ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-08
    Description: The Lagrangian method-where current location and intensity are determined by tracking the movement of flow along its path-is the oldest technique for measuring the ocean circulation. For centuries, mariners used compilations of ship drift data to map out the location and intensity of surface currents along major shipping routes of the global ocean. In the mid-20th century, technological advances in electronic navigation allowed oceanographers to continuously track freely drifting surface buoys throughout the ice-free oceans and begin to construct basin-scale, and eventually global-scale, maps of the surface circulation. At about the same time, development of acoustic methods to track neutrally buoyant floats below the surface led to important new discoveries regarding the deep circulation. Since then, Lagrangian observing and modeling techniques have been used to explore the structure of the general circulation and its variability throughout the global ocean, but especially in the Atlantic Ocean. In this review, Lagrangian studies that focus on pathways of the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC), both observational and numerical, have been gathered together to illustrate aspects of the AMOC that are uniquely captured by this technique. These include the importance of horizontal recirculation gyres and interior (as opposed to boundary) pathways, the connectivity (or lack thereof) of the AMOC across latitudes, and the role of mesoscale eddies in some regions as the primary AMOC transport mechanism. There remain vast areas of the deep ocean where there are no direct observations of the pathways of the AMOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-22
    Description: Carbonate buildups and mounds are impressive biogenic structures throughout Earth history. In the recent NE Atlantic, cold-water coral (CWC) reefs form giant carbonate mounds of up to 300 m of elevation. The expansion of these coral carbonate mounds is paced by climatic changes during the past 2.7 Myr. Environmental control on their development is directly linked to controls on its main constructors, the reef-building CWCs. Seawater density has been identified as one of the main controlling parameter of CWC growth in the NE Atlantic. One possibility is the formation of a pycnocline above the carbonate mounds, which is increasing the hydrodynamic regime, supporting elevated food supply, and possibly facilitating the distribution of coral larvae. The potential to reconstruct past seawater densities from stable oxygen isotopes of benthic foraminifera has been further developed: a regional equation gives reliable results for three different settings, peak interglacials (e.g., Holocene), peak glacials (e.g., Last Glacial Maximum), and intermediate setting (between the two extremes). Seawater densities are reconstructed for two different NE Atlantic CWC carbonate mounds in the Porcupine Seabight indicating that the development of carbonate mounds is predominantly found at a seawater density range between 27.3 and 27.7 kg m−3 (σΘ notation). Comparable to recent conditions, we interpret the reconstructed density range as a pycnocline serving as boundary layer, on which currents develop, carrying nutrition and possibly coral larvae. The close correlation of CWC reef growth with reconstructed seawater densities through the Pleistocene highlights the importance of pycnoclines and intermediate water mass dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-22
    Description: The complex deglacial to Holocene oceanographic development in the Gulf of Guayaquil (Eastern Equatorial Pacific) is reconstructed for sea surface and subsurface ocean levels from (isotope) geochemical proxies based on marine sediment cores. At sea surface, southern sourced Cold Coastal Water and tropical Equatorial Surface Water/Tropical Surface Water are intimately related. In particular since ~10 ka, independent sea surface temperature proxies capturing different seasons emphasize the growing seasonal contrast in the Gulf of Guayaquil, which is in contrast to ocean areas further offshore. Cold Coastal Water became rapidly present in the Gulf of Guayaquil during the austral winter season in line with the strengthening of the Southeast Trades, while coastal upwelling off Peru gradually intensified and expanded northward in response to a seasonally changing atmospheric circulation pattern affecting the core locations intensively since 4 ka BP. Equatorial Surface Water, instead, was displaced and Tropical Surface Water moved northward together with the Equatorial Front. At subsurface, the presence of Equatorial Under Current-sourced Equatorial Subsurface Water was continuously growing, prominently since ~10–8 ka B.P. During Heinrich Stadial 1 and large parts of the Bølling/Allerød, and similarly during short Holocene time intervals at ~5.1–4 ka B.P. and ~1.5–0.5 ka B.P., the admixture of Equatorial Subsurface Water was reduced in response to both short-term weakening of Equatorial Under Current strength from the northwest and emplacement by tropical Equatorial Surface Water, considerably warming the uppermost ocean layers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-22
    Description: High-latitude cold-water coral (CWC) reefs are particularly susceptible due to enhanced CO2 uptake in these regions. Using precisely dated (U/Th) CWCs (Lophelia pertusa) retrieved during research cruise POS 391 (Lopphavet 70.6°N, Oslofjord 59°N) we applied boron isotopes (δ11B), Ba/Ca, Li/Mg and U/Ca ratios to reconstruct the environmental boundary conditions of CWC reef growth. The sedimentary record from these CWC reefs reveals a lack of corals between ∼ 6.4 and 4.8 ka. The question remains if this phenomenon is related to changes in the carbonate system or other causes. The initial postglacial setting had elevated Ba/Ca ratios, indicative of meltwater fluxes showing a decreasing trend towards cessation at 6.4 ka with a oscillation pattern similar to continental glacier fluctuations. Downcore U/Ca ratios reveal an increasing trend, which is outside the range of modern U/Ca variability in L. pertusa, suggesting changes of seawater pH near 6.4 ka. The reconstructed BWT at Lopphavet reveals a striking similarity to Barent Sea-Surface and sub-Sea-Surface-Temperature records. We infer that meltwater pulses weakened the North Atlantic Current system resulting in southward advances of cold and CO2 rich Arctic waters. A corresponding shift in the δ11B record from ∼ 25.0‰ to ∼ 27.0 ‰ probably implies enhanced pH-up regulation of the CWCs due to the higher pCO2 concentrations of ambient seawater, which hastened Mid-Holocene CWC reef decline on the Norwegian Margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-29
    Description: Continental slopes are areas of high primary productivity, in particular where strong winds allow cold, nutrient‐laden deep water to upwell. The seafloor in upwelling areas is affected by repeated large submarine landslides, but the special environmental conditions have as yet not been taken into account in the analysis of these landslides. We show evidence for a potential link between environmental conditions and landslide occurrence for the Cap Blanc Slide Complex in the center of the Cap Blanc upwelling zone. Ocean Drilling Program Site 658 was drilled inside the slide complex, and its integration with high‐resolution seismic lines reveals that the onset of sliding postdates the onset of glaciations in the Northern Hemisphere. The sediment associated with failure surfaces of all seven slide events comprises of diatom ooze, the conditions for the formation of which are only met at the end of glacials. Preconditioning of the slope in the Cap Blanc Slide Complex is thus climatically controlled. We conclude that the presence of ooze formed under specific environmental conditions is an important factor in preconditioning slopes to fail in the Cap Blanc Slide Complex and potentially also at other continental slopes with high primary productivity.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-29
    Description: Marine sediments host large amounts of methane (CH4), which is a potent greenhouse gas. Quantitative estimates for methane release from marine sediments are scarce, and a poorly constrained temporal variability leads to large uncertainties in methane emission scenarios. Here, we use 2D and 3D seismic reflection, multibeam bathymetric, geochemical and sedimentological data to (I) map and describe pockmarks in the Witch Ground Basin (central North Sea), (II) characterize associated sedimentological and fluid migration structures, and (III) analyze the related methane release. More than 1500 pockmarks of two distinct morphological classes spread over an area of 225 km2. The two classes form independently from another and are corresponding to at least two different sources of fluids. Class 1 pockmarks are large in size (〉 6 m deep, 〉 250 m long, and 〉 75 m wide), show active venting, and are located above vertical fluid conduits that hydraulically connect the seafloor with deep methane sources. Class 2 pockmarks, which comprise 99.5 % of all pockmarks, are smaller (0.9‐3.1 m deep, 26‐140 m long, and 14‐57 m wide) and are limited to the soft, fine‐grained sediments of the Witch Ground Formation and possibly sourced by compaction‐related dewatering. Buried pockmarks within the Witch Ground Formation document distinct phases of pockmark formation, likely triggered by external forces related to environmental changes after deglaciation. Thus, greenhouse gas emissions from pockmark fields cannot be based on pockmark numbers and present‐day fluxes but require an analysis of the pockmark forming processes through geological time.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    Publication Date: 2023-11-08
    Description: We use a simple 1-D model representing an isolated density surface in the ocean and 3-D global ocean biogeochemical models to evaluate the concept of computing the subsurface oceanic oxygen utilization rate (OUR) from the changes of apparent oxygen utilization (AOU) and water age. The distribution of AOU in the ocean is not only the imprint of respiration in the ocean's interior but is strongly influenced by transport processes and eventually loss at the ocean surface. Since AOU and water age are subject to advection and diffusive mixing, it is only when they are affected both in the same way that OUR represents the correct rate of oxygen consumption. This is the case only when advection prevails or with uniform respiration rates, when the proportions of AOU and age are not changed by transport. In experiments with the 1-D tube model, OUR underestimates respiration when maximum respiration rates occur near the outcrops of isopycnals and overestimates when maxima occur far from the outcrops. Given the distribution of respiration in the ocean, i.e., elevated rates near high-latitude outcrops of isopycnals and low rates below the oligotrophic gyres, underestimates are the rule. Integrating these effects globally in three coupled ocean biogeochemical and circulation models, we find that AOU-over-age based calculations underestimate true model respiration by a factor of 3. Most of this difference is observed in the upper 1000 m of the ocean with the discrepancies increasing toward the surface where OUR underestimates respiration by as much as factor of 4.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-11-08
    Description: Upper‐plate normal faults are a widespread structural element in erosive plate margins. Increasing coverage of marine geophysical data has proven that similar features also exist in accretionary margins where horizontal compression usually results in folding and thrust‐faulting. There is a general lack of understanding of the role and importance of normal faulting for the structural and tectonic evolution of accretionary margins. Here, we use high‐resolution 2D and 3D seismic reflection data and derived seismic attributes to map and analyze upper‐plate normal faulting in the marine forearc of the accretionary Hikurangi margin, New Zealand. We document extension of the marine forearc over a wide area along the upper continental slope. The seismically imaged normal faults show low vertical displacements, high dip angles, a preference for landward dip and often en echelon patterns. We evaluate different processes, which may cause the observed extension, including (1) stress change during the earthquake cycle, (2) regional or local uplift and decoupling of shallow strata from compression at depth, as well as (3) rotation of crustal blocks and resulting differential stresses at the block boundaries. The results suggest that normal faults play an important role in the structural and tectonic evolution of accretionary margins, including the northern Hikurangi forearc.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-11-08
    Description: The North Brazil Current (NBC) constitutes a bottleneck for the mean northward return flow of the Atlantic Meridional Overturning Circulation (AMOC) in the tropical South Atlantic. Previous studies suggested a link between interannual to multidecadal NBC and AMOC transport variability and proposed to use NBC observations as an index for the AMOC. Here we use a set of hindcast, sensitivity, and perturbation experiments performed within a hierarchy of ocean general circulation models to show that decadal to multidecadal buoyancy-forced changes in the basin-scale AMOC transport indeed manifest themselves in the NBC. The relation is, however, masked by a strong interannual to decadal wind-driven gyre variability of the NBC. While questioning the NBC transport as a direct index for the AMOC, the results support its potential merit for an AMOC monitoring system, provided that the wind-driven circulation variability is properly accounted for.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-11-08
    Description: Changes in the ocean iron cycle could help explain the low atmospheric CO2 during the Last Glacial Maximum (LGM). Previous modeling studies have mostly considered changes in aeolian iron fluxes, although it is known that sedimentary and hydrothermal fluxes are important iron sources for today's ocean. Here we explore effects of preindustrial-to-LGM changes in atmospheric dust, sedimentary, and hydrothermal fluxes on the ocean's iron and carbon cycles in a global coupled biogeochemical-circulation model. Considering variable atmospheric iron solubility decreases LGM surface soluble iron fluxes compared with assuming constant solubility. This limits potential increases in productivity and export production due to surface iron fertilization, lowering atmospheric CO2 by only 4 ppm. The effect is countered by a decrease in sedimentary flux due to lower sea level, which increases CO2 by 15 ppm. Assuming a 10 times higher iron dust solubility in the Southern Ocean, combined with changes in sedimentary flux, we obtain an atmospheric CO2 reduction of 13 ppm. The high uncertainty in the iron fluxes does not allow us to determine the net direction and magnitude of variations in atmospheric CO2 due to changes in the iron cycle. Our model does not account for changes to iron-binding ligand concentrations that could modify the results. We conclude that when evaluating glacial-interglacial changes in the ocean iron cycle, not only surface but also seafloor fluxes must be taken into account.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...