ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Publishing Group  (25,660)
  • 2005-2009  (13,578)
  • 1995-1999  (12,082)
Collection
Years
Year
  • 1
    Publication Date: 2023-01-31
    Description: Palaeoclimate records and numerical model simulations indicate that changes in tropical and subtropical sea surface temperatures and in the annual average position of the intertropical convergence zone are linked to high-latitude climate changes on millennial to glacial–interglacial timescales. It has recently been suggested that cooling in the high latitudes associated with abrupt climate-change events is evident primarily during the northern hemisphere winter, implying increased seasonality at these times8. However, it is unclear whether such a seasonal bias also exists for the low latitudes. Here we analyse the Mg/Ca ratios of surface-dwelling foraminifera to reconstruct sea surface temperatures in the northeastern Gulf of Mexico for the past 300,000 years. We suggest that sea surface temperatures are controlled by the migration of the northern boundary of the Atlantic Warm Pool, and hence the position of the intertropical convergence zone during boreal summer, and are relatively insensitive to winter conditions. Our results suggest that summer Atlantic Warm Pool expansion is primarily affected by glacial–interglacial variability and low-latitude summer insolation. Because a clear signature of rapid climate-change events, such as the Younger Dryas cold event, is lacking in our record, we conclude that high-latitude events seem to influence only the winter Caribbean climate conditions, consistent with the hypothesis of extreme northern-hemisphere seasonality during abrupt cooling events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © 2008 Nature Publishing Group. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike license. The definitive version was published in Nature Biotechnology 26 (2008): 909-915, doi:10.1038/nbt.1482.
    Description: Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling 86 Mb, exists in pairs of homologous but divergent segments. This suggests that ancient allelic regions in M. incognita are evolving toward effective haploidy, permitting new mechanisms of adaptation. The number and diversity of plant cell wall–degrading enzymes in M. incognita is unprecedented in any animal for which a genome sequence is available, and may derive from multiple horizontal gene transfers from bacterial sources. Our results provide insights into the adaptations required by metazoans to successfully parasitize immunocompetent plants, and open the way for discovering new antiparasitic strategies.
    Description: SCRI laboratory (V.C.B. and J.T.J.) received funding from the Scottish Government. This work benefited from links funded via COST Action 872. G.V.M. and V.L. are supported by ARC, CNRS, EMBO, MENRT and Region Rhone-Alpes. G.V.M., M.R.-R. and V.L. are also funded by the EU Cascade Network of Excellence and the integrated project Crescendo. M.-C.C. is supported by MENRT.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 384 (6608). p. 421.
    Publication Date: 2021-08-20
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 438 (7070). p. 929.
    Publication Date: 2021-08-20
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 433 (7023). p. 212.
    Publication Date: 2021-08-16
    Description: Sexual mimicry among animals is widespread, but does it impart a fertilization advantage in the widely accepted ‘sneak–guard’ model of sperm competition? Here we describe field results in which a dramatic facultative switch in sexual phenotype by sneaker-male cuttlefish leads to immediate fertilization success, even in the presence of the consort male. These results are surprising, given the high rate at which females reject copulation attempts by males, the strong mate-guarding behaviour of consort males, and the high level of sperm competition in this complex mating system
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-25
    Description: The El Niño/Southern Oscillation (ENSO) phenomenon is the strongest natural interannual climate fluctuation1. ENSO originates in the tropical Pacific Ocean and has large effects on the ecology of the region, but it also influences the entire global climate system and affects the societies and economies of manycountries2. ENSO can be understood as an irregular low-frequency oscillation between a warm (El Niño) and a cold (La Niña) state. The strong El Niños of 1982/1983 and 1997/1998, along with the more frequent occurrences of El Niños during the past few decades, raise the question of whether human-induced 'greenhouse' warming affects, or will affect, ENSO3. Several global climate models have been applied to transient greenhouse-gas-induced warming simulations to address this question4, 6, but the results have been debated owing to the inability of the models to fully simulate ENSO (because of their coarse equatorial resolution)7. Here we present results from a global climate model with sufficient resolution in the tropics to adequately represent the narrow equatorial upwelling and low-frequency waves. When the model is forced by a realistic future scenario of increasing greenhouse-gas concentrations, more frequent El-Niño-like conditions and stronger cold events in the tropical Pacific Ocean result
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 389 (6652). pp. 683-684.
    Publication Date: 2021-02-15
    Description: Recent captures of two female giant squid ( Architeuthis ) off southern Australia have provided the first record of a mated female specimen of these almost mythical deepsea creatures. We found sperm packages (spermatophores) embedded within the skin of both ventral arms of the larger of the two specimens. It seems that male giant squids may use their muscular elongate penis to ‘inject’ sperm packages under pressure directly into the arms of females.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-26
    Description: Resolving flow geometry in the mantle wedge is central to understanding the thermal and chemical structure of subduction zones, subducting plate dehydration, and melting that leads to arc volcanism, which can threaten large populations and alter climate through gas and particle emission. Here we show that isotope geochemistry and seismic velocity anisotropy provide strong evidence for trench-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. This finding contradicts classical models, which predict trench-normal flow owing to the overlying wedge mantle being dragged downwards by the subducting plate. The isotopic signature of central Costa Rican volcanic rocks is not consistent with its derivation from the mantle wedge1, 2, 3 or eroded fore-arc complexes4 but instead from seamounts of the Galapagos hotspot track on the subducting Cocos plate. This isotopic signature decreases continuously from central Costa Rica to northwestern Nicaragua. As the age of the isotopic signature beneath Costa Rica can be constrained and its transport distance is known, minimum northwestward flow rates can be estimated (63–190 mm yr-1) and are comparable to the magnitude of subducting Cocos plate motion (approx85 mm yr-1). Trench-parallel flow needs to be taken into account in models evaluating thermal and chemical structure and melt generation in subduction zones.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-05-11
    Description: Marine sponges (phylum Porifera) are among the oldest multicellular animals (metazoans), the sea's most prolific producers of bioactive metabolites, and of considerable ecological importance due to their abundance and ability to filter enormous volumes of seawater. In addition to these important attributes, sponge microbiology is now a rapidly expanding field.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-18
    Description: The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic1, and surface-temperature and rainfall variations over North America2, Europe3 and northern Africa4. Although these multidecadal variations are potentially predictable if the current state of the ocean is known5, 6, 7, the lack of subsurface ocean observations8 that constrain this state has been a limiting factor for realizing the full skill potential of such predictions9. Here we apply a simple approach—that uses only sea surface temperature (SST) observations—to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state10, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...