ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-28
    Description: The supersonic bi-directional (SBiDir) flying wing (FW) concept has a great potential to achieve low sonic boom with high supersonic aerodynamic performance due to removal of performance conflict between high speed and low speed by rotating goo in flight. This NIAC Phase 1 research has achieved three objectives: 2) prove the concept based on simulation that it can achieve very low boom with smooth Sine wave ground over-pressure signature and excellent aerodynamic efficiency; 3) conduct trade study to correlate the geometric parameters with sonic boom and aerodynamic performance for further automated design optimization in Phase II. The design methodology developed in Phase I includes three parts: 1) an advanced geometry model, which can vary airfoil meanline angle distribution to control the expansion and shock waves on the airplane surface to mitigate sonic boom and improve aerodynamic efficiency. 2) a validated CFD procedure to resolve near field flow with accurate shock strength. The sonic boom propagation from near field to far field ground is simulated by NASA NF Boom code. The surface friction drag prediction is based on fiat plate correlation adopted by Seebass and supported by the experimental study of Winter and Smith, which is on the conservative side and is more reliable than CFD RANS simulation. 3) a mission analysis tool based on Corke's model that provides design requirements and constraints of supersonic airplanes for range, payload, volume, size, weight, etc. The design mission target is a supersonic transport with cruise Mach number 1.6, 100 passengers, and 4000nm range. The trade study has several very important findings: 1) The far field ground sonic boom signature is directly related to the smoothness of the flow on the airplane surface. The meanline angle distribution is a very effective control methodology to mitigate surface shock and expansion wave strength, and mitigating compression wave coalescing by achieving smooth loading distribution chord-wise. Compared with a linear meanline angle distribution, a design using nonlinear and non-monotonic meanline angle distribution is able to reduce the sonic boom ground loudness by over 20dBP1. The design achieves sonic boom ground loudness less than 70dBP1 and aerodynamic dynamic efficiency 1/D of 8.4. 2) Decreasing sweep angle within the Mach cone will increase 1/D as well as sonic boom. A design with variable sweep from 84 at the very leading edge to 68 at the tip achieves an extraordinarily high 1/D of 10.4 at Mach number 1.6 due to the low wave drag. If no sonic boom constraint is attached, SBiDir-FW concept still has a lot of room to increase the 1/D. 3) The round leading edge and trailing edge under high sweep angle are beneficial to improve aerodynamic performance, sonic boom, and to increase volume of the airplane. 4) Subsonic performance is benefited greatly from the high slenderness of supersonic configuration after rotating goo. A design with excellent supersonic aspect ratio of 0.44, 1/D of 8.g, gives an extraordinary subsonic aspect ration of 10 and 1/D of 1g.7. Two configurations are designed in details to install internal seats, landing gears, and engine installation to demonstrate the feasibility of SBiDir-FW configuration to accommodate all the required volume for realistic airplane. Here we emphasize that the qualitative findings in Phase I are very encouraging, more important than the quantitative results. Qualitative findings give the understanding of physics and provide the path to achieve the ultimate high performance design. The promising quantitative results achieved in Phase I need to be confirmed by wind tunnel testing in Phase II and ultimately proved by flight test. The other important step forward will be made to study the rotation transition from both CFD unsteady simulation and wind tunnel testing.
    Keywords: Aerodynamics
    Type: HQ-E-DAA-TN63203
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: A device used in making differential measurements of a flow includes a flow obstruction and a support arm. The flow obstruction's forward portion is a nose cone. The flow obstruction's aft portion is coupled to the nose cone. The support arm's first end is coupled to an exterior wall of a conduit, and its second end is coupled to the forward portion of the flow obstruction. The support arm positions the flow obstruction in the conduit such that a flow region is defined around its nose cone, and such that the support arm's first and second end are separated from one another with respect to a length dimension of the conduit. Measurement ports are provided in the support arm and flow obstruction. Manifolds extending through the flow obstruction and support arm couple the ports to points at the exterior wall of the conduit.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: A multi-element airfoil system includes an airfoil element having a leading edge region and a skin element coupled to the airfoil element. A slat deployment system is coupled to the slat and the skin element, and is capable of deploying and retracting the slat and the skin element. The skin element substantially fills the lateral gap formed between the slat and the airfoil element when the slat is deployed. The system further includes an uncoupling device and a sensor to remove the skin element from the gap based on a critical angle-of-attack of the airfoil element. The system can alternatively comprise a trailing edge flap, where a skin element substantially fills the lateral gap between the flap and the trailing edge region of the airfoil element. In each case, the skin element fills a gap between the airfoil element and the deployed flap or slat to reduce airframe noise.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: Computational aeroelastic analyses typically use a mathematical model for the structural modes of a flexible structure and a nonlinear aerodynamic model that can generate a plurality of unsteady aerodynamic responses based on the structural modes for conditions defining an aerodynamic condition of the flexible structure. In the present invention, a linear state-space model is generated using a single execution of the nonlinear aerodynamic model for all of the structural modes where a family of orthogonal functions is used as the inputs. Then, static and dynamic aeroelastic solutions are generated using computational interaction between the mathematical model and the linear state-space model for a plurality of periodic points in time.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-28
    Description: The present invention comprises a high performance, vertical, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a vertical piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The jet velocity and mass flow rate for the present invention will be several times higher than conventional piezoelectric synthetic jet actuators.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: A system for reducing distortion at the aerodynamic interface plane of a boundary-layer-ingesting inlet using a combination of active and passive flow control devices is disclosed. Active flow control jets and vortex generating vanes are used in combination to reduce distortion across a range of inlet operating conditions. Together, the vortex generating vanes can reduce most of the inlet distortion and the active flow control jets can be used at a significantly reduced control jet mass flow rate to make sure the inlet distortion stays low as the inlet mass flow rate varies. Overall inlet distortion, measured and described as average SAE circumferential distortion descriptor, was maintained at a value of 0.02 or less. Advantageous arrangements and orientations of the active flow control jets and the vortex generating vanes were developed using computational fluid dynamics simulations and wind tunnel experimentations.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: The state of the art in aeronautical engineering has been continually accelerated by the development of advanced analysis and design tools. Used in the early design stages for aircraft and spacecraft, these methods have provided a fundamental understanding of physical phenomena and enabled designers to predict and analyze critical characteristics of new vehicles, including the capability to control or modify unsatisfactory behavior. For example, the relatively recent emergence and routine use of extremely powerful digital computer hardware and software has had a major impact on design capabilities and procedures. Sophisticated new airflow measurement and visualization systems permit the analyst to conduct micro- and macro-studies of properties within flow fields on and off the surfaces of models in advanced wind tunnels. Trade studies of the most efficient geometrical shapes for aircraft can be conducted with blazing speed within a broad scope of integrated technical disciplines, and the use of sophisticated piloted simulators in the vehicle development process permits the most important segment of operations the human pilot to make early assessments of the acceptability of the vehicle for its intended mission. Knowledgeable applications of these tools of the trade dramatically reduce risk and redesign, and increase the marketability and safety of new aerospace vehicles. Arguably, one of the more viable and valuable design tools since the advent of flight has been testing of subscale models. As used herein, the term "model" refers to a physical article used in experimental analyses of a larger full-scale vehicle. The reader is probably aware that many other forms of mathematical and computer-based models are also used in aerospace design; however, such topics are beyond the intended scope of this document. Model aircraft have always been a source of fascination, inspiration, and recreation for humans since the earliest days of flight. Within the scientific community, Leonardo da Vinci, George Cayley, and the Wright brothers are examples of early aviation pioneers who frequently used models during their scientific efforts to understand and develop flying machines. Progress in the technology associated with model testing in worldwide applications has firmly established model aircraft as a key element in new aerospace research and development programs. Models are now routinely used in many applications and roles, including aerodynamic data gathering in wind tunnel investigations for the analysis of full-scale aircraft designs, proof-of-concept demonstrators for radical aeronautical concepts, and problem-solving exercises for vehicles already in production. The most critical contributions of aerospace models are to provide confidence and risk reduction for new designs and to enhance the safety and efficiency of existing configurations.
    Keywords: Aerodynamics
    Type: NASA/SP-2009-575 , HQ-STI-09-157
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-26
    Description: A numerical investigation of transonic flow around a mechanically deployable entry system being considered for a robotic mission to Venus has been performed, and preliminary results are reported. The flow around a conceptual representation of the vehicle geometry was simulated at discrete points along a ballistic trajectory using Detached Eddy Simulation (DES). The trajectory points selected span the low supersonic to transonic regimes with freestream Mach numbers from 1:5 to 0:8, and freestream Reynolds numbers (based on diameter) between 2:09 x 10(exp 6) and 2:93 x 10(exp 6). Additionally, the Mach 0:8 case was simulated at angles of attack between 0 and 5 . Static aerodynamic coefficients obtained from the data show qualitative agreement with data from 70deg sphere-cone wind tunnel tests performed for the Viking program. Finally, the effect of choices of models and numerical algorithms is addressed by comparing the DES results to those using a Reynolds Averaged Navier-Stokes (RANS) model, as well as to results using a more dissipative numerical scheme.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN4603 , 2012 IEEE Aerospace Conference; Mar 03, 2012 - Mar 10, 2012; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-26
    Description: Over the past decade, there have been significant advancements in the accuracy of rotor aeroelastic simulations with the application of computational fluid dynamics methods coupled with computational structural dynamics codes (CFD/CSD). The HART II International Workshop database, which includes descent operating conditions with strong blade-vortex interactions (BVI), provides a unique opportunity to assess the ability of CFD/CSD to capture these physics. In addition to a baseline case with BVI, two additional cases with 3/rev higher harmonic blade root pitch control (HHC) are available for comparison. The collaboration during the workshop permits assessment of structured, unstructured, and hybrid overset CFD/CSD methods from across the globe on the dynamics, aerodynamics, and wake structure. Evaluation of the plethora of CFD/CSD methods indicate that the most important numerical variables associated with most accurately capturing BVI are a two-equation or detached eddy simulation (DES)-based turbulence model and a sufficiently small time step. An appropriate trade-off between grid fidelity and spatial accuracy schemes also appears to be pertinent for capturing BVI on the advancing rotor disk. Overall, the CFD/CSD methods generally fall within the same accuracy; cost-effective hybrid Navier-Stokes/Lagrangian wake methods provide accuracies within 50% the full CFD/CSD methods for most parameters of interest, except for those highly influenced by torsion. The importance of modeling the fuselage is observed, and other computational requirements are discussed.
    Keywords: Aerodynamics
    Type: Paper No. 349 , NF1676L-13580 , American Helicopter Society 68th Annual Forum and Technology Display; May 01, 2012 - May 03, 2012; Forth Worth, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...