ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-28
    Description: A method is provided for controlling operations in a video guidance sensor system wherein images of laser output signals transmitted by the system and returned from a target are captured and processed by the system to produce data used in tracking of the target. Six modes of operation are provided as follows: (i) a reset mode; (ii) a diagnostic mode; (iii) a standby mode; (iv) an acquisition mode; (v) a tracking mode; and (vi) a spot mode wherein captured images of returned laser signals are processed to produce data for all spots found in the image. The method provides for automatic transition to the standby mode from the reset mode after integrity checks are performed and from the diagnostic mode to the reset mode after diagnostic operations are carried out. Further, acceptance of reset and diagnostic commands is permitted only when the system is in the standby mode. The method also provides for automatic transition from the acquisition mode to the tracking mode when an acceptable target is found.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-27
    Description: Large space systems are required for a range of operational, commercial and scientific missions objectives however, current launch vehicle capacities substantially limit the size of space systems (on-orbit or planetary). Assembly and Deployment is the process of constructing a spacecraft or system from modules which may in turn have been constructed from sub-modules in a hierarchical fashion. In-situ assembly of space exploration vehicles and systems will require a broad range of operational capabilities, including: Component transfer and storage, fluid handling, construction and assembly, test and verification. Efficient execution of these functions will require supporting infrastructure, that can: Receive, store and protect (materials, components, etc.); hold and secure; position, align and control; deploy; connect/disconnect; construct; join; assemble/disassemble; dock/undock; and mate/demate.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Capabilities Roadmap Briefings to the National Research Council
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-27
    Description: In the aerospace field spacecraft components are held together by separation systems until a specific time when they must be separated or deployed. Customarily a threaded joining bolt engages one of the components to be joined, and a threaded nut is placed on that bolt against the other component so they can be drawn together by a releasable locking assembly. The releasable locking assembly herein includes a plunger having one end coupled to one end of a plunger bolt. The other end is flanged to abut and compress a coil spring when the plunger is advanced toward the interface plane between the two components. When the plunger is so advanced toward the interface plane, the end of the plunger bolt can be connected to the joining bolt. Thus during retraction the joining bolt is drawn to one side of the interface plane by the force of the expanding spring.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-26
    Description: NASA is seeking to embark on a new set of human and robotic exploration missions back to the Moon, to Mars, and destinations beyond. Key strategic technical challenges will need to be addressed to realize this new vision for space exploration, including improvements in safety and reliability to improve robustness of space operations. Under sponsorship by NASA's Exploration Systems Mission, the Jet Propulsion Laboratory (JPL), together with its partners in government (NASA Johnson Space Center) and industry (Boeing, Vacco Industries, Ashwin-Ushas Inc.) is developing an ultra-low mass (〈3.0 kg) free-flying micro-inspector spacecraft in an effort to enhance safety and reduce risk in future human and exploration missions. The micro-inspector will provide remote vehicle inspections to ensure safety and reliability, or to provide monitoring of in-space assembly. The micro-inspector spacecraft represents an inherently modular system addition that can improve safety and support multiple host vehicles in multiple applications. On human missions, it may help extend the reach of human explorers, decreasing human EVA time to reduce mission cost and risk. The micro-inspector development is the continuation of an effort begun under NASA's Office of Aerospace Technology Enabling Concepts and Technology (ECT) program. The micro-inspector uses miniaturized celestial sensors; relies on a combination of solar power and batteries (allowing for unlimited operation in the sun and up to 4 hours in the shade); utilizes a low-pressure, low-leakage liquid butane propellant system for added safety; and includes multi-functional structure for high system-level integration and miniaturization. Versions of this system to be designed and developed under the H&RT program will include additional capabilities for on-board, vision-based navigation, spacecraft inspection, and collision avoidance, and will be demonstrated in a ground-based, space-related environment. These features make the micro-inspector design unique in its ability to serve crewed as well as robotic spacecraft, well beyond Earth-orbit and into arenas such as robotic missions, where human teleoperation capability is not locally available.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Space Technology and Applications International Forum (STAIF - 2005); Feb 13, 2005 - Feb 17, 2005; New Mexico; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-16
    Description: In order for solar sail propulsion technologies to be considered as a viable option for a wide range of near term practical missions a predictable, stable, reliable, manufactureable, scaleable, and cost effective system must be developed and tested first on earth and then on orbit. The design and development of a Scaleable Square Solar Sail System (S^4) is well underway a t AEC-Able Engineering Co. Inc., and the design and production of the Solar Sails for this system is being carried out by SRS Technologies. In April and May of 2004 a single quadrant 10-meter system was tested at NASA LARC's vacuum chamber and a four quadrant 20-meter system has been designed and built for deployment and testing in the Spring of 2005 at NASA/Glenn Research Center's Plumb Brook Facility. SRS has developed an effective and efficient design for triangular sail quadrants that are supported are three points and provide a flat reflective surface with a high fill factor. This sail design is robust enough for deployments in a one atmosphere, one gravity environment and incorporates several advanced features including adhesiveless seaming of membrane strips, compliant edge borders to allow for film membrane cord strain mismatch without causing wrinkling and low mass (3% of total sail mass) ripstop. This paper will outline the sail design and fabrication process, the lessons learned and the resulting mature production, packaging and deployment processes that have been developed. It will also highlight the scalability of the equipment and processes that were developed to fabricate and package the sails. Based on recent experience, SRS is confidant that flight worthy solar sails in the 40-120-meter size range with areal density in the 4-5g/sq m (sail minus structure) range can be produced with existing technology. Additional film production research will lead to further reductions in film thickness to less than 1 micron enabling production of sails with areal densities as low as 20 g/sq m using the current design resulting in a system areal density of as low as 5.3g/sq m. These areal densities are low enough to allow nearly all of the Solar Sail missions that have been proposed by the scientific community and the fundamental technology required to produce these sails has been demonstrated on the ground test sails that have recently been built. These demonstrations have shown that the technology is mature enough to build sails needed to support critical science missions. Solar Sails will be an enabling technology for NASA's Vision for Space Exploration by allowing communication satellite orbits that can maintain continuous communication with the polar regions of the Moon and Mars and to support solar weather monitoring to provide early warning of solar flares and storms that could threaten the safety of astronauts and other spacecraft.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 6th Gossamer Spacecraft Conference; Apr 18, 2005 - Apr 21, 2005; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-15
    Description: This paper describes the structural dynamic tests conducted in-vacuum on the Scalable Square Solar Sail (S(sup 4)) System 20-meter test article developed by ATK Space Systems as part of a ground demonstrator system development program funded by NASA's In-Space Propulsion program1-3. These tests were conducted for the purpose of validating analytical models that would be required by a flight test program to predict in space performance4. Specific tests included modal vibration tests on the solar sail system in a 1 Torr vacuum environment using various excitation locations and techniques including magnetic excitation at the sail quadrant corners, piezoelectric stack actuation at the mast roots, spreader bar excitation at the mast tips, and bi-morph piezoelectric patch actuation on the sail cords. The excitation methods were evaluated for their suitability to in-vacuum ground testing and their traceability to the development of on-orbit flight test techniques. The solar sail masts were also tested in ambient atmospheric conditions and these results are also discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 2nd Liquid Propulsion Subcommittee; Dec 05, 2005 - Dec 09, 2005; Monterey, CA; United States|Spacecraft Propulsion Subcommittee Joint Meeting; Dec 05, 2005 - Dec 09, 2005; Monterey, CA; United States|53rd JANNAF Propulsion Meeting; Dec 05, 2005 - Dec 09, 2005; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-15
    Description: Solar sail tip-mounted, lightweight pulsed plasma thrusters (PPTs) are proposed for a secondary (or backup) attitude control system (ACS) of a 160-m, 450-kg solar sail spacecraft of the Solar Polar Imager (SPI) mission. A propellantless primary ACS of the SPI sailcraft employs trim control masses running along mast lanyards for pitch/yaw control together with roll stabilizer bars at the mast tips for quadrant tilt (roll) control. The robustness of such a propellantless primary ACS would be further enhanced by a secondary ACS utilizing tip-mounted, lightweight PPTs. The microPPT-based ACS is intended mainly for attitude recovery maneuvers from various off-nominal conditions that cannot be reliably handled by the propellantless primary ACS. However, it can also be employed for: i) the checkout or standby mode prior to and during sail deployment, ii) the post-deployment transition mode (prior to the propellantless primary ACS mode operation), iii) the solar sailing cruise mode of a trimmed sailcraft, and iv) the spin-stabilized, sun-pointing, safe mode. Although a conventional bus ACS is required for the SPI mission as the sail is jettisoned at the start of its science mission phase, the microPPT-based ACS option promises greater redundancy and robustness for the SPI mission. For other sailing missions, where the sail is never jettisoned, this secondary ACS provides a lower-cost, lower-mass propulsion for deployment control and greater redundancy than any traditional reaction-jet control system. This paper presents an overview nf the state--of-the--art microPPT technology, the design requirements of microPPTs for solar sail attitude control, and the preliminary ACS design and simulation results.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 41st AlAA Joint Propulsion Conference; Jul 10, 2005 - Jul 13, 2005; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-15
    Description: Solar sails employ a unique form of propulsion, gaining momentum from incident and reflected photons. However, the momentum transferred by an individual photon is extremely small. Consequently, a solar sail must have an extremely large surface area and also be extremely light. The flexibility of the sail then must be considered when designing or evaluating control laws. In this paper, solar sail flexibility and its influence on control effectiveness is considered using idealized two-dimensional models to represent physical phenomena rather than a specific design. Differential equations of motion are derived for a distributed parameter model of a flexible solar sail idealized as a rotating central hub with two opposing flexible booms. This idealization is appropriate for solar sail designs in which the vibrational modes of the sail and supporting booms move together allowing the sail mass to be distributed along the booms in the idealized model. A reduced analytical model of the flexible response is considered. Linear feedback torque control is applied at the central hub. Two translational disturbances and a torque disturbance also act at the central hub representing the equivalent effect of deflecting sail shape about a reference line. Transient simulations explore different control designs and their effectiveness for controlling orientation, for reducing flexible motion and for disturbance rejection. A second model also is developed as a two-dimensional "pathfinder" model to calculate the effect of solar sail shape on the resultant thrust, in-plane force and torque at the hub. The analysis is then extended to larger models using the finite element method. The finite element modeling approach is verified by comparing results from a two-dimensional finite element model with those from the analytical model. The utility of the finite element modeling approach for this application is then illustrated through examples based on a full finite element model.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Paper 2005-1801 , 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 18, 2005 - Apr 21, 2005; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-15
    Description: Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA's future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive phased test plan is currently being implemented to advance the technology readiness level of the solar sail design. These tests consist of solar sail component, subsystem, and sub-scale system ground tests that simulate the vacuum and thermal conditions of the space environment. Recently, two solar sail test articles, a 7.4-m beam assembly subsystem test article and a 10-m four-quadrant solar sail system test article, were tested in vacuum conditions with a gravity-offload system to mitigate the effects of gravity. This paper presents the structural analyses simulating the ground tests and the correlation of the analyses with the test results. For programmatic risk reduction, a two-prong analysis approach was undertaken in which two separate teams independently developed computational models of the solar sail test articles using the finite element analysis software packages: NEiNastran and ABAQUS. This paper compares the pre-test and post-test analysis predictions from both software packages with the test data including load-deflection curves from static load tests, and vibration frequencies and mode shapes from vibration tests. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were uncertainties in the material properties, test conditions, and modeling assumptions used in the analyses.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Paper 2005-2121 , 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 18, 2005 - Apr 21, 2005; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-15
    Description: On a spring day in 1996, at their research center in the Maryland countryside, representatives from the Johns Hopkins University Applied Physics Laboratory (APL) presented Administrator Daniel S. Goldin of the National Aeronautics and Space Administration (NASA) with a check for $3.6 million. 1 Two and a half years earlier, APL officials had agreed to develop a spacecraft capable of conducting an asteroid rendezvous and to do so for slightly more than $122 million. This was a remarkably low sum for a spacecraft due to conduct a planetaryclass mission. By contrast, the Mars Observer spacecraft launched in 1992 for an orbital rendezvous with the red planet had cost $479 million to develop, while the upcoming Cassini mission to Saturn required a spacecraft whose total cost was approaching $1.4 billion. In an Agency accustomed to cost overruns on major missions, the promise to build a planetary-class spacecraft for about $100 million seemed excessively optimistic.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/SP-2005-4536 , LC-2004018515
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...