ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Stability and Control
  • 1960-1964  (58)
  • 1955-1959  (73)
  • 1940-1944  (17)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: No abstract available
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-24
    Description: An investigation has been made to determine the erect and. inverted spin and recovery characteristics of a 1/30-scale dynamic model of the North American A-5A airplane. Tests were made for the basic flight design loading with the center of gravity at 30-percent mean aerodynamic chord and also for a forward position and a rearward position with the center of gravity at 26-percent and 40-percent mean aerodynamic chord, respectively. Tests were also made to determine the effect of full external wing tanks on both wings, and of an asymmetrical condition when only one full tank is carried.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-SX-946 , NACA-AD-3140 , L-3663
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-17
    Description: Air-flow characteristics behind wings and wing-body combinations are described and are related to the downwash at specific tall locations for unseparated and separated flow conditions. The effects of various parameters and control devices on the air-flow characteristics and tail contribution are analyzed and demonstrated. An attempt has been made to summarize certain data by empirical correlation or theoretical means in a form useful for design. The experimental data herein were obtained mostly at Reynolds numbers greater than 4 x 10(exp 6) and at Mach numbers less than 0.25.
    Keywords: Aircraft Stability and Control
    Type: NASA-TR-R-49
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-17
    Description: A simulator study and flight tests were performed to determine the levels of static stability and damping necessary to enable a pilot to control the longitudinal and lateral-directional dynamics of a vehicle for short periods of time. Although a basic set of aerodynamic characteristics was used, the study was conducted so that the results would be applicable to a wide range of flight conditions and configurations. Novel piloting techniques were found which enabled the pilot to control the vehicle at conditions that were otherwise uncontrollable. The influence of several critical factors in altering the controllability limits was also investigated. Several human transfer functions were used which gave fairly good representations of the controllability limits determined experimentally for the short-period longitudinal, directional, and lateral modes. A transfer function with approximately the same gain and phase angle as the pilot at the controlling frequencies along the controllability limits was also derived.
    Keywords: Aircraft Stability and Control
    Type: NASA-TN-D-746 , H-161
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-17
    Description: Carrier landing-approach studies of a tailless delta-wing fighter airplane disclosed that approach speeds were limited by ability to control altitude and lateral-directional characteristics. More detailed flight studies of the handling-qualities characteristics of the airplane in the carrier-approach configuration documented a number of factors that contributed to the adverse comments on the lateral-directional characteristics. These were: (1) the tendency of the airplane to roll around the highly inclined longitudinal axis, so that significant sideslip angles developed in the roll as a result only of kinematic effects; (2) reduction of the rolling response to the ailerons because of the large dihedral effect in conjunction with the kinematically developed sideslip angles; and (3) the onset of rudder lock at moderate angles of sideslip at the lowest speeds with wing tanks installed. The first two of the factors listed are inseparably identified with this type of configuration which is being considered for many of the newer designs and may, therefore, represent a problem which will be encountered frequently in the future. The results are of added significance in the demonstration of a typical situation in which extraneous factors occupy so much of the pilot's attention that his capability of coping with the problems of precise flight-path control is reduced, and he accordingly demands a greater speed margin above the stall to allow for airspeed fluctuations.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-15-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: An investigation has been made to determine the effect of wing fences, fuselage contouring, varying wing sweepback angle from 40 deg. to 45 deg., mounting the horizontal tail on an outboard boom) and wing thickness distribution upon the buffeting response of typical airplane configurations employing sweptback wings of high aspect ratio. The tests were conducted through an angle-of-attack range at Mach numbers varying from 0.60 to 0.92 at a Reynolds number of 2 million. For the combinations with 40 deg. of sweepback, the addition of multiple wing fences usually decreased the buffeting at moderate and high lift coefficients and reduced the erratic variation of buffet intensities with increasing lift coefficient and Mach number. Fuselage contouring also reduced buffeting but was not as effective as the wing fences. At most Mach numbers, buffeting occurred at higher lift coefficients for the combination with the NACA 64A thickness distributions than for the combination with the NACA four-digit thickness distributions. At high subsonic speeds, heavy buffeting was usually indicated at lift coefficients which were lower than the lift coefficients for static-longitudinal instability. The addition of wing fences improved the pitching-moment characteristics but had little effect on the onset of buffeting. For most test conditions and model configurations, the root-mean- square and the maximum values measured for relative buffeting indicated similar effects and trends; however, the maximum buffeting loads were usually two to three times the root-mean-square intensities.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-23-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: The problem of return to a specified landing point on the earth from flight in space is considered by studying the interaction between an assumed control over the lateral and longitudinal range and the initial conditions of approach to the earth, given by orbital-plane inclination, vacuum perigee location, and time of arrival. The maneuvering capability in the atmosphere permits a point return for a range of entry conditions. A lateral-range capability of +/- 500 miles from the center line of an entry trajectory can allow a variation in the time of arrival of over 3.5 hours. Variation in the orbital-plane inclination angle can be as much as +/- 13 deg.
    Keywords: Aircraft Stability and Control
    Type: NASA-TN-D-1067 , A-506
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-17
    Description: A wind-tunnel investigation has been made to determine the aerodynamic characteristics of a 1/4-scale model of a tilt-wing vertical-take-off-and-landing aircraft. The model had two 3-blade single-rotation propellers with hinged (flapping) blades mounted on the wing, which could be tilted from an incidence of 4 deg for forward flight to 86 deg for hovering flight. The investigation included measurements of both the longitudinal and lateral stability and control characteristics in both the normal forward flight and the transition ranges. Tests in the forward-flight condition were made for several values of thrust coefficient, and tests in the transition condition were made at several values of wing incidence with the power varied to cover a range of flight conditions from forward-acceleration (or climb) conditions to deceleration (or descent) conditions The control effectiveness of the all-movable horizontal tail, the ailerons and the differential propeller pitch control was also determined. The data are presented without analysis.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-11-3-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: Wind-tunnel measurements were made of the static and dynamic rotary stability derivatives of an airplane model having sweptback wing and tail surfaces. The Mach number range of the tests was from 0.23 to 0.94. The components of the model were tested in various combinations so that the separate contribution to the stability derivatives of the component parts and the interference effects could be determined. Estimates of the dynamic rotary derivatives based on some of the simpler existing procedures which utilize static force data were found to be in reasonable agreement with the experimental results at low angles of attack. The results of the static and dynamic measurements were used to compute the short-period oscillatory characteristics of an airplane geometrically similar to the test model. The results of these calculations are compared with military flying qualities requirements.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-16-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: This paper is concerned with a discussion of some of the problems of flutter and aeroelasticity that are or may be important at high speeds. Various theoretical procedures for treating high Mach number flutter are reviewed. Application of two of these methods, namely, the Van Dyke method and piston-theory method, is made to a specific example and compared with linear two- and three-dimensional results. It is shown that the effects of thickness and airfoil shape are destabilizing as compared with linear theory at high Mach number. In order to demonstrate the validity of these large predicted effects, experimental flutter results are shown for two rectangular wings at Mach numbers of 6.86 and 3. The results of nonlinear piston-theory calculations were in good agreement with experiment, whereas the results of using two- and three-dimensional linear theory were not. In addition, some results demonstrating the importance of including camber modes in a flutter analysis are shown, as well as a discussion of one case of flutter due to aerodynamic heating.
    Keywords: Aircraft Stability and Control
    Type: NASA-TN-D-942 , L-1645
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...