ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (224,698)
  • 1995-1999  (224,698)
  • Medicine  (224,698)
Collection
  • Articles  (224,698)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 32 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Nitrogen metabolism genes of Bacillus subtilis are regulated by the availability of rapidly metabolizable nitrogen sources, but not by any mechanism analogous to the two-component Ntr regulatory system found in enteric bacteria. Instead, at least three regulatory proteins independently control the expression of gene products involved in nitrogen metabolism in response to nutrient availability. Genes expressed at high levels during nitrogen-limited growth are controlled by two related proteins, GlnR and TnrA, which bind to similar DNA sequences under different nutritional conditions. The TnrA protein is active only during nitrogen limitation, whereas GlnR-dependent repression occurs in cells growing with excess nitrogen. Although the nitrogen signal regulating the activity of the GlnR and TnrA proteins is not known, the wild-type glutamine synthetase protein is required for the transduction of this signal to the GlnR and TnrA proteins. Examination of GlnR- and TnrA-regulated gene expression suggests that these proteins allow the cell to adapt to growth during nitrogen-limited conditions. A third regulatory protein, CodY, controls the expression of several genes involved in nitrogen metabolism, competence and acetate metabolism in response to growth rate. The highest levels of CodY-dependent repression occur in cells growing rapidly in a medium rich in amino acids, and this regulation is relieved during the transition to nutrient-limited growth. While the synthesis of amino acid degradative enzymes in B. subtilis is substrate inducible, their expression is generally not regulated in response to nitrogen availability by GlnR and TnrA. This pattern of regulation may reflect the fact that the catabolism of amino acids produced by proteolysis during sporulation and germination provides the cell with substrates for energy production and macromolecular synthesis. As a result, expression of amino acid degradative enzymes may be regulated to ensure that high levels of these enzymes are present in sporulating cells and in dormant spores.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 32 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: To understand further the role of the nucleoid and the min system in selection of the cell division site, we examined FtsZ localization in Escherichia coli cells lacking MinCDE and in parC mutants defective in chromosome segregation. More than one FtsZ ring was sometimes found in the gaps between nucleoids in min mutant filaments. These multiple FtsZ rings were more apparent in longer cells; double or triple rings were often found in the nucleoid-free gaps in ftsI min and ftsA min double mutant filaments. Introducing a parC mutation into the ftsA min double mutant allowed the nucleoid-free gaps to become significantly longer. These gaps often contained dramatic clusters of FtsZ rings. In contrast, filaments of the ftsA parC double mutant, which contained active MinCDE, assembled only one or two rings in most of the large nucleoid-free gaps. These results suggest that all positions along the cell length are competent for FtsZ ring assembly, not just sites at mid-cell or at the poles. Consistent with previous results, unsegregated nucleoids also correlated with a lack of FtsZ localization. A model is proposed in which both the inhibitory effect of the nucleoid and the regulation by MinCDE ensure that cells divide precisely at the midpoint.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The aspartate chemoreceptor (Tar) of Escherichia coli also serves as a thermosensor, and it is very amenable to genetic and biochemical analysis of the thermosensing mechanism. Its thermosensing properties are controlled by reversible methylation of the cytoplasmic signalling/adaptation domain of the protein. The unmethylated and the fully methylated (aspartate-bound) receptors sense, as attractant stimuli, increases (warm sensor) and decreases (cold sensor) in temperature respectively. To learn more about the mechanism of thermosensing, we replaced the four methyl-accepting glutamyl residues with non-methylatable aspartyl residues in all possible combinations. In a strain defective in both methyltransferase (CheR) and methylesterase (CheB) activities, all of the mutant Tar proteins functioned as warm sensors. To create a situation in which all of the remaining glutamyl residues were methylated, we expressed the mutant proteins in a CheB-defective, CheR-overproducing strain. The fully glutamyl-methylated proteins were designed to mimic the full range of methylation states possible for wild-type Tar. Almost all of the methylated mutant receptors, including those with single glutamyl residues, were cold sensors in the presence of aspartate. Thus, binding of aspartate to Tar and methylation of its single glutamyl residue can invert its temperature-dependent signalling properties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 32 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The poles of each Caulobacter crescentus cell undergo morphological development as a function of the cell cycle. A single flagellum assembled at one pole during the asymmetric cell division is later ejected and replaced by a newly synthesized stalk when the motile swarmer progeny differentiates into a sessile stalked cell. The removal of the flagellum during the swarmer-to-stalked cell transition coincides with the degradation of the FliF flagellar anchor protein. We report here that the cell cycle-dependent turnover of FliF does not require the structural components of the flagellum itself, arguing that it is the initial event leading to the ejection of the flagellum. Analysis of a polar development mutant, pleD, revealed that the pleD gene was required for efficient removal of FliF and for ejection of the flagellar structure during the swarmer-to-stalked cell transition. The PleD requirement for FliF degradation was also not dependent on the presence of any part of the flagellar structure. In addition, only 25% of the cells were able to synthesize a stalk during cell differentiation when PleD was absent. The pleD gene codes for a member of the response regulator family with a novel C-terminal regulatory domain. Mutational analysis confirmed that a highly conserved motif in the PleD C-terminal domain is essential to promote both FliF degradation and stalk biogenesis during cell differentiation. Signalling through the C-terminal domain of PleD is thus required for C. crescentus polar development. A second gene, fliL, was shown to be required for efficient turnover of FliF, but not for stalk biogenesis. The possible roles of PleD and FliL in C. crescentus polar development are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 32 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: We have cloned and sequenced a gene from Lactobacillus reuteri that encodes a 56 kDa protein, which mediates autoaggregation of the bacteria. Using an antiserum raised against extracellular proteins from the pig intestinal isolate L. reuteri 1063, we screened a genomic λ library derived from the same strain. Affinity purification of recombinant protein from the isolated λ clones showed that one type of clone expressed a protein that efficiently aggregated the parental strain when added to the bacteria. Subcloning and introduction of the corresponding gene, here denoted aggHinto the L. reuteri type strain markedly enhanced aggregation. Furthermore, insertional inactivation of aggH in strain 1063 resulted in an autoaggregation-deficient phenotype. Finally, an affinity-purified and cleaved fusion of AggH protein and the maltose-binding protein, MBP, strongly promoted aggregation of L. reuteri 1063, whereas the uncleaved fusion protein was inactive. Sequencing of aggH revealed that the corresponding protein has extensive sequence homology to the large family of ATP-dependent DEAD-box helicases. These results are intriguing in view of earlier data on the promotion of genetic exchange in Lactobacillus by aggregation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 32 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The dadAX operon is expressed by multiple promoters that are repressed by leucine-responsive regulatory protein (Lrp) and activated by cyclic AMP-CRP. In previous work, we found that alanine or leucine acted as inducers to antagonize Lrp repression of the three major promoters directly. Here, we identify 11 Lrp binding sites located within 350 bp of dad DNA. A mutational analysis, coupled with in vivo and in vitro transcription experiments, indicated that Lrp sites that overlap the dad promoters were involved in repression. In contrast, sites upstream of the promoters did not appear to be necessary for repression, but were required for activation by Lrp plus alanine or leucine of one of the major dad promoters, P2. This activation by alanine or leucine was not simply relief of repression, as P2 transcription from a constitutive template was increased fivefold compared with the basal level of transcription found in the absence of Lrp and the co-activator cyclic AMP-CRP. Alanine or leucine decreased the affinity of Lrp to repressor sites, while having little or no effect on the binding of Lrp to activator sites. This differential effect of alanine and leucine on Lrp binding helps to explain how these modifiers influence both repression and activation of the dad operon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Most of the bacterial genes involved in nodulation of legumes (nod, nol and noe ) as well as nitrogen fixation (nif and fix ) are carried on pNGR234a, the 536 kb symbiotic plasmid (pSym) of the broad-host-range Rhizobium sp. NGR234. Putative transcription regulators comprise 24 of the predicted 416 open reading frames (ORFs) contained on this replicon. Computational analyses identified 19 nod boxes and 16 conserved NifA-σ54 regulatory sequences, which are thought to co-ordinate the expression of nodulation and nitrogen fixation genes respectively. To analyse transcription of all putative ORFs, the nucleotide sequence of pNGR234a was divided into 441 segments designed to represent all coding and intergenic regions. Each of these segments was amplified by polymerase chain reactions, transferred to filters and probed with radioactively labelled RNA. RNA was extracted from bacterial cultures grown under various experimental conditions, as well as from bacteroids of determinate and indeterminate nodules. Generally, genes involved in the synthesis of Nod factors (e.g. the three hsn loci) were induced rapidly after the addition of flavonoids, whereas others thought to act within the plant (e.g. those encoding the type III secretion system) responded more slowly. Many insertion (IS) and transposon (Tn)-like sequences were expressed strongly under all conditions tested, while a number of loci other than those known to encode nod, noe, nol, nif and fix genes were also transcribed in nodules. Many more diverse transcripts were found in bacteroids of determinate as opposed to indeterminate nodules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Serum opacity factor (SOF) is a fibronectin-binding protein of group A streptococci that opacifies mammalian sera and is expressed by some strains that cause impetigo, pharyngitis and acute glomerulonephritis. Although SOF is expressed by ≈35% of known serotypes, its role in the pathogenesis of group A streptococcal infections has not been previously investigated. The sof genes from M types 2, 28 and 49 Streptococcus pyogenes were cloned, sequenced, and their deduced amino acid sequences were compared. The gene for FnBA, a fibronectin-binding protein from Streptococcus dysgalactiae, was also cloned and found to express an opacity factor. The leader sequences, the fibronectin-binding domains, and the membrane anchor regions of these proteins were highly conserved. Short spans of conserved sequences were interspersed throughout the remaining parts of the proteins. The sof2 gene was insertionally inactivated in an M type 2 S. pyogenes strain, T2MR. The resultant SOF-negative mutant (YL3) did not express SOF or opacify serum, and exhibited a 71% reduction in binding fibronectin. Complementation of the SOF-negative defect with sof28 in the recombinant strain YL3(pNZ28) fully restored fibronectin-binding activity and the ability to opacify serum. To determine whether sof plays a role in virulence, mice were challenged intraperitoneally with these strains. None of the 10 mice infected with YL3(pNZ28) survived and only 1 out of 15 mice challenged with T2MR survived, whereas 12 out of 15 mice infected with YL3 survived. These data clearly indicate that SOF is a virulence factor, and they provide the first direct evidence that a fibronectin-binding protein contributes to the pathogenesis of group A streptococcal infections in vivo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 31 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Diffusely adhering Escherichia coli (DAEC) strains have been implicated in epidemiological studies as a cause of diarrhoea in children. However, the molecular interactions of these pathogens with target cells have remained largely obscure. We found that some DAEC strains contain homologues of the locus of enterocyte effacement (LEE) pathogenicity island and secrete EspA, EspB and EspD proteins necessary for the formation of the attaching and effacing (A/E) lesions. To characterize the function of the EspD protein further, we cloned and sequenced the espD genes of two DA-EPEC strains and compared their deduced amino-acid sequences with known EspD sequences. A pattern of two conserved transmembrane regions and one conserved coiled-coil region is predicted in EspD and also in the type III system secreted proteins YopB, PopB, IpaB and SipB of Yersinia, Pseudomonas, Shigella and Salmonella respectively. The EspD protein is inserted into a trypsin-sensitive location in the HeLa cell membrane at sites of bacterial contact, but is not translocated into the cytoplasm. Secretion of EspD increases upon contact with host cells. We propose that the membrane-located EspD protein is part of the translocation apparatus for Esp proteins into the target host cell performing functions similar to YopB in Yersinia.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The facultative intracellular bacterium Listeria monocytogenes is an invasive pathogen that crosses the vascular endothelium and disseminates to the placenta and the central nervous system. Its interaction with endothelial cells is crucial for the pathogenesis of listeriosis. By infecting in vitro human umbilical vein endothelial cells (HUVEC) with L. monocytogenes, we found that wild-type bacteria induced the expression of the adhesion molecules (ICAM-1 and E-selectin), chemokine secretion (IL-8 and monocyte chemotactic protein-1) and NF-κB nuclear translocation. The activation of HUVEC required viable bacteria and was abolished in prfA-deficient mutants of L. monocytogenes, suggesting that virulence genes are associated with endothelial cell activation. Using a genetic approach with mutants of virulence genes, we found that listeriolysin O (LLO)-deficient mutants inactivated in the hly gene did not induce HUVEC activation, as opposed to mutants inactivated in the other virulence genes. Adhesion molecule expression, chemokine secretion and NF-κB activation were fully restored by a strain of Listeria innocua transformed with the hly gene encoding LLO. The relevance in vivo of endothelial cell activation for listerial pathogenesis was investigated in transgenic mice carrying an NF-κB-responsive lacZ reporter gene. NF-κB activation was visualized by a strong lacZ expression in endothelial cells of capillaries of mice infected with a virulent haemolytic strain, but was not seen in those infected with a non-haemolytic isogenic mutant. Direct evidence that LLO is involved in NF-κB activation in transgenic mice was provided by injecting intravenously purified LLO, thus inducing stimulation of NF-κB in endothelial cells of blood capillaries. Our results demonstrate that functional listeriolysin O secreted by bacteria contributes as a potent inflammatory stimulus to inducing endothelial cell activation during the infectious process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...