasing temperature and hydration levels, the system becomes more dynamic. Water molecules remain mobile even at subzero temperatures, illustrating the applicability of the SPP membrane for selective transport over a broad temperature range.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-09
    Description: SmCoO 3 is a perovskite material that has gained attention as a potential substitute for La 1−x Sr x MnO 3−d as a solid oxide fuel cell cathode. However, a number of properties have remained unknown due to the complexity of the material. For example, we know from experimental evidence that this perovskite exists in two different crystal structures, cubic and orthorhombic, and that the cobalt ion changes its spin state at high temperatures, leading to a semiconductor-to-metal transition. However, little is known about the precise magnetic structure that causes the metallic behavior or the spin state of the Co centers at high temperature. Here, we therefore present a systematic DFT+U study of the magnetic properties of SmCoO 3 in order to determine what magnetic ordering is the one exhibited by the metallic phase at different temperatures. Similarly, mechanical properties are difficult to measure experimentally, which is why there is a lack of data for the two different phases of SmCoO 3 . Taking advantage of our DFT calculations, we have determined the mechanical properties from our calculated elastic constants, finding that both polymorphs exhibit similar ductility and brittleness, but that the cubic structure is harder than the orthorhombic phase.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-12-09
    Description: Molecular dynamics simulations are used to investigate the phase behavior of disks decorated with small ligands in two-dimensional films. We consider disks with four ligands, which are fixed at vertices of a square or slide over the circle delimiting the core. For selected model systems, phase diagrams are evaluated and discussed. We show that ligand mobility can change the topology of phase diagrams. In particular, it can affect fluid-solid transitions, changing the solid phase symmetry. Moreover, the mobility of ligands can either hamper or facilitate crystallization.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-09
    Description: We study the electrical conductance G and the thermopower S of single-molecule junctions and reveal signatures of different transport mechanisms: off-resonant tunneling, on-resonant coherent (ballistic) motion, and multi-step hopping. These mechanisms are identified by studying the behavior of G and S while varying molecular length and temperature. Based on a simple one-dimensional model for molecular junctions, we derive approximate expressions for the thermopower in these different regimes. Analytical results are compared to numerical simulations, performed using a variant of Büttiker’s probe technique, the so-called voltage-temperature probe, which allows us to phenomenologically introduce environmentally induced elastic and inelastic electron scattering effects, while applying both voltage and temperature biases across the junction. We further simulate the thermopower of GC-rich DNA sequences with mediating A:T blocks and manifest the tunneling-to-hopping crossover in both the electrical conductance and the thermopower, in accord with measurements by Li et al. [Nat. Commun. 7 , 11294 (2016)].
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-09
    Description: Path-integral molecular dynamics (PIMD) simulations have been carried out to study the influence of quantum dynamics of carbon atoms on the properties of a single graphene layer. Finite-temperature properties were analyzed in the range from 12 to 2000 K, by using the LCBOPII effective potential. To assess the magnitude of quantum effects in structural and thermodynamic properties of graphene, classical molecular dynamics simulations have been also performed. Particular emphasis has been laid on the atomic vibrations along the out-of-plane direction. Even though quantum effects are present in these vibrational modes, we show that at any finite temperature classical-like motion dominates over quantum delocalization, provided that the system size is large enough. Vibrational modes display an appreciable anharmonicity, as derived from a comparison between kinetic and potential energies of the carbon atoms. Nuclear quantum effects are found to be appreciable in the interatomic distance and layer area at finite temperatures. The thermal expansion coefficient resulting from PIMD simulations vanishes in the zero-temperature limit, in agreement with the third law of thermodynamics.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-09
    Description: We report our spectroscopic studies of the d 3 Π state of ultra-cold 7 Li 85 Rb using resonantly enhanced multi-photon ionization and depletion spectroscopy with bound-to-bound transitions originating from the metastable a 3 Σ + state. We evaluate the potential of this state for use as the intermediate state in a stimulated-Raman-adiabatic-passage transfer scheme from triplet Feshbach LiRb molecules to the X 1 Σ + ground state and find that the lowest several vibrational levels possess the requisite overlap with initial and final states, as well as convenient energies. Using depletion measurements, we measured the well depth and spin-orbit splitting. We suggest possible pathways for short-range photoassociation using deeply bound vibrational levels of this electronic state.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-12-09
    Description: Various precipitation patterns can be obtained in flow conditions when injecting a solution of sodium carbonate in a confined geometry initially filled with a solution of either barium or calcium chloride. We compare here the barium and calcium carbonate precipitate structures as a function of initial concentrations and injection flow rate. We show that, in some part of the parameter space, the patterns are similar and feature comparable properties indicating that barium and calcium behave similarly in the related flow-controlled precipitation conditions. For other values of parameters though, the precipitate structures are different indicating that the cohesive and microscopic properties of barium versus calcium carbonate are then important in shaping the pattern in flow conditions.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-12-09
    Description: Partial ionization cross sections are the absolute yields of specific ions from an electron-molecule collision. They are necessary for modeling plasmas and determining the sensitivity of mass spectrometers, among other applications. They can be predicted semi-empirically when experimental data are available for channel-specific oscillator strengths. However, such data are seldom available because they are obtained using specialized apparatus. Here, an alternative semi-empirical method is proposed that exploits experimental data obtained using ordinary mass spectrometers, as corrected for mass discrimination. Data are presented for an incident electron energy of 70 eV.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-09
    Description: The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...