ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-30
    Description: The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A(+) CD8(+) T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667810/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667810/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naik, Shruti -- Bouladoux, Nicolas -- Linehan, Jonathan L -- Han, Seong-Ji -- Harrison, Oliver J -- Wilhelm, Christoph -- Conlan, Sean -- Himmelfarb, Sarah -- Byrd, Allyson L -- Deming, Clayton -- Quinones, Mariam -- Brenchley, Jason M -- Kong, Heidi H -- Tussiwand, Roxanne -- Murphy, Kenneth M -- Merad, Miriam -- Segre, Julia A -- Belkaid, Yasmine -- R01 CA173861/CA/NCI NIH HHS/ -- R01 CA190400/CA/NCI NIH HHS/ -- U01 AI095611/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2015 Apr 2;520(7545):104-8. doi: 10.1038/nature14052. Epub 2015 Jan 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Immunity at Barrier Sites Initiative, National Institute of Allergy and Infectious Diseases, NIH, Bethesda 20892, USA [2] Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA. ; Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA. ; 1] Immunity at Barrier Sites Initiative, National Institute of Allergy and Infectious Diseases, NIH, Bethesda 20892, USA [2] Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA [3] Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA. ; Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, NIH Bethesda, Maryland 20892, USA. ; 1] Immunity at Barrier Sites Initiative, National Institute of Allergy and Infectious Diseases, NIH, Bethesda 20892, USA [2] Immunopathogenesis Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH Bethesda, Maryland 20892, USA. ; Dermatology Branch, National Cancer Institute, NIH Bethesda, Maryland 20892, USA. ; Howard Hughes Medical Institute, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Department of Oncological Sciences, Tisch Cancer Institute and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25539086" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Bacterial/immunology ; CD8-Positive T-Lymphocytes/cytology/*immunology ; Dendritic Cells/cytology/*immunology ; Humans ; Immunity, Innate/immunology ; Interleukin-17/immunology ; Langerhans Cells/cytology/immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Primates ; Skin/cytology/*immunology/*microbiology ; Staphylococcus epidermidis/immunology ; Symbiosis/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-30
    Description: Hox genes regulate regionalization of the axial skeleton in vertebrates, and changes in their expression have been proposed to be a fundamental mechanism driving the evolution of new body forms. The origin of the snake-like body form, with its deregionalized pre-cloacal axial skeleton, has been explained as either homogenization of Hox gene expression domains, or retention of standard vertebrate Hox domains with alteration of downstream expression that suppresses development of distinct regions. Both models assume a highly regionalized ancestor, but the extent of deregionalization of the primaxial domain (vertebrae, dorsal ribs) of the skeleton in snake-like body forms has never been analysed. Here we combine geometric morphometrics and maximum-likelihood analysis to show that the pre-cloacal primaxial domain of elongate, limb-reduced lizards and snakes is not deregionalized compared with limbed taxa, and that the phylogenetic structure of primaxial morphology in reptiles does not support a loss of regionalization in the evolution of snakes. We demonstrate that morphometric regional boundaries correspond to mapped gene expression domains in snakes, suggesting that their primaxial domain is patterned by a normally functional Hox code. Comparison of primaxial osteology in fossil and modern amniotes with Hox gene distributions within Amniota indicates that a functional, sequentially expressed Hox code patterned a subtle morphological gradient along the anterior-posterior axis in stem members of amniote clades and extant lizards, including snakes. The highly regionalized skeletons of extant archosaurs and mammals result from independent evolution in the Hox code and do not represent ancestral conditions for clades with snake-like body forms. The developmental origin of snakes is best explained by decoupling of the primaxial and abaxial domains and by increases in somite number, not by changes in the function of primaxial Hox genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Head, Jason J -- Polly, P David -- England -- Nature. 2015 Apr 2;520(7545):86-9. doi: 10.1038/nature14042. Epub 2015 Jan 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Atmospheric Sciences and Nebraska State Museum of Natural History, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0340, USA. ; Departments of Geological Sciences, Biology and Anthropology, Indiana University, Bloomington, Indiana 47405-1405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25539083" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cloaca ; Developmental Biology ; Extremities/anatomy & histology ; *Fossils ; Genes, Homeobox/*genetics ; Lizards/anatomy & histology ; Models, Biological ; *Phylogeny ; Sacrum ; Snakes/*anatomy & histology/*genetics ; Spine/*anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-24
    Description: The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jihye -- Ishiguro, Kei-ichiro -- Nambu, Aya -- Akiyoshi, Bungo -- Yokobayashi, Shihori -- Kagami, Ayano -- Ishiguro, Tadashi -- Pendas, Alberto M -- Takeda, Naoki -- Sakakibara, Yogo -- Kitajima, Tomoya S -- Tanno, Yuji -- Sakuno, Takeshi -- Watanabe, Yoshinori -- England -- Nature. 2015 Jan 22;517(7535):466-71. doi: 10.1038/nature14097. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan. ; Instituto de Biologia Molecular y Celular del Cancer (CSIC-USAL), 37007 Salamanca, Spain. ; Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 Japan. ; Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/metabolism ; Centromere/metabolism ; Chromosomal Proteins, Non-Histone/deficiency/genetics/*metabolism ; *Conserved Sequence ; Female ; Humans ; Infertility/genetics/metabolism ; Kinetochores/*metabolism ; Male ; *Meiosis ; Mice ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Schizosaccharomyces pombe Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-24
    Description: Broadly, tissue regeneration is achieved in two ways: by proliferation of common differentiated cells and/or by deployment of specialized stem/progenitor cells. Which of these pathways applies is both organ- and injury-specific. Current models in the lung posit that epithelial repair can be attributed to cells expressing mature lineage markers. By contrast, here we define the regenerative role of previously uncharacterized, rare lineage-negative epithelial stem/progenitor (LNEP) cells present within normal distal lung. Quiescent LNEPs activate a DeltaNp63 (a p63 splice variant) and cytokeratin 5 remodelling program after influenza or bleomycin injury in mice. Activated cells proliferate and migrate widely to occupy heavily injured areas depleted of mature lineages, at which point they differentiate towards mature epithelium. Lineage tracing revealed scant contribution of pre-existing mature epithelial cells in such repair, whereas orthotopic transplantation of LNEPs, isolated by a definitive surface profile identified through single-cell sequencing, directly demonstrated the proliferative capacity and multipotency of this population. LNEPs require Notch signalling to activate the DeltaNp63 and cytokeratin 5 program, and subsequent Notch blockade promotes an alveolar cell fate. Persistent Notch signalling after injury led to parenchymal 'micro-honeycombing' (alveolar cysts), indicative of failed regeneration. Lungs from patients with fibrosis show analogous honeycomb cysts with evidence of hyperactive Notch signalling. Our findings indicate that distinct stem/progenitor cell pools repopulate injured tissue depending on the extent of the injury, and the outcomes of regeneration or fibrosis may depend in part on the dynamics of LNEP Notch signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312207/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312207/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vaughan, Andrew E -- Brumwell, Alexis N -- Xi, Ying -- Gotts, Jeffrey E -- Brownfield, Doug G -- Treutlein, Barbara -- Tan, Kevin -- Tan, Victor -- Liu, Feng Chun -- Looney, Mark R -- Matthay, Michael A -- Rock, Jason R -- Chapman, Harold A -- F32 HL117600-01/HL/NHLBI NIH HHS/ -- R01 HL44712/HL/NHLBI NIH HHS/ -- U01 HL099995/HL/NHLBI NIH HHS/ -- U01 HL099999/HL/NHLBI NIH HHS/ -- U01 HL111054/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 29;517(7536):621-5. doi: 10.1038/nature14112. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco (UCSF), San Francisco, California 94143, USA. ; Department of Biochemistry, Stanford University School of Medicine and Howard Hughes Medical Institute, Stanford, California 94305, USA. ; Max Planck Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, Deutscher Platz 6, 04103 Leipzig, Germany. ; Department of Anatomy, School of Medicine, University of California, San Francisco (UCSF), San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533958" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bleomycin ; Cell Lineage ; Cell Proliferation ; Cell Separation ; Cysts/metabolism/pathology ; Epithelial Cells/*cytology/metabolism/*pathology ; Female ; Humans ; Keratin-5/metabolism ; Lung/*cytology/*pathology/physiology ; Lung Injury/chemically induced/*pathology/virology ; Male ; Mice ; Orthomyxoviridae Infections/pathology/virology ; Phosphoproteins/genetics/metabolism ; *Re-Epithelialization ; Receptors, Notch/metabolism ; Signal Transduction ; Stem Cell Transplantation ; Stem Cells/*cytology/metabolism ; Trans-Activators/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-24
    Description: Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders. Here we demonstrate the power of using an unbiased genotype-driven approach to identify subsets of patients with similar disorders. By studying 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing and array-based detection of chromosomal rearrangements, we discovered 12 novel genes associated with developmental disorders. These newly implicated genes increase by 10% (from 28% to 31%) the proportion of children that could be diagnosed. Clustering of missense mutations in six of these newly implicated genes suggests that normal development is being perturbed by an activating or dominant-negative mechanism. Our findings demonstrate the value of adopting a comprehensive strategy, both genome-wide and nationwide, to elucidate the underlying causes of rare genetic disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deciphering Developmental Disorders Study -- 098395/Wellcome Trust/United Kingdom -- 100140/Wellcome Trust/United Kingdom -- CZD/16/6/Chief Scientist Office/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- Department of Health/United Kingdom -- England -- Nature. 2015 Mar 12;519(7542):223-8. doi: 10.1038/nature14135. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533962" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Animals ; Carrier Proteins/genetics ; Child ; Child, Preschool ; Chromosomal Proteins, Non-Histone/genetics ; Chromosome Aberrations ; DEAD-box RNA Helicases/genetics ; DNA-Binding Proteins/genetics ; Developmental Disabilities/*diagnosis/*genetics ; Dynamin I/genetics ; Exome/genetics ; Female ; Gene Expression Regulation, Developmental ; Genes, Dominant/genetics ; Genome, Human/genetics ; Great Britain ; Guanine Nucleotide Exchange Factors/genetics ; Homeodomain Proteins/genetics ; Humans ; Infant ; Infant, Newborn ; Male ; Mutation, Missense/genetics ; Nerve Tissue Proteins/genetics ; Nuclear Proteins/genetics ; Parents ; Phosphoproteins/genetics ; Polycomb Repressive Complex 1/genetics ; Protein Phosphatase 2/genetics ; Protein-Serine-Threonine Kinases/genetics ; Rare Diseases/genetics ; Transcription Factors/genetics ; Transposases/genetics ; Zebrafish/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tachibana-Konwalski, Kikue -- England -- Nature. 2015 Jan 22;517(7535):441-2. doi: 10.1038/nature14087. Epub 2014 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533954" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomal Proteins, Non-Histone/*metabolism ; *Conserved Sequence ; Female ; Humans ; Kinetochores/*metabolism ; Male ; *Meiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-24
    Description: Collective behaviour enhances environmental sensing and decision-making in groups of animals. Experimental and theoretical investigations of schooling fish, flocking birds and human crowds have demonstrated that simple interactions between individuals can explain emergent group dynamics. These findings indicate the existence of neural circuits that support distributed behaviours, but the molecular and cellular identities of relevant sensory pathways are unknown. Here we show that Drosophila melanogaster exhibits collective responses to an aversive odour: individual flies weakly avoid the stimulus, but groups show enhanced escape reactions. Using high-resolution behavioural tracking, computational simulations, genetic perturbations, neural silencing and optogenetic activation we demonstrate that this collective odour avoidance arises from cascades of appendage touch interactions between pairs of flies. Inter-fly touch sensing and collective behaviour require the activity of distal leg mechanosensory sensilla neurons and the mechanosensory channel NOMPC. Remarkably, through these inter-fly encounters, wild-type flies can elicit avoidance behaviour in mutant animals that cannot sense the odour--a basic form of communication. Our data highlight the unexpected importance of social context in the sensory responses of a solitary species and open the door to a neural-circuit-level understanding of collective behaviour in animal groups.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359906/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359906/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramdya, Pavan -- Lichocki, Pawel -- Cruchet, Steeve -- Frisch, Lukas -- Tse, Winnie -- Floreano, Dario -- Benton, Richard -- 205202/European Research Council/International -- 615094/European Research Council/International -- England -- Nature. 2015 Mar 12;519(7542):233-6. doi: 10.1038/nature14024. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland [2] Laboratory of Intelligent Systems, Institute of Microengineering, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland. ; 1] Laboratory of Intelligent Systems, Institute of Microengineering, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland [2] Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland. ; Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland. ; Master's Program in Microengineering, Institute of Microengineering, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland. ; Laboratory of Intelligent Systems, Institute of Microengineering, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533959" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Communication ; Animals ; Avoidance Learning/physiology ; Computer Simulation ; Drosophila Proteins/metabolism ; Drosophila melanogaster/cytology/genetics/*physiology ; Escape Reaction/*physiology ; Extremities/physiology ; Female ; Male ; *Mass Behavior ; Mechanoreceptors/cytology/*physiology ; Mechanotransduction, Cellular ; Odors/*analysis ; Optogenetics ; Sensilla/cytology/*physiology ; Touch/physiology ; Transient Receptor Potential Channels/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-24
    Description: Obesity is an increasingly prevalent disease regulated by genetic and environmental factors. Emerging studies indicate that immune cells, including monocytes, granulocytes and lymphocytes, regulate metabolic homeostasis and are dysregulated in obesity. Group 2 innate lymphoid cells (ILC2s) can regulate adaptive immunity and eosinophil and alternatively activated macrophage responses, and were recently identified in murine white adipose tissue (WAT) where they may act to limit the development of obesity. However, ILC2s have not been identified in human adipose tissue, and the mechanisms by which ILC2s regulate metabolic homeostasis remain unknown. Here we identify ILC2s in human WAT and demonstrate that decreased ILC2 responses in WAT are a conserved characteristic of obesity in humans and mice. Interleukin (IL)-33 was found to be critical for the maintenance of ILC2s in WAT and in limiting adiposity in mice by increasing caloric expenditure. This was associated with recruitment of uncoupling protein 1 (UCP1)(+) beige adipocytes in WAT, a process known as beiging or browning that regulates caloric expenditure. IL-33-induced beiging was dependent on ILC2s, and IL-33 treatment or transfer of IL-33-elicited ILC2s was sufficient to drive beiging independently of the adaptive immune system, eosinophils or IL-4 receptor signalling. We found that ILC2s produce methionine-enkephalin peptides that can act directly on adipocytes to upregulate Ucp1 expression in vitro and that promote beiging in vivo. Collectively, these studies indicate that, in addition to responding to infection or tissue damage, ILC2s can regulate adipose function and metabolic homeostasis in part via production of enkephalin peptides that elicit beiging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447235/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447235/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brestoff, Jonathan R -- Kim, Brian S -- Saenz, Steven A -- Stine, Rachel R -- Monticelli, Laurel A -- Sonnenberg, Gregory F -- Thome, Joseph J -- Farber, Donna L -- Lutfy, Kabirullah -- Seale, Patrick -- Artis, David -- 2-P30 CA016520/CA/NCI NIH HHS/ -- AI061570/AI/NIAID NIH HHS/ -- AI074878/AI/NIAID NIH HHS/ -- AI095466/AI/NIAID NIH HHS/ -- AI095608/AI/NIAID NIH HHS/ -- AI097333/AI/NIAID NIH HHS/ -- AI102942/AI/NIAID NIH HHS/ -- DP2 OD007288/OD/NIH HHS/ -- DP2OD007288/OD/NIH HHS/ -- DP5 OD012116/OD/NIH HHS/ -- DP5OD012116/OD/NIH HHS/ -- F30 AI112023/AI/NIAID NIH HHS/ -- F30-AI112023/AI/NIAID NIH HHS/ -- F31 AG047003/AG/NIA NIH HHS/ -- F31AG047003/AG/NIA NIH HHS/ -- K08 AR065577/AR/NIAMS NIH HHS/ -- KL2-RR024132/RR/NCRR NIH HHS/ -- P01 AI106697/AI/NIAID NIH HHS/ -- P01AI06697/AI/NIAID NIH HHS/ -- P30 AR057217/AR/NIAMS NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- P30-DK050306/DK/NIDDK NIH HHS/ -- P30DK19525/DK/NIDDK NIH HHS/ -- R01 AI061570/AI/NIAID NIH HHS/ -- R01 AI074878/AI/NIAID NIH HHS/ -- R01 AI095466/AI/NIAID NIH HHS/ -- R01 AI097333/AI/NIAID NIH HHS/ -- R01 AI102942/AI/NIAID NIH HHS/ -- T32 AI060516/AI/NIAID NIH HHS/ -- T32-AI007532/AI/NIAID NIH HHS/ -- T32-AI060516/AI/NIAID NIH HHS/ -- U01 AI095608/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Mar 12;519(7542):242-6. doi: 10.1038/nature14115. Epub 2014 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Jill Roberts Institute for Research in IBD, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA [2] Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Institute for Diabetes, Obesity and Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Jill Roberts Institute for Research in IBD, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA. ; 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York 10032, USA [2] Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA. ; 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York 10032, USA [2] Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA [3] Department of Surgery, Columbia University Medical Center, New York, New York 10032, USA. ; Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533952" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology/drug effects ; Adipose Tissue, White/*cytology/*immunology ; Animals ; Energy Metabolism/immunology ; Enkephalin, Methionine/biosynthesis/metabolism ; Eosinophils/immunology/metabolism ; Female ; Homeostasis/drug effects ; Humans ; Immunity, Innate/*immunology ; Interleukins/immunology/pharmacology ; Ion Channels/metabolism ; Lymphocytes/cytology/immunology/*physiology ; Male ; Mice ; Mitochondrial Proteins/metabolism ; Obesity/*immunology/pathology ; Receptors, Interleukin-4/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-24
    Description: Resveratrol is reported to extend lifespan and provide cardio-neuro-protective, anti-diabetic, and anti-cancer effects by initiating a stress response that induces survival genes. Because human tyrosyl transfer-RNA (tRNA) synthetase (TyrRS) translocates to the nucleus under stress conditions, we considered the possibility that the tyrosine-like phenolic ring of resveratrol might fit into the active site pocket to effect a nuclear role. Here we present a 2.1 A co-crystal structure of resveratrol bound to the active site of TyrRS. Resveratrol nullifies the catalytic activity and redirects TyrRS to a nuclear function, stimulating NAD(+)-dependent auto-poly-ADP-ribosylation of poly(ADP-ribose) polymerase 1 (PARP1). Downstream activation of key stress signalling pathways are causally connected to TyrRS-PARP1-NAD(+) collaboration. This collaboration is also demonstrated in the mouse, and is specifically blocked in vivo by a resveratrol-displacing tyrosyl adenylate analogue. In contrast to functionally diverse tRNA synthetase catalytic nulls created by alternative splicing events that ablate active sites, here a non-spliced TyrRS catalytic null reveals a new PARP1- and NAD(+)-dependent dimension to the physiological mechanism of resveratrol.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368482/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368482/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sajish, Mathew -- Schimmel, Paul -- CA92577/CA/NCI NIH HHS/ -- R01 CA092577/CA/NCI NIH HHS/ -- England -- Nature. 2015 Mar 19;519(7543):370-3. doi: 10.1038/nature14028. Epub 2014 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology, The Scripps Laboratories for tRNA Synthetase Research, Department of Molecular and Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; 1] The Skaggs Institute for Chemical Biology, The Scripps Laboratories for tRNA Synthetase Research, Department of Molecular and Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] The Scripps Florida Research Institute, 130 Scripps Way, Jupiter, Florida 33458, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533949" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Biocatalysis/drug effects ; Catalytic Domain ; Cell Nucleus/enzymology ; Crystallography, X-Ray ; Culture Media, Serum-Free ; Enzyme Activation/drug effects ; Humans ; Male ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Poly Adenosine Diphosphate Ribose/metabolism ; Poly(ADP-ribose) Polymerases/chemistry/*metabolism ; Protein Conformation ; Signal Transduction/drug effects ; Sirtuin 1/metabolism ; Sirtuins/metabolism ; Stilbenes/antagonists & inhibitors/chemistry/*pharmacology ; Tyrosine-tRNA Ligase/*antagonists & inhibitors/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- Kaiser, Jocelyn -- Service, Robert F -- Gibbons, Ann -- Vogel, Gretchen -- Underwood, Emily -- Hand, Eric -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1444-9. doi: 10.1126/science.346.6216.1444. Epub 2014 Dec 18.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525224" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomedical Research/*trends ; Humans ; Mice
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayr, Gerald -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1466. doi: 10.1126/science.346.6216.1466-b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Senckenberg Research Institute and Natural History Museum Frankfurt, Ornithological Section, D-60325 Frankfurt am Main, Germany. gerald.mayr@senckenberg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525236" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Color Vision ; Dinosaurs/*physiology ; Feathers/*physiology ; Galliformes/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1439. doi: 10.1126/science.346.6216.1439.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525220" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/*genetics ; Bone and Bones/chemistry ; *Breeding ; DNA/*genetics/isolation & purification ; Horses/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becher, Oren J -- Wechsler-Reya, Robert J -- R01 CA159859/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1458-9. doi: 10.1126/science.aaa3814.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pediatric Hematology-Oncology, Department of Pathology, and Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, 27710, USA. rwreya@sanfordburnham.org oren.becher@duke.edu. ; Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA. rwreya@sanfordburnham.org oren.becher@duke.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525232" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Stem Neoplasms/*genetics ; Cell Transformation, Neoplastic/*genetics ; Embryonic Stem Cells/*metabolism ; Glioma/*genetics ; Histones/*genetics ; Humans ; *Models, Genetic ; Neural Stem Cells/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-12-20
    Description: Multivalent molecules with repetitive structures including bacterial capsular polysaccharides and viral capsids elicit antibody responses through B cell receptor (BCR) crosslinking in the absence of T cell help. We report that immunization with these T cell-independent type 2 (TI-2) antigens causes up-regulation of endogenous retrovirus (ERV) RNAs in antigen-specific mouse B cells. These RNAs are detected via a mitochondrial antiviral signaling protein (MAVS)-dependent RNA sensing pathway or reverse-transcribed and detected via the cGAS-cGAMP-STING pathway, triggering a second, sustained wave of signaling that promotes specific immunoglobulin M production. Deficiency of both MAVS and cGAS, or treatment of MAVS-deficient mice with reverse transcriptase inhibitors, dramatically inhibits TI-2 antibody responses. These findings suggest that ERV and two innate sensing pathways that detect them are integral components of the TI-2 B cell signaling apparatus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391621/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391621/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zeng, Ming -- Hu, Zeping -- Shi, Xiaolei -- Li, Xiaohong -- Zhan, Xiaoming -- Li, Xiao-Dong -- Wang, Jianhui -- Choi, Jin Huk -- Wang, Kuan-wen -- Purrington, Tiana -- Tang, Miao -- Fina, Maggy -- DeBerardinis, Ralph J -- Moresco, Eva Marie Y -- Pedersen, Gabriel -- McInerney, Gerald M -- Karlsson Hedestam, Gunilla B -- Chen, Zhijian J -- Beutler, Bruce -- P01 AI070167/AI/NIAID NIH HHS/ -- R01 AI093967/AI/NIAID NIH HHS/ -- R01 CA157996/CA/NCI NIH HHS/ -- U19 AI100627/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1486-92. doi: 10.1126/science.346.6216.1486.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8502, USA. ; Department of Pediatrics and Children's Medical Center Research Institute, and McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8502, USA. ; Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8502, USA. Howard Hughes Medical Institute, Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA. ; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels vag 16, SE-171 77 Stockholm, Sweden. ; Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8502, USA. Bruce.Beutler@UTSouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525240" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/*immunology ; Animals ; Antibody Formation ; Antigens, T-Independent/*immunology ; B-Lymphocytes/*immunology ; Cytosol/immunology ; DNA/immunology ; Endogenous Retroviruses/genetics/*immunology ; Lymphocyte Activation ; Membrane Proteins/immunology ; Mice ; Mice, Inbred C57BL ; NF-kappa B/metabolism ; Nucleotides, Cyclic/immunology ; Nucleotidyltransferases/genetics/*immunology ; RNA, Viral/genetics/*immunology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koschowitz, Marie-Claire -- Lambertz, Markus -- Fischer, Christian -- Sander, P Martin -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1466-7. doi: 10.1126/science.346.6216.1466-c.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Paleontology, Steinmann Institute for Geology, Mineralogy and Paleontology, Rheinische Friedrich-Wilhelms-Universitat Bonn, 53115 Bonn, Germany. Institute for Zoology and Anthropology, Department of Morphology, Systematics and Evolutionary Biology with Zoological Museum, Georg-August-Universitat Gottingen, 37073 Gottingen, Germany. m.koschowitz@uni-bonn.de. ; Institut fur Zoologie, Rheinische Friedrich-Wilhelms-Universitat Bonn, 53115 Bonn, Germany. ; Institute for Zoology and Anthropology, Department of Morphology, Systematics and Evolutionary Biology with Zoological Museum, Georg-August-Universitat Gottingen, 37073 Gottingen, Germany. ; Division of Paleontology, Steinmann Institute for Geology, Mineralogy and Paleontology, Rheinische Friedrich-Wilhelms-Universitat Bonn, 53115 Bonn, Germany. Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525237" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Color Vision ; Dinosaurs/*physiology ; Feathers/*physiology ; Galliformes/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grasset, Emilie K -- Cerutti, Andrea -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1454-5. doi: 10.1126/science.aaa3263.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA. andrea.cerutti@mssm.edu acerutti@imim.es. ; The Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA. Catalan Institute for Research and Advanced Studies (ICREA), IMIM-Hospital del Mar, Av. Dr. Aiguader 88, 08003 Barcelona, Spain. andrea.cerutti@mssm.edu acerutti@imim.es.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525229" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*immunology ; Animals ; Antigens, T-Independent/*immunology ; B-Lymphocytes/*immunology ; Endogenous Retroviruses/*immunology ; Nucleotidyltransferases/*immunology ; RNA, Viral/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2014 Dec 19;346(6216):1449. doi: 10.1126/science.346.6216.1449.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525225" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomedical Research/*ethics/*trends ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-12-20
    Description: The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapron, Guillaume -- Kaczensky, Petra -- Linnell, John D C -- von Arx, Manuela -- Huber, Djuro -- Andren, Henrik -- Lopez-Bao, Jose Vicente -- Adamec, Michal -- Alvares, Francisco -- Anders, Ole -- Balciauskas, Linas -- Balys, Vaidas -- Bedo, Peter -- Bego, Ferdinand -- Blanco, Juan Carlos -- Breitenmoser, Urs -- Broseth, Henrik -- Bufka, Ludek -- Bunikyte, Raimonda -- Ciucci, Paolo -- Dutsov, Alexander -- Engleder, Thomas -- Fuxjager, Christian -- Groff, Claudio -- Holmala, Katja -- Hoxha, Bledi -- Iliopoulos, Yorgos -- Ionescu, Ovidiu -- Jeremic, Jasna -- Jerina, Klemen -- Kluth, Gesa -- Knauer, Felix -- Kojola, Ilpo -- Kos, Ivan -- Krofel, Miha -- Kubala, Jakub -- Kunovac, Sasa -- Kusak, Josip -- Kutal, Miroslav -- Liberg, Olof -- Majic, Aleksandra -- Mannil, Peep -- Manz, Ralph -- Marboutin, Eric -- Marucco, Francesca -- Melovski, Dime -- Mersini, Kujtim -- Mertzanis, Yorgos -- Myslajek, Robert W -- Nowak, Sabina -- Odden, John -- Ozolins, Janis -- Palomero, Guillermo -- Paunovic, Milan -- Persson, Jens -- Potocnik, Hubert -- Quenette, Pierre-Yves -- Rauer, Georg -- Reinhardt, Ilka -- Rigg, Robin -- Ryser, Andreas -- Salvatori, Valeria -- Skrbinsek, Tomaz -- Stojanov, Aleksandar -- Swenson, Jon E -- Szemethy, Laszlo -- Trajce, Aleksander -- Tsingarska-Sedefcheva, Elena -- Vana, Martin -- Veeroja, Rauno -- Wabakken, Petter -- Wolfl, Manfred -- Wolfl, Sybille -- Zimmermann, Fridolin -- Zlatanova, Diana -- Boitani, Luigi -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1517-9. doi: 10.1126/science.1257553.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Grimso Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 73091 Riddarhyttan, Sweden. gchapron@carnivoreconservation.org guillaume.chapron@slu.se. ; Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, 1160 Vienna, Austria. ; Norwegian Institute for Nature Research, Post Office Box 5685 Sluppen, 7485 Trondheim, Norway. ; KORA, Thunstrasse 31, 3074 Muri bei Bern, Switzerland. ; Biology Department of the Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia. ; Grimso Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 73091 Riddarhyttan, Sweden. ; Grimso Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 73091 Riddarhyttan, Sweden. Research Unit of Biodiversity (UO/CSIC/PA), Oviedo University, 33600 Mieres, Spain. ; State Nature Conservancy of Slovak Republic, Tajovskeho 28B, 974 01 Banska Bystrica, Slovakia. ; CIBIO/InBio, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Universidade do Porto, 4485-661 Vairao, Portugal. ; Harz Nationalpark, Lindenallee 35, 38855 Wernigerode, Germany. ; Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania. ; Association for Nature Conservation "Baltijos vilkas," Visoriu 6A-54, 08300 Vilnius, Lithuania. ; Slovak Wildlife Society, Post Office Box 72, 03301 Liptovsky Hradok, Slovakia. ; Biology Department of the Faculty of Natural Sciences, University of Tirana, Boulevard Zog I, Tirana, Albania. ; Wolf Project, Consultores en Biologia de la Conservacion, Calle Manuela Malasana 24, 28004 Madrid, Spain. ; KORA, Thunstrasse 31, 3074 Muri bei Bern, Switzerland. Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Langgassstrasse 122, 3012 Bern, Switzerland. ; Department of Game Management and Wildlife Biology, Czech University of Life Sciences in Prague, Kamycka 129, 165 21 Prague, Czech Republic. ; Ministry of Environment of the Republic of Lithuania, Jaksto 4/9, 01105 Vilnius, Lithuania. ; Department of Biology and Biotechnologies, University of Rome "La Sapienza," Viale dell'Universita 32, 00185 Roma, Italy. ; Balkani Wildlife Society, Boulevard Dragan Tzankov 8, 1164 Sofia, Bulgaria. ; Lynx Project Austria Northwest, Linzerstrasse 14, 4170 Haslach/Muhl, Austria. ; Nationalpark Kalkalpen, Nationalpark Zentrum Molln, Nationalpark Allee 1, 4591 Molln, Austria. ; Provincia Autonoma di Trento - Servizio Foreste e Fauna, Via Trener no. 3, 38100 Trento, Italy. ; Finnish Game and Fisheries Research Institute, Viikinkaari 4, 00790 Helsinki, Finland. ; Protection and Preservation of Natural Environment in Albania, Rruga Vangjush Furxhi 16/1/10, Tirana, Albania. ; Callisto Wildlife and Nature Conservation Society, Mitropoleos 123, 54621 Thessaloniki, Greece. ; Faculty of Silviculture and Forest Engineering, Department of Silviculture, Transilvania University, 1 Beethoven Lane, 500123 Brasov, Romania. Forest Research Institute (ICAS) Bulevardul Eroilor Number 128, Voluntari, Ilfov, 077190 Romania. ; State Institute for Nature Protection, Trg Mazuranica 5, 10000 Zagreb, Croatia. ; University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia. ; LUPUS - German Institute for Wolf Mnitoring and Research, Dorfstrasse 20, 02979 Spreewitz, Germany. ; Finnish Game and Fisheries Research Institute, Oulu Game and Fisheries Research, Tutkijantie 2E, 90570 Oulu, Finland. ; Department of Forest Protection and Game Management, Faculty of Forestry, Technical University of Zvolen, T.G. Masaryka 20, 960 53 Zvolen, Slovakia. ; Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina. ; Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 61300 Brno, Czech Republic. Friends of the Earth Czech Republic, Olomouc Branch, Dolni Namesti 38, 77900 Olomouc, Czech Republic. ; Estonian Environment Agency, Roomu tee 2, 51013 Tartu, Estonia. ; Office National de la Chasse et de la Faune Sauvage, ZI Mayencin, 5 Allee de Bethleem, 38610 Gieres, France. ; Centro Gestione e Conservazione Grandi Carnivori, Piazza Regina Elena 30, Valdieri 12010, Italy. ; Macedonian Ecological Society, Arhimedova 5, Skopje 1000, FYR Macedonia. Department of Wildlife Sciences, Georg-August University, Busgenweg 3, 37077 Gottingen, Germany. ; National Veterinary Epidemiology Unit, Food Safety and Veterinary Institute, Rruga Aleksander Moisiu 10 Tirana, Albania. ; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warszawa, Poland. ; Association for Nature "Wolf," Twardorzeczka 229, 34-324 Lipowa, Poland. ; Latvian State Forest Research Institute "Silava," Rigas Iela 111, Salaspils, 2169 Latvia. ; Fundacion Oso Pardo, Calle San Luis 17, 4 degrees A, 39010 Santander, Spain. ; Natural History Museum, Njegoseva 51, 11000 Belgrade, Serbia. ; ONCFS-CNERA PAD, Equipe Ours, Chef de Projet, Impasse de la Chapelle, 31800 Villeneuve de Riviere, France. ; Istituto di Ecologia Applicata, Via B. Eustachio 10, 00161 Rome, Italy. ; Macedonian Ecological Society, Arhimedova 5, Skopje 1000, FYR Macedonia. ; Norwegian Institute for Nature Research, Post Office Box 5685 Sluppen, 7485 Trondheim, Norway. Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5003, 1432 As, Norway. ; St. Istvan Unversity Institute for Wildlife Conservation, Pater Karoly 1, 2103 Godollo, Hungary. ; Friends of the Earth Czech Republic, Olomouc Branch, Dolni Namesti 38, 77900 Olomouc, Czech Republic. ; Hedmark University College, Evenstad, 2480 Koppang, Norway. ; Bavarian Agency of Environment, Hans-Hogn-Strasse 12, 95030 Hof/Saale, Germany. ; Lynx Project Bavaria, Trailling 1a, 93462 Lam, Germany. ; Department of Zoology and Anthropology, Faculty of Biology/Sofia University "St. Kliment Ohridski," Boulevard Dragan Tzankov 8, 1164 Sofia, Bulgaria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525247" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Conservation of Natural Resources ; Europe ; Humans ; *Lynx ; *Mustelidae ; *Ursidae ; *Wolves
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lorsch, Jon R -- Collins, Francis S -- Lippincott-Schwartz, Jennifer -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1452-3. doi: 10.1126/science.1259110.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Director, National Institute of General Medical Sciences, Bethesda, MD 20892, USA. jon.lorsch@nih.gov. ; Director, National Institutes of Health, Bethesda, MD 20892, USA. ; President, American Society for Cell Biology, Bethesda, MD 20814, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525228" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Specimen Banks/*standards ; Biomedical Research/*standards ; *Cell Line ; Drug Evaluation, Preclinical/*standards ; Humans ; National Institutes of Health (U.S.) ; Policy ; *Reproducibility of Results ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-12-20
    Description: Over 70% of diffuse intrinsic pediatric gliomas, an aggressive brainstem tumor, harbor heterozygous mutations that create a K27M amino acid substitution (methionine replaces lysine 27) in the tail of histone H3.3. The role of the H3.3K27M mutation in tumorigenesis is not fully understood. Here, we use a human embryonic stem cell system to model this tumor. We show that H3.3K27M expression synergizes with p53 loss and PDGFRA activation in neural progenitor cells derived from human embryonic stem cells, resulting in neoplastic transformation. Genome-wide analyses indicate a resetting of the transformed precursors to a developmentally more primitive stem cell state, with evidence of major modifications of histone marks at several master regulator genes. Drug screening assays identified a compound targeting the protein menin as an inhibitor of tumor cell growth in vitro and in mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Funato, Kosuke -- Major, Tamara -- Lewis, Peter W -- Allis, C David -- Tabar, Viviane -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1529-33. doi: 10.1126/science.1253799. Epub 2014 Nov 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurosurgery, Center for Stem Cell Biology and Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. ; Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53715, USA. ; Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA. ; Department of Neurosurgery, Center for Stem Cell Biology and Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. tabarv@mskcc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525250" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/pharmacology ; Brain Stem Neoplasms/*genetics/pathology ; Cell Transformation, Neoplastic/*genetics/pathology ; Child ; Drug Screening Assays, Antitumor ; Embryonic Stem Cells/*metabolism/pathology ; Epigenesis, Genetic ; Gene Expression Regulation, Neoplastic ; Genome-Wide Association Study ; Glioma/*genetics/pathology ; Histones/*genetics ; Humans ; Mice ; *Models, Genetic ; Neural Stem Cells/*metabolism/pathology ; Proto-Oncogene Proteins/antagonists & inhibitors ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anastasiadou, Eleni -- Slack, Frank J -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1459-60. doi: 10.1126/science.aaa4024.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA. ; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA. fslack@bidmc.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525233" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Humans ; Membrane Glycoproteins/*metabolism ; MicroRNAs/*blood ; Neoplasms/*blood ; RNA, Neoplasm/*blood ; Toll-Like Receptor 7/*metabolism ; Toll-Like Receptor 8/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-12-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krug, Robert M -- England -- Nature. 2014 Dec 18;516(7531):338-9. doi: 10.1038/516338a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biosciences, Center for Infectious Disease, Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25519129" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA-Directed RNA Polymerases/*chemistry/metabolism ; Humans ; Influenza A virus/*enzymology ; Influenza B virus/*enzymology ; RNA/biosynthesis ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-12-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Callaway, Ewen -- England -- Nature. 2014 Dec 18;516(7531):297. doi: 10.1038/516297a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25519109" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/*classification/genetics ; Genome/genetics ; International Cooperation ; *Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-12-19
    Description: Naturally occurring variations of Polycomb repressive complex 1 (PRC1) comprise a core assembly of Polycomb group proteins and additional factors that include, surprisingly, autism susceptibility candidate 2 (AUTS2). Although AUTS2 is often disrupted in patients with neuronal disorders, the mechanism underlying the pathogenesis is unclear. We investigated the role of AUTS2 as part of a previously identified PRC1 complex (PRC1-AUTS2), and in the context of neurodevelopment. In contrast to the canonical role of PRC1 in gene repression, PRC1-AUTS2 activates transcription. Biochemical studies demonstrate that the CK2 component of PRC1-AUTS2 neutralizes PRC1 repressive activity, whereas AUTS2-mediated recruitment of P300 leads to gene activation. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) demonstrated that AUTS2 regulates neuronal gene expression through promoter association. Conditional targeting of Auts2 in the mouse central nervous system (CNS) leads to various developmental defects. These findings reveal a natural means of subverting PRC1 activity, linking key epigenetic modulators with neuronal functions and diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323097/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323097/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Zhonghua -- Lee, Pedro -- Stafford, James M -- von Schimmelmann, Melanie -- Schaefer, Anne -- Reinberg, Danny -- 1DP2MH100012-01/DP/NCCDPHP CDC HHS/ -- 1F32GM105275/GM/NIGMS NIH HHS/ -- 5T32CA160002/CA/NCI NIH HHS/ -- DP2 MH100012/MH/NIMH NIH HHS/ -- F32AA022842/AA/NIAAA NIH HHS/ -- GM-64844/GM/NIGMS NIH HHS/ -- P30 CA016087/CA/NCI NIH HHS/ -- R01 GM064844/GM/NIGMS NIH HHS/ -- T32 CA160002/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 18;516(7531):349-54. doi: 10.1038/nature13921.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, New York University Langone School of Medicine, Department of Biochemistry and Molecular Pharmacology, New York, New York 10016, USA. ; Friedman Brain Institute, Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25519132" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/physiology ; Cell Cycle Proteins/genetics/*metabolism ; Central Nervous System/*metabolism ; Female ; Gene Expression Profiling ; Gene Expression Regulation/*genetics ; Gene Knockout Techniques ; Genotype ; HEK293 Cells ; Histones/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; Proteins/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-12-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoekstra, Jon -- Symington, Meg -- Weaver, Chris -- England -- Nature. 2014 Dec 18;516(7531):329. doi: 10.1038/516329b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉World Wildlife Fund, Washington DC, USA. ; WWF-Namibia, Windhoek, Namibia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25519122" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/*statistics & numerical data ; *Ecosystem ; *Wilderness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-12-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brooks, Thomas M -- England -- Nature. 2014 Dec 18;516(7531):336-7. doi: 10.1038/516336a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉International Union for Conservation of Nature, Gland 1196, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25519127" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Conservation of Natural Resources
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-12-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapron, Guillaume -- England -- Nature. 2014 Dec 18;516(7531):289. doi: 10.1038/516289a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swedish University of Agricultural Sciences in Riddarhyttan, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25519096" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; Conservation of Natural Resources/*legislation & jurisprudence ; European Union ; Politics ; Population Density ; Research/*standards/trends ; Sweden ; *Wolves
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2014 Dec 18;516(7531):S56-7. doi: 10.1038/516S56a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25517235" target="_blank"〉PubMed〈/a〉
    Keywords: Academies and Institutes/*statistics & numerical data/trends ; Animals ; China ; Periodicals as Topic/statistics & numerical data ; Research/standards/*statistics & numerical data/trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-12-18
    Description: Interventions that delay ageing mobilize mechanisms that protect and repair cellular components, but it is unknown how these interventions might slow the functional decline of extracellular matrices, which are also damaged during ageing. Reduced insulin/IGF-1 signalling (rIIS) extends lifespan across the evolutionary spectrum, and in juvenile Caenorhabditis elegans also allows the transcription factor DAF-16/FOXO to induce development into dauer, a diapause that withstands harsh conditions. It has been suggested that rIIS delays C. elegans ageing through activation of dauer-related processes during adulthood, but some rIIS conditions confer robust lifespan extension unaccompanied by any dauer-like traits. Here we show that rIIS can promote C. elegans longevity through a program that is genetically distinct from the dauer pathway, and requires the Nrf (NF-E2-related factor) orthologue SKN-1 acting in parallel to DAF-16. SKN-1 is inhibited by IIS and has been broadly implicated in longevity, but is rendered dispensable for rIIS lifespan extension by even mild activity of dauer-related processes. When IIS is decreased under conditions that do not induce dauer traits, SKN-1 most prominently increases expression of collagens and other extracellular matrix genes. Diverse genetic, nutritional, and pharmacological pro-longevity interventions delay an age-related decline in collagen expression. These collagens mediate adulthood extracellular matrix remodelling, and are needed for ageing to be delayed by interventions that do not involve dauer traits. By genetically delineating a dauer-independent rIIS ageing pathway, our results show that IIS controls a broad set of protective mechanisms during C. elegans adulthood, and may facilitate elucidation of processes of general importance for longevity. The importance of collagen production in diverse anti-ageing interventions implies that extracellular matrix remodelling is a generally essential signature of longevity assurance, and that agents promoting extracellular matrix youthfulness may have systemic benefit.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352135/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352135/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ewald, Collin Y -- Landis, Jess N -- Porter Abate, Jess -- Murphy, Coleen T -- Blackwell, T Keith -- 5T32DK007260/DK/NIDDK NIH HHS/ -- GM062891/GM/NIGMS NIH HHS/ -- P30 DK036836/DK/NIDDK NIH HHS/ -- P30DK036836/DK/NIDDK NIH HHS/ -- R01 GM062891/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Mar 5;519(7541):97-101. doi: 10.1038/nature14021. Epub 2014 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, USA [2] Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA [3] Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02215, USA. ; Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, 148 Carl Icahn Laboratory, Washington Road, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25517099" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/physiology ; Animals ; Caenorhabditis elegans/growth & development/*metabolism ; Caenorhabditis elegans Proteins/*metabolism ; Collagen/biosynthesis/genetics/*metabolism ; DNA-Binding Proteins/*metabolism ; Extracellular Matrix/metabolism ; Forkhead Transcription Factors ; Insulin/*metabolism ; Insulin-Like Growth Factor I/*metabolism ; Larva/growth & development ; Longevity/*physiology ; *Signal Transduction ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-12-18
    Description: During endocytosis, energy is invested to narrow the necks of cargo-containing plasma membrane invaginations to radii at which the opposing segments spontaneously coalesce, thereby leading to the detachment by scission of endocytic uptake carriers. In the clathrin pathway, dynamin uses mechanical energy from GTP hydrolysis to this effect, assisted by the BIN/amphiphysin/Rvs (BAR) domain-containing protein endophilin. Clathrin-independent endocytic events are often less reliant on dynamin, and whether in these cases BAR domain proteins such as endophilin contribute to scission has remained unexplored. Here we show, in human and other mammalian cell lines, that endophilin-A2 (endoA2) specifically and functionally associates with very early uptake structures that are induced by the bacterial Shiga and cholera toxins, which are both clathrin-independent endocytic cargoes. In controlled in vitro systems, endoA2 reshapes membranes before scission. Furthermore, we demonstrate that endoA2, dynamin and actin contribute in parallel to the scission of Shiga-toxin-induced tubules. Our results establish a novel function of endoA2 in clathrin-independent endocytosis. They document that distinct scission factors operate in an additive manner, and predict that specificity within a given uptake process arises from defined combinations of universal modules. Our findings highlight a previously unnoticed link between membrane scaffolding by endoA2 and pulling-force-driven dynamic scission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342003/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342003/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Renard, Henri-Francois -- Simunovic, Mijo -- Lemiere, Joel -- Boucrot, Emmanuel -- Garcia-Castillo, Maria Daniela -- Arumugam, Senthil -- Chambon, Valerie -- Lamaze, Christophe -- Wunder, Christian -- Kenworthy, Anne K -- Schmidt, Anne A -- McMahon, Harvey T -- Sykes, Cecile -- Bassereau, Patricia -- Johannes, Ludger -- R01 GM106720/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jan 22;517(7535):493-6. doi: 10.1038/nature14064. Epub 2014 Dec 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institut Curie - Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] CNRS UMR3666, 75005 Paris, France [3] U1143 INSERM, 75005 Paris, France. ; 1] Institut Curie - Centre de Recherche, Membrane and Cell Functions group, CNRS UMR 168, Physico-Chimie Curie, Universite Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] The University of Chicago, Department of Chemistry, 5735 S Ellis Ave, Chicago, Ilinois 60637, USA. ; 1] Institut Curie - Centre de Recherche, Biomimetism of Cell Movement group, CNRS UMR 168, Physico-Chimie Curie, Universite Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] Universite Paris Diderot, Sorbonne Paris Cite, 75205 Paris, France. ; Institute of Structural and Molecular Biology, University College London &Birkbeck College, London WC1E 6BT, UK. ; 1] CNRS UMR3666, 75005 Paris, France [2] U1143 INSERM, 75005 Paris, France [3] Institut Curie - Centre de Recherche, Membrane Dynamics and Mechanics of Intracellular Signaling group, 26 rue d'Ulm, 75248 Paris Cedex 05, France. ; Vanderbilt School of Medicine, Department of Molecular Physiology and Biophysics, 718 Light Hall, Nashville, Tennessee 37232, USA. ; CNRS, UMR7592, Institut Jacques Monod, Universite Paris Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris Cedex 13, France. ; Medical Research Council, Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; Institut Curie - Centre de Recherche, Biomimetism of Cell Movement group, CNRS UMR 168, Physico-Chimie Curie, Universite Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France. ; Institut Curie - Centre de Recherche, Membrane and Cell Functions group, CNRS UMR 168, Physico-Chimie Curie, Universite Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25517096" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Acyltransferases/*metabolism ; Animals ; Cell Line ; Cell Membrane/*metabolism ; Cholera Toxin/metabolism ; Clathrin ; Dynamins/metabolism ; *Endocytosis ; Humans ; Rats ; Shiga Toxin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woolston, Chris -- England -- Nature. 2014 Dec 11;516(7530):277-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25517006" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms ; Career Choice ; Ecology ; Employment ; Internship and Residency ; Marine Biology/*education/*manpower ; Students ; *Vocational Guidance
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-12-18
    Description: More than twenty types of retinal ganglion cells conduct visual information from the eye to the rest of the brain. Each retinal ganglion cell type tessellates the retina in a regular mosaic, so that every point in visual space is processed for visual primitives such as contrast and motion. This information flows to two principal brain centres: the visual cortex and the superior colliculus. The superior colliculus plays an evolutionarily conserved role in visual behaviours, but its functional architecture is poorly understood. Here we report on population recordings of visual responses from neurons in the mouse superior colliculus. Many neurons respond preferentially to lines of a certain orientation or movement axis. We show that cells with similar orientation preferences form large patches that span the vertical thickness of the retinorecipient layers. This organization is strikingly different from the randomly interspersed orientation preferences in the mouse's visual cortex; instead, it resembles the orientation columns observed in the visual cortices of large mammals. Notably, adjacent superior colliculus orientation columns have only limited receptive field overlap. This is in contrast to the organization of visual cortex, where each point in the visual field activates neurons with all preferred orientations. Instead, the superior colliculus favours specific contour orientations within approximately 30 degrees regions of the visual field, a finding with implications for behavioural responses mediated by this brain centre.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feinberg, Evan H -- Meister, Markus -- T32 NS007484/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 12;519(7542):229-32. doi: 10.1038/nature14103. Epub 2014 Dec 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts 02138, USA. ; 1] Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts 02138, USA [2] Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25517100" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Calcium/analysis/metabolism ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Motion ; Neurons/physiology ; Orientation/*physiology ; Photic Stimulation ; Superior Colliculi/anatomy & histology/*cytology/*physiology ; Visual Cortex/anatomy & histology/cytology/physiology ; Visual Fields/physiology ; Wakefulness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-12-18
    Description: Mast cells are primary effectors in allergic reactions, and may have important roles in disease by secreting histamine and various inflammatory and immunomodulatory substances. Although they are classically activated by immunoglobulin (Ig)E antibodies, a unique property of mast cells is their antibody-independent responsiveness to a range of cationic substances, collectively called basic secretagogues, including inflammatory peptides and drugs associated with allergic-type reactions. The pathogenic roles of these substances have prompted a decades-long search for their receptor(s). Here we report that basic secretagogues activate mouse mast cells in vitro and in vivo through a single receptor, Mrgprb2, the orthologue of the human G-protein-coupled receptor MRGPRX2. Secretagogue-induced histamine release, inflammation and airway contraction are abolished in Mrgprb2-null mutant mice. Furthermore, we show that most classes of US Food and Drug Administration (FDA)-approved peptidergic drugs associated with allergic-type injection-site reactions also activate Mrgprb2 and MRGPRX2, and that injection-site inflammation is absent in mutant mice. Finally, we determine that Mrgprb2 and MRGPRX2 are targets of many small-molecule drugs associated with systemic pseudo-allergic, or anaphylactoid, reactions; we show that drug-induced symptoms of anaphylactoid responses are significantly reduced in knockout mice; and we identify a common chemical motif in several of these molecules that may help predict side effects of other compounds. These discoveries introduce a mouse model to study mast cell activation by basic secretagogues and identify MRGPRX2 as a potential therapeutic target to reduce a subset of drug-induced adverse effects.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359082/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359082/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McNeil, Benjamin D -- Pundir, Priyanka -- Meeker, Sonya -- Han, Liang -- Undem, Bradley J -- Kulka, Marianna -- Dong, Xinzhong -- K99 NS087088/NS/NINDS NIH HHS/ -- R01 GM087369/GM/NIGMS NIH HHS/ -- R01 NS054791/NS/NINDS NIH HHS/ -- R01GM087369/GM/NIGMS NIH HHS/ -- R01NS054791/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 12;519(7542):237-41. doi: 10.1038/nature14022. Epub 2014 Dec 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Solomon H. Snyder Department of Neuroscience, Department of Neurosurgery, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA. ; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada. ; Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA. ; 1] Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada [2] National Institute for Nanotechnology, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada. ; 1] The Solomon H. Snyder Department of Neuroscience, Department of Neurosurgery, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA [2] Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25517090" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Disease Models, Animal ; Drug Hypersensitivity/genetics/*immunology/prevention & control ; Female ; HEK293 Cells ; Histamine Release ; Humans ; Inflammation/immunology/metabolism ; Male ; Mast Cells/drug effects/*immunology/*metabolism ; Mice ; Mice, Knockout ; Nerve Tissue Proteins/antagonists & inhibitors/metabolism ; Receptors, G-Protein-Coupled/antagonists & ; inhibitors/deficiency/genetics/immunology/*metabolism ; Receptors, Neuropeptide/antagonists & inhibitors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-12-18
    Description: Gene transcription in animals involves the assembly of RNA polymerase II at core promoters and its cell-type-specific activation by enhancers that can be located more distally. However, how ubiquitous expression of housekeeping genes is achieved has been less clear. In particular, it is unknown whether ubiquitously active enhancers exist and how developmental and housekeeping gene regulation is separated. An attractive hypothesis is that different core promoters might exhibit an intrinsic specificity to certain enhancers. This is conceivable, as various core promoter sequence elements are differentially distributed between genes of different functions, including elements that are predominantly found at either developmentally regulated or at housekeeping genes. Here we show that thousands of enhancers in Drosophila melanogaster S2 and ovarian somatic cells (OSCs) exhibit a marked specificity to one of two core promoters--one derived from a ubiquitously expressed ribosomal protein gene and another from a developmentally regulated transcription factor--and confirm the existence of these two classes for five additional core promoters from genes with diverse functions. Housekeeping enhancers are active across the two cell types, while developmental enhancers exhibit strong cell-type specificity. Both enhancer classes differ in their genomic distribution, the functions of neighbouring genes, and the core promoter elements of these neighbouring genes. In addition, we identify two transcription factors--Dref and Trl--that bind and activate housekeeping versus developmental enhancers, respectively. Our results provide evidence for a sequence-encoded enhancer-core-promoter specificity that separates developmental and housekeeping gene regulatory programs for thousands of enhancers and their target genes across the entire genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zabidi, Muhammad A -- Arnold, Cosmas D -- Schernhuber, Katharina -- Pagani, Michaela -- Rath, Martina -- Frank, Olga -- Stark, Alexander -- England -- Nature. 2015 Feb 26;518(7540):556-9. doi: 10.1038/nature13994. Epub 2014 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr Bohr-Gasse 7, 1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25517091" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; DNA-Binding Proteins/metabolism ; Drosophila Proteins/metabolism ; Drosophila melanogaster/*embryology/*genetics ; Enhancer Elements, Genetic/*genetics ; Gene Expression Regulation, Developmental/*genetics ; Genes, Essential/*genetics ; Genome, Insect/genetics ; Models, Genetic ; Organ Specificity ; Promoter Regions, Genetic/*genetics ; Substrate Specificity/genetics ; Transcription Factors/metabolism ; Transcriptional Activation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-12-18
    Description: The ryanodine receptors (RyRs) are high-conductance intracellular Ca(2+) channels that play a pivotal role in the excitation-contraction coupling of skeletal and cardiac muscles. RyRs are the largest known ion channels, with a homotetrameric organization and approximately 5,000 residues in each protomer. Here we report the structure of the rabbit RyR1 in complex with its modulator FKBP12 at an overall resolution of 3.8 A, determined by single-particle electron cryomicroscopy. Three previously uncharacterized domains, named central, handle and helical domains, display the armadillo repeat fold. These domains, together with the amino-terminal domain, constitute a network of superhelical scaffold for binding and propagation of conformational changes. The channel domain exhibits the voltage-gated ion channel superfamily fold with distinct features. A negative-charge-enriched hairpin loop connecting S5 and the pore helix is positioned above the entrance to the selectivity-filter vestibule. The four elongated S6 segments form a right-handed helical bundle that closes the pore at the cytoplasmic border of the membrane. Allosteric regulation of the pore by the cytoplasmic domains is mediated through extensive interactions between the central domains and the channel domain. These structural features explain high ion conductance by RyRs and the long-range allosteric regulation of channel activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338550/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338550/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Zhen -- Bai, Xiao-chen -- Yan, Chuangye -- Wu, Jianping -- Li, Zhangqiang -- Xie, Tian -- Peng, Wei -- Yin, Chang-cheng -- Li, Xueming -- Scheres, Sjors H W -- Shi, Yigong -- Yan, Nieng -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- England -- Nature. 2015 Jan 1;517(7532):50-5. doi: 10.1038/nature14063. Epub 2014 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] Ministry of Education Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; 1] Ministry of Education Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; Department of Biophysics, the Health Science Center &Center for Protein Science, Peking University, Beijing 100191, China. ; Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25517095" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Allosteric Regulation ; Animals ; Cryoelectron Microscopy ; Ion Channel Gating ; Models, Molecular ; Molecular Weight ; Protein Multimerization ; Protein Structure, Tertiary ; Rabbits ; Ryanodine Receptor Calcium Release Channel/*chemistry/metabolism/*ultrastructure ; Sarcoplasmic Reticulum/chemistry ; Tacrolimus Binding Protein 1A/chemistry/metabolism/ultrastructure ; Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haucke, Volker -- England -- Nature. 2015 Jan 22;517(7535):446-7. doi: 10.1038/nature14081. Epub 2014 Dec 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Leibniz Institut fur Molekulare Pharmakologie, 13125 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25517097" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/*metabolism ; Animals ; Cell Membrane/*metabolism ; *Endocytosis ; Humans
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-12-17
    Description: Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390078/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390078/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Guojie -- Li, Cai -- Li, Qiye -- Li, Bo -- Larkin, Denis M -- Lee, Chul -- Storz, Jay F -- Antunes, Agostinho -- Greenwold, Matthew J -- Meredith, Robert W -- Odeen, Anders -- Cui, Jie -- Zhou, Qi -- Xu, Luohao -- Pan, Hailin -- Wang, Zongji -- Jin, Lijun -- Zhang, Pei -- Hu, Haofu -- Yang, Wei -- Hu, Jiang -- Xiao, Jin -- Yang, Zhikai -- Liu, Yang -- Xie, Qiaolin -- Yu, Hao -- Lian, Jinmin -- Wen, Ping -- Zhang, Fang -- Li, Hui -- Zeng, Yongli -- Xiong, Zijun -- Liu, Shiping -- Zhou, Long -- Huang, Zhiyong -- An, Na -- Wang, Jie -- Zheng, Qiumei -- Xiong, Yingqi -- Wang, Guangbiao -- Wang, Bo -- Wang, Jingjing -- Fan, Yu -- da Fonseca, Rute R -- Alfaro-Nunez, Alonzo -- Schubert, Mikkel -- Orlando, Ludovic -- Mourier, Tobias -- Howard, Jason T -- Ganapathy, Ganeshkumar -- Pfenning, Andreas -- Whitney, Osceola -- Rivas, Miriam V -- Hara, Erina -- Smith, Julia -- Farre, Marta -- Narayan, Jitendra -- Slavov, Gancho -- Romanov, Michael N -- Borges, Rui -- Machado, Joao Paulo -- Khan, Imran -- Springer, Mark S -- Gatesy, John -- Hoffmann, Federico G -- Opazo, Juan C -- Hastad, Olle -- Sawyer, Roger H -- Kim, Heebal -- Kim, Kyu-Won -- Kim, Hyeon Jeong -- Cho, Seoae -- Li, Ning -- Huang, Yinhua -- Bruford, Michael W -- Zhan, Xiangjiang -- Dixon, Andrew -- Bertelsen, Mads F -- Derryberry, Elizabeth -- Warren, Wesley -- Wilson, Richard K -- Li, Shengbin -- Ray, David A -- Green, Richard E -- O'Brien, Stephen J -- Griffin, Darren -- Johnson, Warren E -- Haussler, David -- Ryder, Oliver A -- Willerslev, Eske -- Graves, Gary R -- Alstrom, Per -- Fjeldsa, Jon -- Mindell, David P -- Edwards, Scott V -- Braun, Edward L -- Rahbek, Carsten -- Burt, David W -- Houde, Peter -- Zhang, Yong -- Yang, Huanming -- Wang, Jian -- Avian Genome Consortium -- Jarvis, Erich D -- Gilbert, M Thomas P -- Wang, Jun -- DP1 OD000448/OD/NIH HHS/ -- DP1OD000448/OD/NIH HHS/ -- R01 HL087216/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1311-20. doi: 10.1126/science.1251385. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. ; Royal Veterinary College, University of London, London, UK. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. ; School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA. ; Centro de Investigacion en Ciencias del Mar y Limnologia (CIMAR)/Centro Interdisciplinar de Investigacao Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Departamento de Biologia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal. ; Department of Biological Sciences, University of South Carolina, Columbia, SC, USA. ; Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA. ; Department of Animal Ecology, Uppsala University, Norbyvagen 18D, S-752 36 Uppsala, Sweden. ; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia. Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore. ; Department of Integrative Biology University of California, Berkeley, CA 94720, USA. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. College of Life Sciences, Wuhan University, Wuhan 430072, China. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. BGI Education Center,University of Chinese Academy of Sciences,Shenzhen, 518083, China. ; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. ; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK. ; School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK. ; Centro de Investigacion en Ciencias del Mar y Limnologia (CIMAR)/Centro Interdisciplinar de Investigacao Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Instituto de Ciencias Biomedicas Abel Salazar (ICBAS), Universidade do Porto, Portugal. ; Department of Biology, University of California Riverside, Riverside, CA 92521, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. ; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Post Office Box 7011, S-750 07, Uppsala, Sweden. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. ; Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. ; State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. ; State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. College of Animal Science and Technology, China Agricultural University, Beijing 100094, China. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK. Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 China. ; International Wildlife Consultants, Carmarthen SA33 5YL, Wales, UK. ; Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark. ; Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA. Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA. ; The Genome Institute at Washington University, St. Louis, MO 63108, USA. ; College of Medicine and Forensics, Xi'an Jiaotong University, Xi'an, 710061, China. ; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. ; Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia. Nova Southeastern University Oceanographic Center 8000 N Ocean Drive, Dania, FL 33004, USA. ; Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA. ; Genetics Division, San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, USA. ; Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, Washington, DC 20013-7012, USA. Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. ; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China. Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7007, SE-750 07 Uppsala, Sweden. ; Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. ; Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA. ; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA. ; Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA. ; Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Imperial College London, Grand Challenges in Ecosystems and the Environment Initiative, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK. ; Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The Roslin Institute Building, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK. ; Department of Biology, New Mexico State University, Box 30001 MSC 3AF, Las Cruces, NM 88003, USA. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. ; Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, 6102, Australia. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Department of Medicine, University of Hong Kong, Hong Kong. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504712" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Biodiversity ; *Biological Evolution ; Birds/classification/*genetics/physiology ; Conserved Sequence ; Diet ; *Evolution, Molecular ; Female ; Flight, Animal ; Genes ; Genetic Variation ; *Genome ; Genomics ; Male ; Molecular Sequence Annotation ; Phylogeny ; Reproduction/genetics ; Selection, Genetic ; Sequence Analysis, DNA ; Synteny ; Vision, Ocular/genetics ; Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woolhouse, Mark -- Drury, Patrick -- Dye, Christopher -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1271. doi: 10.1126/science.aaa4117.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mark Woolhouse is a professor at the Centre for Immunity, Infection & Evolution at the University of Edinburgh, Edinburgh, UK.Patrick Drury is Manager of the Global Outbreak Alert and Response Network of the World Health Organization, Geneva, Switzerland.Christopher Dye is the Director of Strategy in the Office of the Director General at the World Health Organization, Geneva, Switzerland. ; Mark Woolhouse is a professor at the Centre for Immunity, Infection & Evolution at the University of Edinburgh, Edinburgh, UK.Patrick Drury is Manager of the Global Outbreak Alert and Response Network of the World Health Organization, Geneva, Switzerland.Christopher Dye is the Director of Strategy in the Office of the Director General at the World Health Organization, Geneva, Switzerland. dyec@who.int.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504691" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Communicable Disease Control ; Epidemics/*prevention & control ; Epidemiological Monitoring ; *Global Health ; Hemorrhagic Fever, Ebola/epidemiology/physiopathology/prevention & control ; Humans ; Interdisciplinary Communication ; *International Agencies ; *International Cooperation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-12-17
    Description: Sex-specific chromosomes, like the W of most female birds and the Y of male mammals, usually have lost most genes owing to a lack of recombination. We analyze newly available genomes of 17 bird species representing the avian phylogenetic range, and find that more than half of them do not have as fully degenerated W chromosomes as that of chicken. We show that avian sex chromosomes harbor tremendous diversity among species in their composition of pseudoautosomal regions and degree of Z/W differentiation. Punctuated events of shared or lineage-specific recombination suppression have produced a gradient of "evolutionary strata" along the Z chromosome, which initiates from the putative avian sex-determining gene DMRT1 and ends at the pseudoautosomal region. W-linked genes are subject to ongoing functional decay after recombination was suppressed, and the tempo of degeneration slows down in older strata. Overall, we unveil a complex history of avian sex chromosome evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Qi -- Zhang, Jilin -- Bachtrog, Doris -- An, Na -- Huang, Quanfei -- Jarvis, Erich D -- Gilbert, M Thomas P -- Zhang, Guojie -- GM076007/GM/NIGMS NIH HHS/ -- GM093182/GM/NIGMS NIH HHS/ -- R01 GM076007/GM/NIGMS NIH HHS/ -- R01 GM093182/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1246338. doi: 10.1126/science.1246338. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Biology, University of California, Berkeley, CA94720, USA. zhouqi@berkeley.edu zhanggj@genomics.org.cn. ; China National Genebank, BGI-Shenzhen, Shenzhen, 518083. China. ; Department of Integrative Biology, University of California, Berkeley, CA94720, USA. ; Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. ; China National Genebank, BGI-Shenzhen, Shenzhen, 518083. China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. zhouqi@berkeley.edu zhanggj@genomics.org.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504727" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Proteins/genetics ; *Biological Evolution ; Birds/classification/*genetics ; Chickens/genetics ; Chromosome Inversion ; Chromosome Mapping ; *Evolution, Molecular ; Female ; Male ; Phylogeny ; Recombination, Genetic ; Sex Chromosomes/*genetics ; Species Specificity ; Struthioniformes/genetics ; Synteny ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-12-17
    Description: To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386873/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386873/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, Richard E -- Braun, Edward L -- Armstrong, Joel -- Earl, Dent -- Nguyen, Ngan -- Hickey, Glenn -- Vandewege, Michael W -- St John, John A -- Capella-Gutierrez, Salvador -- Castoe, Todd A -- Kern, Colin -- Fujita, Matthew K -- Opazo, Juan C -- Jurka, Jerzy -- Kojima, Kenji K -- Caballero, Juan -- Hubley, Robert M -- Smit, Arian F -- Platt, Roy N -- Lavoie, Christine A -- Ramakodi, Meganathan P -- Finger, John W Jr -- Suh, Alexander -- Isberg, Sally R -- Miles, Lee -- Chong, Amanda Y -- Jaratlerdsiri, Weerachai -- Gongora, Jaime -- Moran, Christopher -- Iriarte, Andres -- McCormack, John -- Burgess, Shane C -- Edwards, Scott V -- Lyons, Eric -- Williams, Christina -- Breen, Matthew -- Howard, Jason T -- Gresham, Cathy R -- Peterson, Daniel G -- Schmitz, Jurgen -- Pollock, David D -- Haussler, David -- Triplett, Eric W -- Zhang, Guojie -- Irie, Naoki -- Jarvis, Erich D -- Brochu, Christopher A -- Schmidt, Carl J -- McCarthy, Fiona M -- Faircloth, Brant C -- Hoffmann, Federico G -- Glenn, Travis C -- Gabaldon, Toni -- Paten, Benedict -- Ray, David A -- 1U41HG006992-2/HG/NHGRI NIH HHS/ -- 1U41HG007234-01/HG/NHGRI NIH HHS/ -- 5U01HG004695/HG/NHGRI NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- U41 HG006992/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1254449. doi: 10.1126/science.1254449. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. ed@soe.ucsc.edu david.a.ray@ttu.edu. ; Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA. ; Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. ; Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. ; Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain. ; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Biology, University of Texas, Arlington, TX 76019, USA. ; Department of Computer and Information Sciences, University of Delaware, Newark, DE 19717, USA. ; Department of Biology, University of Texas, Arlington, TX 76019, USA. ; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. ; Genetic Information Research Institute, Mountain View, CA 94043, USA. ; Institute for Systems Biology, Seattle, WA 98109, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA. ; Institute of Experimental Pathology (ZMBE), University of Munster, D-48149 Munster, Germany. Department of Evolutionary Biology (EBC), Uppsala University, SE-752 36 Uppsala, Sweden. ; Porosus Pty. Ltd., Palmerston, NT 0831, Australia. Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia. Centre for Crocodile Research, Noonamah, NT 0837, Australia. ; Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia. ; Departamento de Desarrollo Biotecnologico, Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay. ; Moore Laboratory of Zoology, Occidental College, Los Angeles, CA 90041, USA. ; College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. ; School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA. ; Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA. ; Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA. ; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA. ; Institute of Experimental Pathology (ZMBE), University of Munster, D-48149 Munster, Germany. ; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. ; Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA. Howard Hughes Medical Institute, Bethesda, MD 20814, USA. ; Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA. ; China National GeneBank, BGI-Shenzhen, Shenzhen, China. Center for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. ; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan. ; Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242, USA. ; Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA. ; School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA. ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90019, USA. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain. Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain. ; Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA. ed@soe.ucsc.edu david.a.ray@ttu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504731" target="_blank"〉PubMed〈/a〉
    Keywords: Alligators and Crocodiles/classification/*genetics ; Animals ; Biological Evolution ; Birds/classification/*genetics ; Conserved Sequence ; DNA Transposable Elements ; Dinosaurs/classification/*genetics ; *Evolution, Molecular ; Genetic Variation ; *Genome ; Molecular Sequence Annotation ; Molecular Sequence Data ; Phylogeny ; Reptiles/classification/genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calegari, Federico -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1298-9. doi: 10.1126/science.aaa3261.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DFG-Research Center and Cluster of Excellence for Regenerative Therapies, Technische Universitat Dresden, 01307 Dresden, Germany. federico.calegari@crtdresden.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504705" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/*metabolism ; Animals ; Brain/*growth & development/*metabolism ; Calcium/*metabolism ; Epithelium/*metabolism ; Wound Healing/*physiology ; Xenopus laevis/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, Angela -- Robbins, Trevor -- England -- Nature. 2014 Dec 11;516(7530):170. doi: 10.1038/516170e.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503225" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*physiology ; *Brain Mapping ; Callithrix/*physiology ; Humans ; *Models, Animal ; *Research
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zentelis, Rick -- Lindenmayer, David -- England -- Nature. 2014 Dec 11;516(7530):170. doi: 10.1038/516170a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian National University, Canberra, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503222" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/*statistics & numerical data ; *Ecosystem ; *Wilderness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fratzl, Peter -- England -- Nature. 2014 Dec 11;516(7530):178-9. doi: 10.1038/516178a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503229" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomimetics/*methods ; Humans ; *Movement ; Nanotechnology/*methods ; Pattern Recognition, Automated/*methods ; *Sound ; Spiders/*physiology ; *Vibration
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2014 Dec 11;516(7530):144. doi: 10.1038/516144a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503198" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Classification ; Climate Change ; Conservation of Natural Resources/economics/legislation & jurisprudence/*trends ; Endangered Species/*statistics & numerical data/trends ; Extinction, Biological ; Human Activities/statistics & numerical data/trends ; Introduced Species/trends ; *Wilderness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-12-17
    Description: Somatic cell reprogramming to a pluripotent state continues to challenge many of our assumptions about cellular specification, and despite major efforts, we lack a complete molecular characterization of the reprograming process. To address this gap in knowledge, we generated extensive transcriptomic, epigenomic and proteomic data sets describing the reprogramming routes leading from mouse embryonic fibroblasts to induced pluripotency. Through integrative analysis, we reveal that cells transition through distinct gene expression and epigenetic signatures and bifurcate towards reprogramming transgene-dependent and -independent stable pluripotent states. Early transcriptional events, driven by high levels of reprogramming transcription factor expression, are associated with widespread loss of histone H3 lysine 27 (H3K27me3) trimethylation, representing a general opening of the chromatin state. Maintenance of high transgene levels leads to re-acquisition of H3K27me3 and a stable pluripotent state that is alternative to the embryonic stem cell (ESC)-like fate. Lowering transgene levels at an intermediate phase, however, guides the process to the acquisition of ESC-like chromatin and DNA methylation signature. Our data provide a comprehensive molecular description of the reprogramming routes and is accessible through the Project Grandiose portal at http://www.stemformatics.org.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hussein, Samer M I -- Puri, Mira C -- Tonge, Peter D -- Benevento, Marco -- Corso, Andrew J -- Clancy, Jennifer L -- Mosbergen, Rowland -- Li, Mira -- Lee, Dong-Sung -- Cloonan, Nicole -- Wood, David L A -- Munoz, Javier -- Middleton, Robert -- Korn, Othmar -- Patel, Hardip R -- White, Carl A -- Shin, Jong-Yeon -- Gauthier, Maely E -- Le Cao, Kim-Anh -- Kim, Jong-Il -- Mar, Jessica C -- Shakiba, Nika -- Ritchie, William -- Rasko, John E J -- Grimmond, Sean M -- Zandstra, Peter W -- Wells, Christine A -- Preiss, Thomas -- Seo, Jeong-Sun -- Heck, Albert J R -- Rogers, Ian M -- Nagy, Andras -- MOP102575/Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Dec 11;516(7530):198-206. doi: 10.1038/nature14046.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada. ; 1] Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands [2] Netherlands Proteomics Centre, Padualaan 8, 3584CH Utrecht, The Netherlands. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 3H7, Canada. ; Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), ACT 2601, Australia. ; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Department of Biomedical Sciences and Biochemistry, Seoul National University College of Medicine, Seoul 110-799, South Korea. ; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia. ; Gene and Stem Cell Therapy Program and Bioinformatics Lab, Centenary Institute, Camperdown 2050, NSW, Australia &Sydney Medical School, 31 University of Sydney 2006, New South Wales, Australia. ; 1] Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), ACT 2601, Australia [2] Genome Discovery Unit, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra) 2601, ACT, Australia. ; 1] Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto M5S-3G9, Canada [2] The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto M5S 3E1, Canada. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Life Science Institute, Macrogen Inc., Seoul 153-781, South Korea. ; Department of Systems &Computational Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA. ; Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto M5S-3G9, Canada. ; 1] Gene and Stem Cell Therapy Program and Bioinformatics Lab, Centenary Institute, Camperdown 2050, NSW, Australia &Sydney Medical School, 31 University of Sydney 2006, New South Wales, Australia [2] Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, New South Wales, Australia. ; 1] Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia [2] College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK. ; 1] Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), ACT 2601, Australia [2] Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Department of Biomedical Sciences and Biochemistry, Seoul National University College of Medicine, Seoul 110-799, South Korea [3] Life Science Institute, Macrogen Inc., Seoul 153-781, South Korea. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada [3] Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario M5S 1E2, Canada. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 3H7, Canada [3] Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario M5S 1E2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503233" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cellular Reprogramming/*genetics ; Chromatin/chemistry/genetics/metabolism ; Chromatin Assembly and Disassembly ; DNA Methylation ; Embryonic Stem Cells/cytology/metabolism ; Epistasis, Genetic/genetics ; Fibroblasts/cytology/metabolism ; Genome/*genetics ; Histones/chemistry/metabolism ; Induced Pluripotent Stem Cells/*cytology/*metabolism ; Internet ; Mice ; Proteome/genetics ; Proteomics ; RNA, Long Noncoding/genetics ; Transcription Factors/genetics/metabolism ; Transcription, Genetic/genetics ; Transcriptome/genetics ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cong, Peiyun -- Ma, Xiaoya -- Hou, Xianguang -- Edgecombe, Gregory D -- Strausfeld, Nicholas J -- England -- Nature. 2014 Dec 11;516(7530):E3-4. doi: 10.1038/nature13861.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China. ; 1] Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China [2] Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. ; Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. ; 1] Department of Neuroscience, University of Arizona, Tucson, Arizona 85721, USA [2] Center for Insect Science, University of Arizona, Tucson, Arizona 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503242" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthropods/*anatomy & histology/*classification ; Brain/*anatomy & histology ; Extremities/*innervation ; *Fossils
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ledford, Heidi -- England -- Nature. 2014 Dec 11;516(7530):156. doi: 10.1038/516156a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503214" target="_blank"〉PubMed〈/a〉
    Keywords: *Adoptive Transfer/adverse effects/economics ; Animals ; Antigens, CD19/immunology/metabolism ; Clinical Trials as Topic ; Drug Industry ; Genetic Engineering ; Humans ; Leukemia/genetics/immunology/*therapy ; Lymphoma/genetics/immunology/*therapy ; Mice ; Survival Rate ; T-Lymphocytes/*immunology/metabolism/*transplantation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hochkirch, Axel -- McGowan, Philip J K -- van der Sluijs, Jeroen -- England -- Nature. 2014 Dec 11;516(7530):170. doi: 10.1038/516170c.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Trier University, Germany. ; Newcastle University, UK. ; University of Bergen, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503223" target="_blank"〉PubMed〈/a〉
    Keywords: Agrochemicals/poisoning ; Animals ; *Authorship ; *Biodiversity ; Chemical Industry/ethics ; *Conflict of Interest ; *Environmental Policy ; Pollination/drug effects ; Research Report/*standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cyranoski, David -- England -- Nature. 2014 Dec 11;516(7530):162-4. doi: 10.1038/516162a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nature from Shanghai.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503218" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Dedifferentiation/genetics ; Cellular Reprogramming/*physiology ; Chromosomes/chemistry/genetics/metabolism ; Embryonic Stem Cells/cytology/metabolism ; Fibroblasts/cytology/metabolism ; Histones/chemistry/metabolism ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Mice ; Stem Cells/*cytology/*metabolism ; *Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-12-17
    Description: Recently developed flexible mechanosensors based on inorganic silicon, organic semiconductors, carbon nanotubes, graphene platelets, pressure-sensitive rubber and self-powered devices are highly sensitive and can be applied to human skin. However, the development of a multifunctional sensor satisfying the requirements of ultrahigh mechanosensitivity, flexibility and durability remains a challenge. In nature, spiders sense extremely small variations in mechanical stress using crack-shaped slit organs near their leg joints. Here we demonstrate that sensors based on nanoscale crack junctions and inspired by the geometry of a spider's slit organ can attain ultrahigh sensitivity and serve multiple purposes. The sensors are sensitive to strain (with a gauge factor of over 2,000 in the 0-2 per cent strain range) and vibration (with the ability to detect amplitudes of approximately 10 nanometres). The device is reversible, reproducible, durable and mechanically flexible, and can thus be easily mounted on human skin as an electronic multipixel array. The ultrahigh mechanosensitivity is attributed to the disconnection-reconnection process undergone by the zip-like nanoscale crack junctions under strain or vibration. The proposed theoretical model is consistent with experimental data that we report here. We also demonstrate that sensors based on nanoscale crack junctions are applicable to highly selective speech pattern recognition and the detection of physiological signals. The nanoscale crack junction-based sensory system could be useful in diverse applications requiring ultrahigh displacement sensitivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Daeshik -- Pikhitsa, Peter V -- Choi, Yong Whan -- Lee, Chanseok -- Shin, Sung Soo -- Piao, Linfeng -- Park, Byeonghak -- Suh, Kahp-Yang -- Kim, Tae-il -- Choi, Mansoo -- England -- Nature. 2014 Dec 11;516(7530):222-6. doi: 10.1038/nature14002.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Global Frontier Center for Multiscale Energy Systems, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, South Korea [2] Division of WCU Multiscale Mechanical Design, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, South Korea. ; Global Frontier Center for Multiscale Energy Systems, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, South Korea. ; 1] Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 440-746, South Korea [2] School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 440-746, South Korea. ; 1] Global Frontier Center for Multiscale Energy Systems, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, South Korea [2] Division of WCU Multiscale Mechanical Design, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, South Korea [3] Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-742, South Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503234" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomimetics/*methods ; Humans ; Mechanotransduction, Cellular/physiology ; *Movement ; Music ; Nanotechnology/instrumentation/*methods ; Pattern Recognition, Automated/*methods ; Platinum/chemistry ; Pliability ; Pressure ; Skin ; *Sound ; Speech ; Spiders/anatomy & histology/*physiology ; *Vibration ; Wings, Animal/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-12-17
    Description: Pluripotency is defined by the ability of a cell to differentiate to the derivatives of all the three embryonic germ layers: ectoderm, mesoderm and endoderm. Pluripotent cells can be captured via the archetypal derivation of embryonic stem cells or via somatic cell reprogramming. Somatic cells are induced to acquire a pluripotent stem cell (iPSC) state through the forced expression of key transcription factors, and in the mouse these cells can fulfil the strictest of all developmental assays for pluripotent cells by generating completely iPSC-derived embryos and mice. However, it is not known whether there are additional classes of pluripotent cells, or what the spectrum of reprogrammed phenotypes encompasses. Here we explore alternative outcomes of somatic reprogramming by fully characterizing reprogrammed cells independent of preconceived definitions of iPSC states. We demonstrate that by maintaining elevated reprogramming factor expression levels, mouse embryonic fibroblasts go through unique epigenetic modifications to arrive at a stable, Nanog-positive, alternative pluripotent state. In doing so, we prove that the pluripotent spectrum can encompass multiple, unique cell states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tonge, Peter D -- Corso, Andrew J -- Monetti, Claudio -- Hussein, Samer M I -- Puri, Mira C -- Michael, Iacovos P -- Li, Mira -- Lee, Dong-Sung -- Mar, Jessica C -- Cloonan, Nicole -- Wood, David L -- Gauthier, Maely E -- Korn, Othmar -- Clancy, Jennifer L -- Preiss, Thomas -- Grimmond, Sean M -- Shin, Jong-Yeon -- Seo, Jeong-Sun -- Wells, Christine A -- Rogers, Ian M -- Nagy, Andras -- MOP102575/Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Dec 11;516(7530):192-7. doi: 10.1038/nature14047.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 3H7, Canada. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5T 3H7, Canada. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea [3] Department of Biochemistry, Seoul National University College of Medicine, Seoul 110-799, South Korea. ; Department of Systems &Computational Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA. ; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia. ; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia. ; Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), Australian Capital Territory 2601, Australia. ; 1] Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), Australian Capital Territory 2601, Australia [2] Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Life Science Institute, Macrogen Inc., Seoul 153-781, South Korea. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea [3] Department of Biochemistry, Seoul National University College of Medicine, Seoul 110-799, South Korea [4] Life Science Institute, Macrogen Inc., Seoul 153-781, South Korea. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Physiology, University of Toronto, Toronto, Ontario M5T 3H7, Canada [3] Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario M5T 3H7, Canada. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 3H7, Canada [3] Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario M5T 3H7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503232" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cellular Reprogramming/*genetics/*physiology ; Embryonic Stem Cells/cytology/metabolism ; *Epigenesis, Genetic ; Female ; Fibroblasts/classification/cytology/metabolism ; Histone Deacetylases/metabolism ; Induced Pluripotent Stem Cells/classification/*cytology/*metabolism ; Mice ; Mice, Nude ; Transcription Factors/genetics/metabolism ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayer, Georg -- Martin, Christine -- de Sena Oliveira, Ivo -- Franke, Franziska Anni -- Gross, Vladimir -- England -- Nature. 2014 Dec 11;516(7530):E1-2. doi: 10.1038/nature13860.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Animal Evolution and Development, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503241" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthropods/*anatomy & histology/*classification ; Brain/*anatomy & histology ; Extremities/*innervation ; *Fossils
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Jun -- Izpisua Belmonte, Juan Carlos -- England -- Nature. 2014 Dec 11;516(7530):172-3. doi: 10.1038/516172a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cellular Reprogramming/*genetics/*physiology ; *Epigenesis, Genetic ; Female ; Genome/*genetics ; Induced Pluripotent Stem Cells/*cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Monastersky, Richard -- England -- Nature. 2014 Dec 11;516(7530):158-61. doi: 10.1038/516158a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503217" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Climate Change/mortality ; Conservation of Natural Resources ; Data Collection ; Endangered Species/*statistics & numerical data ; *Extinction, Biological ; Fungi ; Life ; Plants ; *Research Report ; Risk Assessment ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-12-17
    Description: Despite recent advances, the structures of many proteins cannot be determined by electron cryomicroscopy because the individual proteins move during irradiation. This blurs the images so that they cannot be aligned with each other to calculate a three-dimensional density. Much of this movement stems from instabilities in the carbon substrates used to support frozen samples in the microscope. Here we demonstrate a gold specimen support that nearly eliminates substrate motion during irradiation. This increases the subnanometer image contrast such that alpha helices of individual proteins are resolved. With this improvement, we determine the structure of apoferritin, a smooth octahedral shell of alpha-helical subunits that is particularly difficult to solve by electron microscopy. This advance in substrate design will enable the solution of currently intractable protein structures.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4296556/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4296556/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russo, Christopher J -- Passmore, Lori A -- 261151/European Research Council/International -- MC_U105192715/Medical Research Council/United Kingdom -- U105192715/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1377-80. doi: 10.1126/science.1259530.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. passmore@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504723" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoferritins/*chemistry/*ultrastructure ; Cryoelectron Microscopy/instrumentation/*methods ; Crystallography, X-Ray ; *Gold ; Horses ; Image Processing, Computer-Assisted ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Ribosomes/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-12-17
    Description: Songbirds represent an important model organism for elucidating molecular mechanisms that link genes with complex behaviors, in part because they have discrete vocal learning circuits that have parallels with those that mediate human speech. We found that ~10% of the genes in the avian genome were regulated by singing, and we found a striking regional diversity of both basal and singing-induced programs in the four key song nuclei of the zebra finch, a vocal learning songbird. The region-enriched patterns were a result of distinct combinations of region-enriched transcription factors (TFs), their binding motifs, and presinging acetylation of histone 3 at lysine 27 (H3K27ac) enhancer activity in the regulatory regions of the associated genes. RNA interference manipulations validated the role of the calcium-response transcription factor (CaRF) in regulating genes preferentially expressed in specific song nuclei in response to singing. Thus, differential combinatorial binding of a small group of activity-regulated TFs and predefined epigenetic enhancer activity influences the anatomical diversity of behaviorally regulated gene networks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359888/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359888/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whitney, Osceola -- Pfenning, Andreas R -- Howard, Jason T -- Blatti, Charles A -- Liu, Fang -- Ward, James M -- Wang, Rui -- Audet, Jean-Nicoles -- Kellis, Manolis -- Mukherjee, Sayan -- Sinha, Saurabh -- Hartemink, Alexander J -- West, Anne E -- Jarvis, Erich D -- 5T32MH018882-18/MH/NIMH NIH HHS/ -- R01 DC007218/DC/NIDCD NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01DC007218/DC/NIDCD NIH HHS/ -- R21 NS084336/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1256780. doi: 10.1126/science.1256780.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA. owhitney@gmail.com apfenning@csail.mit.edu west@neuro.duke.edu jarvis@neuro.duke.edu. ; Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA. Computer Science and Artificial Intelligence Laboratory and the Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. owhitney@gmail.com apfenning@csail.mit.edu west@neuro.duke.edu jarvis@neuro.duke.edu. ; Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA. ; Department of Computer Science, University of Illinois, Urbana-Champaign, IL, USA. ; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA. ; Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada. ; Computer Science and Artificial Intelligence Laboratory and the Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Department of Statistics, Duke University, Durham, NC, USA. ; Department of Computer Science, Duke University, Durham, NC 27708-0129, USA. ; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA. owhitney@gmail.com apfenning@csail.mit.edu west@neuro.duke.edu jarvis@neuro.duke.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504732" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Avian Proteins/chemistry/genetics/metabolism ; Brain/*physiology ; Enhancer Elements, Genetic ; Epigenesis, Genetic ; Finches/*genetics/*physiology ; *Gene Expression Regulation ; *Gene Regulatory Networks ; Genome ; Histones/metabolism ; Male ; Regulatory Sequences, Nucleic Acid ; Transcription Factors/chemistry/genetics/metabolism ; *Transcriptome ; *Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Armitage, Andrew E -- Drakesmith, Hal -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1299-300. doi: 10.1126/science.aaa2468.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK. ; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK. alexander.drakesmith@ndm.ox.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504706" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Haemophilus influenzae/*metabolism ; Haplorhini/*genetics/*metabolism ; Humans ; Neisseria/*metabolism ; Transferrin/*genetics/*metabolism ; Transferrin-Binding Protein A/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1275-6. doi: 10.1126/science.346.6215.1275.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504693" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/classification/*genetics/physiology ; Gene Expression Regulation ; *Genome ; Genomics ; *Introns ; Learning ; Phylogeny ; Sequence Analysis, DNA ; Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-17
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407557/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407557/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Guojie -- Jarvis, Erich D -- Gilbert, M Thomas P -- DP1 OD000448/OD/NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1308-9. doi: 10.1126/science.346.6215.1308.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504710" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/classification/*genetics ; *Genome ; Genomics ; Phylogeny ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stone, Richard -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1281-3. doi: 10.1126/science.346.6215.1281.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504698" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms ; *Dinosaurs ; *Extinction, Biological ; *Fossils ; Geological Phenomena ; Minor Planets ; Time ; *Volcanic Eruptions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-12-17
    Description: Edentulism, the absence of teeth, has evolved convergently among vertebrates, including birds, turtles, and several lineages of mammals. Instead of teeth, modern birds (Neornithes) use a horny beak (rhamphotheca) and a muscular gizzard to acquire and process food. We performed comparative genomic analyses representing lineages of nearly all extant bird orders and recovered shared, inactivating mutations within genes expressed in both the enamel and dentin of teeth of other vertebrate species, indicating that the common ancestor of modern birds lacked mineralized teeth. We estimate that tooth loss, or at least the loss of enamel caps that provide the outer layer of mineralized teeth, occurred about 116 million years ago.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meredith, Robert W -- Zhang, Guojie -- Gilbert, M Thomas P -- Jarvis, Erich D -- Springer, Mark S -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1254390. doi: 10.1126/science.1254390. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA. meredithr@mail.montclair.edu mark.springer@ucr.edu. ; China National GeneBank, Beijing Genomics Institute-Shenzhen, Shenzhen, 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. ; Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. ; Department of Neurobiology, Howard Hughes Medical Institute and Duke University Medical Center, Durham, NC 27710, USA. ; Department of Biology, University of California, Riverside, CA 92521, USA. meredithr@mail.montclair.edu mark.springer@ucr.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504730" target="_blank"〉PubMed〈/a〉
    Keywords: Alligators and Crocodiles/genetics ; Animals ; *Biological Evolution ; Birds/*anatomy & histology/classification/*genetics ; *Dental Enamel ; *Dentin ; Evolution, Molecular ; Fossils ; *Genome ; Genomics ; Mammals/genetics ; *Mutation ; Phylogeny ; Tooth ; Vertebrates/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kress, W John -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1310. doi: 10.1126/science.aaa4115.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W. John Kress is the Interim Under Secretary for Science at the Smithsonian Institution and Distinguished Scientist and Curator of Botany at the National Museum of Natural History, Smithsonian Institution, Washington, DC. kressj@si.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504711" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Specimen Banks ; *Birds/genetics ; Endangered Species ; Extinction, Biological ; *Museums ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-12-17
    Description: Recent discoveries of spectacular dinosaur fossils overwhelmingly support the hypothesis that birds are descended from maniraptoran theropod dinosaurs, and furthermore, demonstrate that distinctive bird characteristics such as feathers, flight, endothermic physiology, unique strategies for reproduction and growth, and a novel pulmonary system originated among Mesozoic terrestrial dinosaurs. The transition from ground-living to flight-capable theropod dinosaurs now probably represents one of the best-documented major evolutionary transitions in life history. Recent studies in developmental biology and other disciplines provide additional insights into how bird characteristics originated and evolved. The iconic features of extant birds for the most part evolved in a gradual and stepwise fashion throughout archosaur evolution. However, new data also highlight occasional bursts of morphological novelty at certain stages particularly close to the origin of birds and an unavoidable complex, mosaic evolutionary distribution of major bird characteristics on the theropod tree. Research into bird origins provides a premier example of how paleontological and neontological data can interact to reveal the complexity of major innovations, to answer key evolutionary questions, and to lead to new research directions. A better understanding of bird origins requires multifaceted and integrative approaches, yet fossils necessarily provide the final test of any evolutionary model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Xing -- Zhou, Zhonghe -- Dudley, Robert -- Mackem, Susan -- Chuong, Cheng-Ming -- Erickson, Gregory M -- Varricchio, David J -- AR 47364/AR/NIAMS NIH HHS/ -- AR 60306/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1253293. doi: 10.1126/science.1253293.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, PR China. xu.xing@ivpp.ac.cn. ; Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, PR China. ; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. ; Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick NIH, Frederick, MD 21702, USA. ; Department of Pathology, University of Southern California, CA 90033, USA. Cheng Kung University, Laboratory for Wound Repair and Regeneration, Graduated Institute of Clinical Medicine, Tainan, 70101, Taiwan. ; Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA. ; Earth Sciences, Montana State University, Bozeman, MT 59717, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504729" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Birds/anatomy & histology/classification/physiology ; *Dinosaurs/classification ; Feathers/anatomy & histology ; Female ; Flight, Animal ; Fossils ; Male ; Morphogenesis ; Phylogeny ; Reproduction ; Respiratory System/anatomy & histology ; Wings, Animal/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-12-17
    Description: Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385736/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385736/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pfenning, Andreas R -- Hara, Erina -- Whitney, Osceola -- Rivas, Miriam V -- Wang, Rui -- Roulhac, Petra L -- Howard, Jason T -- Wirthlin, Morgan -- Lovell, Peter V -- Ganapathy, Ganeshkumar -- Mouncastle, Jacquelyn -- Moseley, M Arthur -- Thompson, J Will -- Soderblom, Erik J -- Iriki, Atsushi -- Kato, Masaki -- Gilbert, M Thomas P -- Zhang, Guojie -- Bakken, Trygve -- Bongaarts, Angie -- Bernard, Amy -- Lein, Ed -- Mello, Claudio V -- Hartemink, Alexander J -- Jarvis, Erich D -- DP1 OD000448/OD/NIH HHS/ -- R01 DC007218/DC/NIDCD NIH HHS/ -- R01DC007218/DC/NIDCD NIH HHS/ -- R21 DC007478/DC/NIDCD NIH HHS/ -- R24 GM092842/GM/NIGMS NIH HHS/ -- R24GM092842/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1256846. doi: 10.1126/science.1256846.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA. apfenning@csail.mit.edu amink@cs.duke.edu jarvis@neuro.duke.edu. ; Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA. ; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA. ; Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA. ; Laboratory for Symbolic Cognitive Development, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for Social Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark. ; Allen Institute for Brain Science, Seattle, WA 98103, USA. ; Department of Computer Science, Duke University, Durham, NC 27708, USA. apfenning@csail.mit.edu amink@cs.duke.edu jarvis@neuro.duke.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504733" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Birds/genetics/physiology ; Brain/anatomy & histology/*physiology ; Brain Mapping ; Corpus Striatum/anatomy & histology/physiology ; Evolution, Molecular ; Finches/*genetics/*physiology ; *Gene Expression Regulation ; Humans ; *Learning ; Male ; Motor Cortex/anatomy & histology/physiology ; Neural Pathways ; Species Specificity ; *Speech ; Transcription, Genetic ; *Transcriptome ; *Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-12-17
    Description: Iron sequestration provides an innate defense, termed nutritional immunity, leading pathogens to scavenge iron from hosts. Although the molecular basis of this battle for iron is established, its potential as a force for evolution at host-pathogen interfaces is unknown. We show that the iron transport protein transferrin is engaged in ancient and ongoing evolutionary conflicts with TbpA, a transferrin surface receptor from bacteria. Single substitutions in transferrin at rapidly evolving sites reverse TbpA binding, providing a mechanism to counteract bacterial iron piracy among great apes. Furthermore, the C2 transferrin polymorphism in humans evades TbpA variants from Haemophilus influenzae, revealing a functional basis for standing genetic variation. These findings identify a central role for nutritional immunity in the persistent evolutionary conflicts between primates and bacterial pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455941/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455941/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barber, Matthew F -- Elde, Nels C -- 1F32GM108288/GM/NIGMS NIH HHS/ -- GM090042/GM/NIGMS NIH HHS/ -- R00 GM090042/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1362-6. doi: 10.1126/science.1259329.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA. ; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA. nelde@genetics.utah.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504720" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Evolution, Molecular ; Haemophilus influenzae/*metabolism ; Haplorhini/*genetics/immunology/*metabolism ; Humans ; Immunity, Innate ; Models, Molecular ; Molecular Sequence Data ; Neisseria/*metabolism ; Neisseria gonorrhoeae/metabolism ; Neisseria meningitidis/metabolism ; Phylogeny ; Polymorphism, Genetic ; Protein Binding ; Selection, Genetic ; Transferrin/chemistry/*genetics/*metabolism ; Transferrin-Binding Protein A/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-12-17
    Description: Gene tree incongruence arising from incomplete lineage sorting (ILS) can reduce the accuracy of concatenation-based estimations of species trees. Although coalescent-based species tree estimation methods can have good accuracy in the presence of ILS, they are sensitive to gene tree estimation error. We propose a pipeline that uses bootstrapping to evaluate whether two genes are likely to have the same tree, then it groups genes into sets using a graph-theoretic optimization and estimates a tree on each subset using concatenation, and finally produces an estimated species tree from these trees using the preferred coalescent-based method. Statistical binning improves the accuracy of MP-EST, a popular coalescent-based method, and we use it to produce the first genome-scale coalescent-based avian tree of life.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mirarab, Siavash -- Bayzid, Md Shamsuzzoha -- Boussau, Bastien -- Warnow, Tandy -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1250463. doi: 10.1126/science.1250463. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computer Science, University of Texas at Austin, Austin, TX 78712, USA. ; Laboratoire de Biometrie et Biologie Evolutive, CNRS, UMR5558, Universite Lyon 1, 69622, Villeurbanne, France. ; Department of Computer Science, University of Texas at Austin, Austin, TX 78712, USA. Department of Bioengineering and Computer Science, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA. warnow@illinois.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504728" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/*classification/*genetics ; Computational Biology ; *Genome ; Likelihood Functions ; Mammals/classification/genetics ; *Phylogeny ; Sequence Alignment ; Vertebrates/classification/genetics ; Yeasts/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-12-17
    Description: Pollinators are fundamental to maintaining both biodiversity and agricultural productivity, but habitat destruction, loss of flower resources, and increased use of pesticides are causing declines in their abundance and diversity. Using historical records, we assessed the rate of extinction of bee and flower-visiting wasp species in Britain from the mid-19th century to the present. The most rapid phase of extinction appears to be related to changes in agricultural policy and practice beginning in the 1920s, before the agricultural intensification prompted by the Second World War, often cited as the most important driver of biodiversity loss in Britain. Slowing of the extinction rate from the 1960s onward may be due to prior loss of the most sensitive species and/or effective conservation programs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ollerton, Jeff -- Erenler, Hilary -- Edwards, Mike -- Crockett, Robin -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1360-2. doi: 10.1126/science.1257259.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental and Geographical Sciences, School of Science and Technology, University of Northampton, Avenue Campus, Northampton NN2 6JD, UK. jeff.ollerton@northampton.ac.uk. ; Department of Environmental and Geographical Sciences, School of Science and Technology, University of Northampton, Avenue Campus, Northampton NN2 6JD, UK. ; Lea-Side, Carron Lane, Midhurst GU29 9LB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504719" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture/history/methods ; Animals ; *Bees ; Biodiversity ; *Extinction, Biological ; *Flowers ; Great Britain ; History, 19th Century ; History, 20th Century ; Linear Models ; Pollen ; *Pollination ; Population Dynamics ; *Wasps
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-12-17
    Description: To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405904/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405904/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jarvis, Erich D -- Mirarab, Siavash -- Aberer, Andre J -- Li, Bo -- Houde, Peter -- Li, Cai -- Ho, Simon Y W -- Faircloth, Brant C -- Nabholz, Benoit -- Howard, Jason T -- Suh, Alexander -- Weber, Claudia C -- da Fonseca, Rute R -- Li, Jianwen -- Zhang, Fang -- Li, Hui -- Zhou, Long -- Narula, Nitish -- Liu, Liang -- Ganapathy, Ganesh -- Boussau, Bastien -- Bayzid, Md Shamsuzzoha -- Zavidovych, Volodymyr -- Subramanian, Sankar -- Gabaldon, Toni -- Capella-Gutierrez, Salvador -- Huerta-Cepas, Jaime -- Rekepalli, Bhanu -- Munch, Kasper -- Schierup, Mikkel -- Lindow, Bent -- Warren, Wesley C -- Ray, David -- Green, Richard E -- Bruford, Michael W -- Zhan, Xiangjiang -- Dixon, Andrew -- Li, Shengbin -- Li, Ning -- Huang, Yinhua -- Derryberry, Elizabeth P -- Bertelsen, Mads Frost -- Sheldon, Frederick H -- Brumfield, Robb T -- Mello, Claudio V -- Lovell, Peter V -- Wirthlin, Morgan -- Schneider, Maria Paula Cruz -- Prosdocimi, Francisco -- Samaniego, Jose Alfredo -- Vargas Velazquez, Amhed Missael -- Alfaro-Nunez, Alonzo -- Campos, Paula F -- Petersen, Bent -- Sicheritz-Ponten, Thomas -- Pas, An -- Bailey, Tom -- Scofield, Paul -- Bunce, Michael -- Lambert, David M -- Zhou, Qi -- Perelman, Polina -- Driskell, Amy C -- Shapiro, Beth -- Xiong, Zijun -- Zeng, Yongli -- Liu, Shiping -- Li, Zhenyu -- Liu, Binghang -- Wu, Kui -- Xiao, Jin -- Yinqi, Xiong -- Zheng, Qiuemei -- Zhang, Yong -- Yang, Huanming -- Wang, Jian -- Smeds, Linnea -- Rheindt, Frank E -- Braun, Michael -- Fjeldsa, Jon -- Orlando, Ludovic -- Barker, F Keith -- Jonsson, Knud Andreas -- Johnson, Warren -- Koepfli, Klaus-Peter -- O'Brien, Stephen -- Haussler, David -- Ryder, Oliver A -- Rahbek, Carsten -- Willerslev, Eske -- Graves, Gary R -- Glenn, Travis C -- McCormack, John -- Burt, Dave -- Ellegren, Hans -- Alstrom, Per -- Edwards, Scott V -- Stamatakis, Alexandros -- Mindell, David P -- Cracraft, Joel -- Braun, Edward L -- Warnow, Tandy -- Jun, Wang -- Gilbert, M Thomas P -- Zhang, Guojie -- DP1 OD000448/OD/NIH HHS/ -- DP1OD000448/OD/NIH HHS/ -- R24 GM092842/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1320-31. doi: 10.1126/science.1253451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA. ; Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. College of Medicine and Forensics, Xi'an Jiaotong University Xi'an 710061, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia. ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; CNRS UMR 5554, Institut des Sciences de l'Evolution de Montpellier, Universite Montpellier II Montpellier, France. ; Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA. ; Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala Sweden. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. ; Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Onna-son, Okinawa 904-0495, Japan. ; Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA. ; Laboratoire de Biometrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Universite de Lyon, F-69622 Villeurbanne, France. ; Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia. ; Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain. Institucio Catalana de Recerca i Estudis Avancats, Barcelona, Spain. ; Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain. ; Joint Institute for Computational Sciences, The University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. ; Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark. ; The Genome Institute, Washington University School of Medicine, St Louis, MI 63108, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA. ; Department of Ecology and Evolutionary Biology, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University Cardiff CF10 3AX, Wales, UK. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University Cardiff CF10 3AX, Wales, UK. Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. ; International Wildlife Consultants, Carmarthen SA33 5YL, Wales, UK. ; College of Medicine and Forensics, Xi'an Jiaotong University Xi'an, 710061, China. ; State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. ; Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA. Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; Center for Zoo and Wild Animal Health, Copenhagen Zoo Roskildevej 38, DK-2000 Frederiksberg, Denmark. ; Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA. Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. ; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA. ; Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. Institute of Biological Sciences, Federal University of Para, Belem, Para, Brazil. ; Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil. ; Centre for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark Kemitorvet 208, 2800 Kgs Lyngby, Denmark. ; Breeding Centre for Endangered Arabian Wildlife, Sharjah, United Arab Emirates. ; Dubai Falcon Hospital, Dubai, United Arab Emirates. ; Canterbury Museum Rolleston Avenue, Christchurch 8050, New Zealand. ; Trace and Environmental DNA Laboratory Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. ; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. ; Laboratory of Genomic Diversity, National Cancer Institute Frederick, MD 21702, USA. Institute of Molecular and Cellular Biology, SB RAS and Novosibirsk State University, Novosibirsk, Russia. ; Smithsonian Institution National Museum of Natural History, Washington, DC 20013, USA. ; BGI-Shenzhen, Shenzhen 518083, China. ; Department of Biological Sciences, National University of Singapore, Republic of Singapore. ; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Suitland, MD 20746, USA. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. ; Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55108, USA. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK. ; Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA. ; Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA. ; Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004. Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33004, USA. ; Center for Biomolecular Science and Engineering, UCSC, Santa Cruz, CA 95064, USA. ; San Diego Zoo Institute for Conservation Research, Escondido, CA 92027, USA. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA. ; Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA. ; Moore Laboratory of Zoology and Department of Biology, Occidental College, Los Angeles, CA 90041, USA. ; Department of Genomics and Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK. ; Swedish Species Information Centre, Swedish University of Agricultural Sciences Box 7007, SE-750 07 Uppsala, Sweden. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. ; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA. ; Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany. Institute of Theoretical Informatics, Department of Informatics, Karlsruhe Institute of Technology, D- 76131 Karlsruhe, Germany. ; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA. ; Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA. ; Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA. ; Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA. Departments of Bioengineering and Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; BGI-Shenzhen, Shenzhen 518083, China. Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Medicine, University of Hong Kong, Hong Kong. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504713" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Proteins/genetics ; Base Sequence ; Biological Evolution ; Birds/classification/*genetics ; DNA Transposable Elements ; Genes ; Genetic Speciation ; *Genome ; INDEL Mutation ; Introns ; *Phylogeny ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-12-17
    Description: Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain-carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mok, Sachel -- Ashley, Elizabeth A -- Ferreira, Pedro E -- Zhu, Lei -- Lin, Zhaoting -- Yeo, Tomas -- Chotivanich, Kesinee -- Imwong, Mallika -- Pukrittayakamee, Sasithon -- Dhorda, Mehul -- Nguon, Chea -- Lim, Pharath -- Amaratunga, Chanaki -- Suon, Seila -- Hien, Tran Tinh -- Htut, Ye -- Faiz, M Abul -- Onyamboko, Marie A -- Mayxay, Mayfong -- Newton, Paul N -- Tripura, Rupam -- Woodrow, Charles J -- Miotto, Olivo -- Kwiatkowski, Dominic P -- Nosten, Francois -- Day, Nicholas P J -- Preiser, Peter R -- White, Nicholas J -- Dondorp, Arjen M -- Fairhurst, Rick M -- Bozdech, Zbynek -- 089276/Wellcome Trust/United Kingdom -- 090770/Wellcome Trust/United Kingdom -- 093956/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):431-5. doi: 10.1126/science.1260403. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, Nanyang Technological University, Singapore. ; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. ; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. ; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. ; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. WorldWide Antimalarial Resistance Network (WWARN), Asia Regional Centre, Mahidol University, Bangkok, Thailand. WorldWide Antimalarial Resistance Network, University of Maryland School of Medicine, Baltimore, MD, USA. ; National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia. ; National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia. Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. ; Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. ; Oxford University Clinical Research Unit (OUCRU), Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam. ; Department of Medical Research, Lower Myanmar, Yangon, Myanmar. ; Malaria Research Group & Dev Care Foundation, Dhaka, Bangladesh. ; Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo. ; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR. Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Lao PDR. ; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR. ; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. ; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, UK. Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK. ; Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, UK. Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK. ; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand. ; School of Biological Sciences, Nanyang Technological University, Singapore. zbozdech@ntu.edu.sg.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25502316" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/*pharmacology ; Artemisinins/*pharmacology ; Chaperonin Containing TCP-1/genetics/metabolism ; Drug Resistance/*genetics ; Humans ; Malaria/*drug therapy/parasitology ; Malaria, Falciparum/*drug therapy/parasitology ; Plasmodium falciparum/*drug effects/*genetics ; Transcriptome ; Unfolded Protein Response/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-12-17
    Description: The Chicxulub asteroid impact (Mexico) and the eruption of the massive Deccan volcanic province (India) are two proposed causes of the end-Cretaceous mass extinction, which includes the demise of nonavian dinosaurs. Despite widespread acceptance of the impact hypothesis, the lack of a high-resolution eruption timeline for the Deccan basalts has prevented full assessment of their relationship to the mass extinction. Here we apply uranium-lead (U-Pb) zircon geochronology to Deccan rocks and show that the main phase of eruptions initiated ~250,000 years before the Cretaceous-Paleogene boundary and that 〉1.1 million cubic kilometers of basalt erupted in ~750,000 years. Our results are consistent with the hypothesis that the Deccan Traps contributed to the latest Cretaceous environmental change and biologic turnover that culminated in the marine and terrestrial mass extinctions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schoene, Blair -- Samperton, Kyle M -- Eddy, Michael P -- Keller, Gerta -- Adatte, Thierry -- Bowring, Samuel A -- Khadri, Syed F R -- Gertsch, Brian -- New York, N.Y. -- Science. 2015 Jan 9;347(6218):182-4. doi: 10.1126/science.aaa0118. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geosciences, Princeton University, Princeton, NJ 08540, USA. bschoene@princeton.edu. ; Department of Geosciences, Princeton University, Princeton, NJ 08540, USA. ; Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Institut des Sciences de la Terre (ISTE), Universite de Lausanne, GEOPOLIS, CH-1015 Lausanne, Switzerland. ; Department of Geology, Amravati University, Amravati, India.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25502315" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Earth (Planet) ; *Extinction, Biological ; *Lead ; *Silicates ; Time Factors ; *Uranium ; Volcanic Eruptions ; *Zirconium
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-12-11
    Description: Protected areas are one of the main tools for halting the continuing global biodiversity crisis caused by habitat loss, fragmentation and other anthropogenic pressures. According to the Aichi Biodiversity Target 11 adopted by the Convention on Biological Diversity, the protected area network should be expanded to at least 17% of the terrestrial world by 2020 (http://www.cbd.int/sp/targets). To maximize conservation outcomes, it is crucial to identify the best expansion areas. Here we show that there is a very high potential to increase protection of ecoregions and vertebrate species by expanding the protected area network, but also identify considerable risk of ineffective outcomes due to land-use change and uncoordinated actions between countries. We use distribution data for 24,757 terrestrial vertebrates assessed under the International Union for the Conservation of Nature (IUCN) 'red list of threatened species', and terrestrial ecoregions (827), modified by land-use models for the present and 2040, and introduce techniques for global and balanced spatial conservation prioritization. First, we show that with a coordinated global protected area network expansion to 17% of terrestrial land, average protection of species ranges and ecoregions could triple. Second, if projected land-use change by 2040 (ref. 11) takes place, it becomes infeasible to reach the currently possible protection levels, and over 1,000 threatened species would lose more than 50% of their present effective ranges worldwide. Third, we demonstrate a major efficiency gap between national and global conservation priorities. Strong evidence is shown that further biodiversity loss is unavoidable unless international action is quickly taken to balance land-use and biodiversity conservation. The approach used here can serve as a framework for repeatable and quantitative assessment of efficiency, gaps and expansion of the global protected area network globally, regionally and nationally, considering current and projected land-use pressures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Montesino Pouzols, Federico -- Toivonen, Tuuli -- Di Minin, Enrico -- Kukkala, Aija S -- Kullberg, Peter -- Kuustera, Johanna -- Lehtomaki, Joona -- Tenkanen, Henrikki -- Verburg, Peter H -- Moilanen, Atte -- England -- Nature. 2014 Dec 18;516(7531):383-6. doi: 10.1038/nature14032. Epub 2014 Nov 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Finnish Centre of Excellence in Metapopulation Biology, Department of Biosciences, Biocenter 3, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland. ; 1] Finnish Centre of Excellence in Metapopulation Biology, Department of Biosciences, Biocenter 3, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland [2] Department of Geosciences and Geography, University of Helsinki, PO Box 64 (Gustaf Hallstromin katu 2a), FI-00014 Helsinki, Finland. ; 1] Finnish Centre of Excellence in Metapopulation Biology, Department of Biosciences, Biocenter 3, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland [2] Department of Life Sciences, University of KwaZulu-Natal, University Road, Private Bag X54001, Durban 4000, South Africa. ; 1] Finnish Centre of Excellence in Metapopulation Biology, Department of Biosciences, Biocenter 3, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland [2] Regional Council of Helsinki-Uusimaa, Esterinportti 2 B, FI-00240 Helsinki, Finland. ; Department of Geosciences and Geography, University of Helsinki, PO Box 64 (Gustaf Hallstromin katu 2a), FI-00014 Helsinki, Finland. ; Institute for Environmental Studies, VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25494203" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Conservation of Natural Resources ; Ecosystem ; International Cooperation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-12-10
    Description: Recent studies have shown that the diffusivity of enzymes increases in a substrate-dependent manner during catalysis. Although this observation has been reported and characterized for several different systems, the precise origin of this phenomenon is unknown. Calorimetric methods are often used to determine enthalpies from enzyme-catalysed reactions and can therefore provide important insight into their reaction mechanisms. The ensemble averages involved in traditional bulk calorimetry cannot probe the transient effects that the energy exchanged in a reaction may have on the catalyst. Here we obtain single-molecule fluorescence correlation spectroscopy data and analyse them within the framework of a stochastic theory to demonstrate a mechanistic link between the enhanced diffusion of a single enzyme molecule and the heat released in the reaction. We propose that the heat released during catalysis generates an asymmetric pressure wave that results in a differential stress at the protein-solvent interface that transiently displaces the centre-of-mass of the enzyme (chemoacoustic effect). This novel perspective on how enzymes respond to the energy released during catalysis suggests a possible effect of the heat of reaction on the structural integrity and internal degrees of freedom of the enzyme.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363105/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363105/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Riedel, Clement -- Gabizon, Ronen -- Wilson, Christian A M -- Hamadani, Kambiz -- Tsekouras, Konstantinos -- Marqusee, Susan -- Presse, Steve -- Bustamante, Carlos -- R01 GM050945/GM/NIGMS NIH HHS/ -- R01 GM065050/GM/NIGMS NIH HHS/ -- R01-GM0325543/GM/NIGMS NIH HHS/ -- R01-GM05945/GM/NIGMS NIH HHS/ -- R01-GM65050/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 8;517(7533):227-30. doi: 10.1038/nature14043. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, USA. ; 1] California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, USA [2] Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, 1058 Santiago, Chile. ; Department of Physics, Indiana University-Purdue University Indianapolis (IUPUI), Indiana 46202, USA. ; 1] California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, USA [2] Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. ; 1] Department of Physics, Indiana University-Purdue University Indianapolis (IUPUI), Indiana 46202, USA [2] Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indiana 46202, USA. ; 1] California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, USA [2] Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA [3] Jason L. Choy Laboratory of Single-Molecule Biophysics and Department of Physics, University of California, Berkeley, California 94720, USA [4] Department of Chemistry, University of California, Berkeley, California 94720, USA [5] Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA [6] Kavli Energy Nano Sciences Institute, University of California, Berkeley and Lawrence Berkeley National Laboratory, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487146" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/metabolism ; Animals ; *Biocatalysis ; Calorimetry ; Catalase/metabolism ; Catalytic Domain ; Cattle ; *Diffusion ; Enzymes/*metabolism ; *Hot Temperature ; Kinetics ; Saccharomyces cerevisiae/enzymology ; Spectrometry, Fluorescence ; Thermodynamics ; Triose-Phosphate Isomerase/metabolism ; Urease/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-12-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Combes, Stacey A -- England -- Nature. 2015 Jan 15;517(7534):279-80. doi: 10.1038/nature14078. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Concord Field Station, Harvard University, Bedford, Massachusetts 01730, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487145" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Male ; Motor Skills/*physiology ; Odonata/*physiology ; Orientation/*physiology ; Predatory Behavior/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-12-10
    Description: Sensorimotor control in vertebrates relies on internal models. When extending an arm to reach for an object, the brain uses predictive models of both limb dynamics and target properties. Whether invertebrates use such models remains unclear. Here we examine to what extent prey interception by dragonflies (Plathemis lydia), a behaviour analogous to targeted reaching, requires internal models. By simultaneously tracking the position and orientation of a dragonfly's head and body during flight, we provide evidence that interception steering is driven by forward and inverse models of dragonfly body dynamics and by models of prey motion. Predictive rotations of the dragonfly's head continuously track the prey's angular position. The head-body angles established by prey tracking appear to guide systematic rotations of the dragonfly's body to align it with the prey's flight path. Model-driven control thus underlies the bulk of interception steering manoeuvres, while vision is used for reactions to unexpected prey movements. These findings illuminate the computational sophistication with which insects construct behaviour.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mischiati, Matteo -- Lin, Huai-Ti -- Herold, Paul -- Imler, Elliot -- Olberg, Robert -- Leonardo, Anthony -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 15;517(7534):333-8. doi: 10.1038/nature14045. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Research Campus, Howard Hughes Medical Institute; 19700 Helix Drive, Ashburn, Virginia 20147, USA. ; University of Arizona, Department of Neuroscience, 1040 E. 4th Street, Tucson, Arizona 85721, USA. ; Union College, 807 Union Street, Schenectady, New York 12308, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487153" target="_blank"〉PubMed〈/a〉
    Keywords: Acceleration ; Animals ; Feedback, Sensory ; Female ; Flight, Animal/physiology ; Head/physiology ; Male ; Motor Skills/*physiology ; Odonata/*physiology ; Orientation/*physiology ; Predatory Behavior/*physiology ; Rotation ; Spatial Navigation/physiology ; Torso/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-12-10
    Description: The concept of germ layers has been one of the foremost organizing principles in developmental biology, classification, systematics and evolution for 150 years (refs 1 - 3). Of the three germ layers, the mesoderm is found in bilaterian animals but is absent in species in the phyla Cnidaria and Ctenophora, which has been taken as evidence that the mesoderm was the final germ layer to evolve. The origin of the ectoderm and endoderm germ layers, however, remains unclear, with models supporting the antecedence of each as well as a simultaneous origin. Here we determine the temporal and spatial components of gene expression spanning embryonic development for all Caenorhabditis elegans genes and use it to determine the evolutionary ages of the germ layers. The gene expression program of the mesoderm is induced after those of the ectoderm and endoderm, thus making it the last germ layer both to evolve and to develop. Strikingly, the C. elegans endoderm and ectoderm expression programs do not co-induce; rather the endoderm activates earlier, and this is also observed in the expression of endoderm orthologues during the embryology of the frog Xenopus tropicalis, the sea anemone Nematostella vectensis and the sponge Amphimedon queenslandica. Querying the phylogenetic ages of specifically expressed genes reveals that the endoderm comprises older genes. Taken together, we propose that the endoderm program dates back to the origin of multicellularity, whereas the ectoderm originated as a secondary germ layer freed from ancestral feeding functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hashimshony, Tamar -- Feder, Martin -- Levin, Michal -- Hall, Brian K -- Yanai, Itai -- 310927/European Research Council/International -- England -- Nature. 2015 Mar 12;519(7542):219-22. doi: 10.1038/nature13996. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. ; Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4JI, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487147" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/cytology/*embryology/*genetics ; Cell Lineage ; Eating ; Ectoderm/cytology/embryology/metabolism ; Endoderm/cytology/embryology/*metabolism ; *Evolution, Molecular ; Gene Expression Profiling ; Gene Expression Regulation, Developmental/*genetics ; Mesoderm/cytology/embryology/metabolism ; Models, Biological ; Porifera/cytology/embryology/genetics ; Sea Anemones/cytology/embryology/genetics ; *Spatio-Temporal Analysis ; Time Factors ; Transcriptome/*genetics ; Xenopus/embryology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-12-10
    Description: Therapy-related acute myeloid leukaemia (t-AML) and therapy-related myelodysplastic syndrome (t-MDS) are well-recognized complications of cytotoxic chemotherapy and/or radiotherapy. There are several features that distinguish t-AML from de novo AML, including a higher incidence of TP53 mutations, abnormalities of chromosomes 5 or 7, complex cytogenetics and a reduced response to chemotherapy. However, it is not clear how prior exposure to cytotoxic therapy influences leukaemogenesis. In particular, the mechanism by which TP53 mutations are selectively enriched in t-AML/t-MDS is unknown. Here, by sequencing the genomes of 22 patients with t-AML, we show that the total number of somatic single-nucleotide variants and the percentage of chemotherapy-related transversions are similar in t-AML and de novo AML, indicating that previous chemotherapy does not induce genome-wide DNA damage. We identified four cases of t-AML/t-MDS in which the exact TP53 mutation found at diagnosis was also present at low frequencies (0.003-0.7%) in mobilized blood leukocytes or bone marrow 3-6 years before the development of t-AML/t-MDS, including two cases in which the relevant TP53 mutation was detected before any chemotherapy. Moreover, functional TP53 mutations were identified in small populations of peripheral blood cells of healthy chemotherapy-naive elderly individuals. Finally, in mouse bone marrow chimaeras containing both wild-type and Tp53(+/-) haematopoietic stem/progenitor cells (HSPCs), the Tp53(+/-) HSPCs preferentially expanded after exposure to chemotherapy. These data suggest that cytotoxic therapy does not directly induce TP53 mutations. Rather, they support a model in which rare HSPCs carrying age-related TP53 mutations are resistant to chemotherapy and expand preferentially after treatment. The early acquisition of TP53 mutations in the founding HSPC clone probably contributes to the frequent cytogenetic abnormalities and poor responses to chemotherapy that are typical of patients with t-AML/t-MDS.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403236/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403236/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, Terrence N -- Ramsingh, Giridharan -- Young, Andrew L -- Miller, Christopher A -- Touma, Waseem -- Welch, John S -- Lamprecht, Tamara L -- Shen, Dong -- Hundal, Jasreet -- Fulton, Robert S -- Heath, Sharon -- Baty, Jack D -- Klco, Jeffery M -- Ding, Li -- Mardis, Elaine R -- Westervelt, Peter -- DiPersio, John F -- Walter, Matthew J -- Graubert, Timothy A -- Ley, Timothy J -- Druley, Todd E -- Link, Daniel C -- Wilson, Richard K -- K08 HL116605/HL/NHLBI NIH HHS/ -- P01 CA101937/CA/NCI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 Feb 26;518(7540):552-5. doi: 10.1038/nature13968. Epub 2014 Dec 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Oncology, Washington University, St Louis, Missouri 63110, USA. ; Department of Medicine, Jane Anne Nohl Division of Hematology, University of Southern California, Los Angeles, California 90089, USA. ; Department of Pediatrics, Division of Hematology/Oncology, Washington University, St Louis, Missouri 63110, USA. ; The Genome Institute, Washington University, St Louis, Missouri 63110, USA. ; 1] Department of Medicine, Division of Oncology, Washington University, St Louis, Missouri 63110, USA [2] Siteman Cancer Center, Washington University, St Louis, Missouri 63110, USA. ; AstraZeneca, Gaithersburg, Maryland 20878, USA. ; Division of Biostatistics, Washington University, St Louis, Missouri 63110, USA. ; Department of Pathology and Immunology, Washington University, St Louis, Missouri 63110, USA. ; 1] The Genome Institute, Washington University, St Louis, Missouri 63110, USA [2] Siteman Cancer Center, Washington University, St Louis, Missouri 63110, USA [3] Department of Genetics, Washington University, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487151" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Cell Lineage/drug effects/*genetics ; Cell Proliferation ; Clone Cells ; DNA Damage ; Drug Resistance, Neoplasm/drug effects/genetics ; Ethylnitrosourea/pharmacology ; Evolution, Molecular ; Genes, p53/*genetics ; Hematopoietic Stem Cells/cytology/drug effects/metabolism/pathology ; Heterozygote ; Humans ; Leukemia, Myeloid, Acute/*chemically induced/*genetics/pathology ; Mice ; Models, Genetic ; Mutation/drug effects/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-12-10
    Description: A defining feature of vertebrates (craniates) is a pronounced head that is supported and protected by a robust cellular endoskeleton. In the first vertebrates, this skeleton probably consisted of collagenous cellular cartilage, which forms the embryonic skeleton of all vertebrates and the adult skeleton of modern jawless and cartilaginous fish. In the head, most cellular cartilage is derived from a migratory cell population called the neural crest, which arises from the edges of the central nervous system. Because collagenous cellular cartilage and neural crest cells have not been described in invertebrates, the appearance of cellular cartilage derived from neural crest cells is considered a turning point in vertebrate evolution. Here we show that a tissue with many of the defining features of vertebrate cellular cartilage transiently forms in the larvae of the invertebrate chordate Branchiostoma floridae (Florida amphioxus). We also present evidence that during evolution, a key regulator of vertebrate cartilage development, SoxE, gained new cis-regulatory sequences that subsequently directed its novel expression in neural crest cells. Together, these results suggest that the origin of the vertebrate head skeleton did not depend on the evolution of a new skeletal tissue, as is commonly thought, but on the spread of this tissue throughout the head. We further propose that the evolution of cis-regulatory elements near an ancient regulator of cartilage differentiation was a major factor in the evolution of the vertebrate head skeleton.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jandzik, David -- Garnett, Aaron T -- Square, Tyler A -- Cattell, Maria V -- Yu, Jr-Kai -- Medeiros, Daniel M -- England -- Nature. 2015 Feb 26;518(7540):534-7. doi: 10.1038/nature14000. Epub 2014 Dec 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA [2] Department of Zoology, Comenius University, Bratislava 84215, Slovakia. ; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA. ; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487155" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Cartilage/cytology/metabolism ; Fibroblast Growth Factors/metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Developmental/genetics ; Genes, Reporter/genetics ; *Head ; Lancelets/*anatomy & histology/cytology/*growth & development ; Larva/anatomy & histology/cytology ; Models, Biological ; Mouth/anatomy & histology ; Neural Crest/cytology ; SOXE Transcription Factors/genetics/metabolism ; Signal Transduction ; *Skull/cytology/metabolism ; Vertebrates/*anatomy & histology ; Zebrafish/embryology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-12-10
    Description: The role of cellular metabolism in regulating cell proliferation and differentiation remains poorly understood. For example, most mammalian cells cannot proliferate without exogenous glutamine supplementation even though glutamine is a non-essential amino acid. Here we show that mouse embryonic stem (ES) cells grown under conditions that maintain naive pluripotency are capable of proliferation in the absence of exogenous glutamine. Despite this, ES cells consume high levels of exogenous glutamine when the metabolite is available. In comparison to more differentiated cells, naive ES cells utilize both glucose and glutamine catabolism to maintain a high level of intracellular alpha-ketoglutarate (alphaKG). Consequently, naive ES cells exhibit an elevated alphaKG to succinate ratio that promotes histone/DNA demethylation and maintains pluripotency. Direct manipulation of the intracellular alphaKG/succinate ratio is sufficient to regulate multiple chromatin modifications, including H3K27me3 and ten-eleven translocation (Tet)-dependent DNA demethylation, which contribute to the regulation of pluripotency-associated gene expression. In vitro, supplementation with cell-permeable alphaKG directly supports ES-cell self-renewal while cell-permeable succinate promotes differentiation. This work reveals that intracellular alphaKG/succinate levels can contribute to the maintenance of cellular identity and have a mechanistic role in the transcriptional and epigenetic state of stem cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336218/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336218/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carey, Bryce W -- Finley, Lydia W S -- Cross, Justin R -- Allis, C David -- Thompson, Craig B -- P30 CA008748/CA/NCI NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 19;518(7539):413-6. doi: 10.1038/nature13981. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York 10065, USA. ; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487152" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/drug effects ; Cell Line ; Cell Membrane Permeability ; Cell Proliferation ; Chromatin/drug effects ; DNA Methylation/drug effects ; Embryonic Stem Cells/*cytology/drug effects/metabolism ; Epigenesis, Genetic/drug effects/genetics ; Glucose/metabolism ; Glutamic Acid/metabolism ; Histones/metabolism ; Intracellular Space/*metabolism ; Ketoglutaric Acids/*metabolism/pharmacology ; Methylation ; Mice ; Pluripotent Stem Cells/*cytology/drug effects/metabolism ; Succinic Acid/metabolism/pharmacology ; Transcription, Genetic/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-12-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wand, A Joshua -- R01 GM102447/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jan 8;517(7533):149-50. doi: 10.1038/nature14079. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487158" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biocatalysis ; *Diffusion ; Enzymes/*metabolism ; *Hot Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-12-06
    Description: Immune and inflammatory responses require leukocytes to migrate within and through the vasculature, a process that is facilitated by their capacity to switch to a polarized morphology with an asymmetric distribution of receptors. We report that neutrophil polarization within activated venules served to organize a protruding domain that engaged activated platelets present in the bloodstream. The selectin ligand PSGL-1 transduced signals emanating from these interactions, resulting in the redistribution of receptors that drive neutrophil migration. Consequently, neutrophils unable to polarize or to transduce signals through PSGL-1 displayed aberrant crawling, and blockade of this domain protected mice against thromboinflammatory injury. These results reveal that recruited neutrophils scan for activated platelets, and they suggest that the neutrophils' bipolarity allows the integration of signals present at both the endothelium and the circulation before inflammation proceeds.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sreeramkumar, Vinatha -- Adrover, Jose M -- Ballesteros, Ivan -- Cuartero, Maria Isabel -- Rossaint, Jan -- Bilbao, Izaskun -- Nacher, Maria -- Pitaval, Christophe -- Radovanovic, Irena -- Fukui, Yoshinori -- McEver, Rodger P -- Filippi, Marie-Dominique -- Lizasoain, Ignacio -- Ruiz-Cabello, Jesus -- Zarbock, Alexander -- Moro, Maria A -- Hidalgo, Andres -- HL03463/HL/NHLBI NIH HHS/ -- HL085607/HL/NHLBI NIH HHS/ -- HL090676/HL/NHLBI NIH HHS/ -- P01 HL085607/HL/NHLBI NIH HHS/ -- R01 HL034363/HL/NHLBI NIH HHS/ -- R01 HL090676/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1234-8. doi: 10.1126/science.1256478. Epub 2014 Dec 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. ; Unidad de Investigacion Neurovascular, Department of Pharmacology, Faculty of Medicine, Universidad Complutense and Instituto de Investigacion Hospital 12 de Octubre (i+12), Madrid, Spain. ; Department of Anesthesiology and Critical Care Medicine, University of Munster and Max Planck Institute Munster, Munster, Germany. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia. ; Division of Immunogenetics, Department of Immunobiology and Neuroscience, Kyushu University, Japan. ; Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. ; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, USA. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany. ahidalgo@cnic.es.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477463" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Circulation ; Blood Platelets/*immunology ; Cell Movement ; Cell Polarity ; Endothelium, Vascular/immunology ; Inflammation/blood/*immunology ; Male ; Membrane Glycoproteins ; Mice ; Mice, Inbred C57BL ; Neutrophils/*immunology ; *Platelet Activation ; Signal Transduction ; Thrombosis/*immunology ; Venules/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bar-Peled, Liron -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1191-2. doi: 10.1126/science.aaa1808.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, La Jolla, CA 92122, USA. lironbp@scripps.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477447" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*metabolism ; Animals ; *Body Size ; *Cell Enlargement ; *Cell Proliferation ; GTP-Binding Protein Regulators/*metabolism ; Lysosomes/*metabolism ; Monomeric GTP-Binding Proteins/*metabolism ; Multiprotein Complexes/metabolism ; Protein Transport ; Signal Transduction ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buckley, Ralf -- Pegas, Fernanda de Vasconcellos -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1193. doi: 10.1126/science.346.6214.1193-a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Griffith University, Gold Coast, QLD 4222, Australia. r.buckley@griffith.edu.au. ; Griffith University, Gold Coast, QLD 4222, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477451" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/*economics ; Animals ; *Biodiversity ; Conservation of Natural Resources/*economics ; Humans ; *Trees ; Vertebrates/*classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Margalida, A -- Bogliani, G -- Bowden, C G R -- Donazar, J A -- Genero, F -- Gilbert, M -- Karesh, W B -- Kock, R -- Lubroth, J -- Manteca, X -- Naidoo, V -- Neimanis, A -- Sanchez-Zapata, J A -- Taggart, M A -- Vaarten, J -- Yon, L -- Kuiken, T -- Green, R E -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1296-8. doi: 10.1126/science.1260260. Epub 2014 Dec 4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477214" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Husbandry ; Animals ; Animals, Domestic ; Anti-Inflammatory Agents, Non-Steroidal/therapeutic use/toxicity ; Diclofenac/therapeutic use/toxicity ; Drug Utilization ; Environment ; Environmental Monitoring ; Environmental Pollution/prevention & control ; European Union ; *Falconiformes ; Humans ; Legislation, Drug ; *Public Policy ; Risk Assessment ; *Veterinary Drugs/therapeutic use/toxicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Chelsea L -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1192. doi: 10.1126/science.aaa1810.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Michigan Society of Fellows and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA. chelwood@umich.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477450" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Communicable Diseases/*epidemiology ; Conservation of Natural Resources ; *Ecology ; Humans ; Zoonoses/*epidemiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banks-Leite, Cristina -- Pardini, Renata -- Tambosi, Leandro R -- Pearse, William D -- Bueno, Adriana A -- Bruscagin, Roberta T -- Condez, Thais H -- Dixo, Marianna -- Igari, Alexandre T -- Martensen, Alexandre C -- Metzger, Jean Paul -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1193. doi: 10.1126/science.346.6214.1193-b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Grand Challenges in the Ecosystem and Environment, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK. Departamento de Ecologia, Instituto de Biociencias, Universidade de Sao Paulo, 05508-090, Sao Paulo SP, Brazil. c.banks@imperial.ac.uk. ; Departamento de Zoologia, Instituto de Biociencias, Universidade de Sao Paulo, 05508-090, Sao Paulo SP, Brazil. ; Departamento de Ecologia, Instituto de Biociencias, Universidade de Sao Paulo, 05508-090, Sao Paulo SP, Brazil. ; Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA. ; Fundacao Florestal, 02377-000, Sao Paulo SP, Brazil. ; Departamento de Zoologia, Instituto de Biociencias, Universidade Estadual Paulista, 13506-900, Rio Claro SP, Brazil. ; Curso de Gestao Ambiental, Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, 03828-000, Sao Paulo SP, Brazil. ; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477452" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/*economics ; Animals ; *Biodiversity ; Conservation of Natural Resources/*economics ; Humans ; *Trees ; Vertebrates/*classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-12-06
    Description: Developing tissues that contain mutant or compromised cells present risks to animal health. Accordingly, the appearance of a population of suboptimal cells in a tissue elicits cellular interactions that prevent their contribution to the adult. Here we report that this quality control process, cell competition, uses specific components of the evolutionarily ancient and conserved innate immune system to eliminate Drosophila cells perceived as unfit. We find that Toll-related receptors (TRRs) and the cytokine Spatzle (Spz) lead to NFkappaB-dependent apoptosis. Diverse "loser" cells require different TRRs and NFkappaB factors and activate distinct pro-death genes, implying that the particular response is stipulated by the competitive context. Our findings demonstrate a functional repurposing of components of TRRs and NFkappaB signaling modules in the surveillance of cell fitness during development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, S N -- Amoyel, M -- Bergantinos, C -- de la Cova, C -- Schertel, C -- Basler, K -- Johnston, L A -- P40OD018537/OD/NIH HHS/ -- R01 GM078464/GM/NIGMS NIH HHS/ -- R01-GM084947/GM/NIGMS NIH HHS/ -- R21 HD067918/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1258236. doi: 10.1126/science.1258236.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland. ; Department of Genetics and Development, Columbia University, New York, NY 10032, USA. ; Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland. konrad.basler@imls.uzh.ch lj180@columbia.edu. ; Department of Genetics and Development, Columbia University, New York, NY 10032, USA. konrad.basler@imls.uzh.ch lj180@columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477468" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/genetics/*immunology ; Cell Communication/*immunology ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/cytology/genetics/growth & development ; Immunity, Innate/genetics/*immunology ; Mutation ; NF-kappa B/genetics/*metabolism ; Neuropeptides/genetics ; Toll-Like Receptors/genetics/*metabolism ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-12-06
    Description: During differentiation, thousands of genes are repositioned toward or away from the nuclear envelope. These movements correlate with changes in transcription and replication timing. Using synthetic (TALE) transcription factors, we found that transcriptional activation of endogenous genes by a viral trans-activator is sufficient to induce gene repositioning toward the nuclear interior in embryonic stem cells. However, gene relocation was also induced by recruitment of an acidic peptide that decondenses chromatin without affecting transcription, indicating that nuclear reorganization is driven by chromatin remodeling rather than transcription. We identified an epigenetic inheritance of chromatin decondensation that maintained central nuclear positioning through mitosis even after the TALE transcription factor was lost. Our results also demonstrate that transcriptional activation, but not chromatin decondensation, is sufficient to change replication timing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Therizols, Pierre -- Illingworth, Robert S -- Courilleau, Celine -- Boyle, Shelagh -- Wood, Andrew J -- Bickmore, Wendy A -- 102560/Wellcome Trust/United Kingdom -- MC_PC_U127527202/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1238-42. doi: 10.1126/science.1259587.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK. ; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK. wendy.bickmore@igmm.ed.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477464" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*genetics ; Cell Line ; Cell Nucleus/*genetics/metabolism/ultrastructure ; Chromatin/*metabolism ; *Chromatin Assembly and Disassembly ; DNA Replication ; Embryonic Stem Cells/*cytology/metabolism ; *Epigenesis, Genetic ; Mice ; Nuclear Envelope/genetics/metabolism/ultrastructure ; Trans-Activators/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dominissini, Dan -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1192. doi: 10.1126/science.aaa1807.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA. dandominissini@gmail.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477448" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*metabolism ; Animals ; Codon, Terminator ; *DNA Methylation ; *Epigenesis, Genetic ; Exons ; Humans ; Methyltransferases/metabolism ; Nuclear Proteins/metabolism ; Nucleic Acid Conformation ; RNA Editing ; RNA, Messenger/chemistry/genetics/*metabolism ; *Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morata, Gines -- Ballesteros-Arias, Luna -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1181-2. doi: 10.1126/science.aaa2345.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centro de Biologia Molecular CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain. gmorata@cbm.csic.es. ; Centro de Biologia Molecular CSIC-UAM, Universidad Autonoma de Madrid, 28049 Madrid, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477441" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/*immunology ; Cell Communication/*immunology ; Immunity, Innate/*immunology ; NF-kappa B/*metabolism ; Toll-Like Receptors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-06
    Description: Electric eels can incapacitate prey with an electric discharge, but the mechanism of the eel's attack is unknown. Through a series of experiments, I show that eel high-voltage discharges can activate prey motor neurons, and hence muscles, allowing eels to remotely control their target. Eels prevent escape in free-swimming prey using high-frequency volleys to induce immobilizing whole-body muscle contraction (tetanus). Further, when prey are hidden, eels can emit periodic volleys of two or three discharges that cause massive involuntary twitch, revealing the prey's location and eliciting the full, tetanus-inducing volley. The temporal patterns of eel electrical discharges resemble motor neuron activity that induces fast muscle contraction, suggesting that eel high-voltage volleys have been selected to most efficiently induce involuntary muscle contraction in nearby animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Catania, Kenneth -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1231-4. doi: 10.1126/science.1260807.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Vanderbilt University, VU Station B, Box 35-1634, Nashville, TN 37235, USA.E-mail: ken.catania@vanderbilt.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477462" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Electricity ; Electrophorus/*physiology ; *Food Chain ; Motor Neurons ; Muscle Contraction ; Predatory Behavior/*physiology ; Swimming
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Servick, Kelly -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1161-2. doi: 10.1126/science.346.6214.1161.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477435" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesics, Non-Narcotic/adverse effects ; Anesthesia/*adverse effects ; Anesthetics, Dissociative/adverse effects ; Animals ; Apoptosis/drug effects ; Brain/*drug effects/*growth & development ; Caenorhabditis elegans ; Child ; Child, Preschool ; Dexmedetomidine/adverse effects ; Humans ; Infant ; Ketamine/adverse effects ; Models, Animal ; Neurons/*drug effects ; Rats ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors ; United States ; United States Food and Drug Administration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Simon C -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1192. doi: 10.1126/science.aaa1811.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Albert Einstein College of Medicine, 1301 Morris Park Avenue, Room 469, Bronx, NY 10462, USA. simon.johnson@einstein.yu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477449" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caloric Restriction ; Disease Models, Animal ; Dose-Response Relationship, Drug ; Electron Transport Complex I/genetics ; Humans ; Leigh Disease/*drug therapy/genetics/metabolism ; Mice ; *Molecular Targeted Therapy ; Saccharomyces cerevisiae/genetics ; Sirolimus/*administration & dosage ; TOR Serine-Threonine Kinases/*antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-12-05
    Description: The sense of touch provides critical information about our physical environment by transforming mechanical energy into electrical signals. It is postulated that mechanically activated cation channels initiate touch sensation, but the identity of these molecules in mammals has been elusive. Piezo2 is a rapidly adapting, mechanically activated ion channel expressed in a subset of sensory neurons of the dorsal root ganglion and in cutaneous mechanoreceptors known as Merkel-cell-neurite complexes. It has been demonstrated that Merkel cells have a role in vertebrate mechanosensation using Piezo2, particularly in shaping the type of current sent by the innervating sensory neuron; however, major aspects of touch sensation remain intact without Merkel cell activity. Here we show that mice lacking Piezo2 in both adult sensory neurons and Merkel cells exhibit a profound loss of touch sensation. We precisely localize Piezo2 to the peripheral endings of a broad range of low-threshold mechanoreceptors that innervate both hairy and glabrous skin. Most rapidly adapting, mechanically activated currents in dorsal root ganglion neuronal cultures are absent in Piezo2 conditional knockout mice, and ex vivo skin nerve preparation studies show that the mechanosensitivity of low-threshold mechanoreceptors strongly depends on Piezo2. This cellular phenotype correlates with an unprecedented behavioural phenotype: an almost complete deficit in light-touch sensation in multiple behavioural assays, without affecting other somatosensory functions. Our results highlight that a single ion channel that displays rapidly adapting, mechanically activated currents in vitro is responsible for the mechanosensitivity of most low-threshold mechanoreceptor subtypes involved in innocuous touch sensation. Notably, we find that touch and pain sensation are separable, suggesting that as-yet-unknown mechanically activated ion channel(s) must account for noxious (painful) mechanosensation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380172/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380172/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ranade, Sanjeev S -- Woo, Seung-Hyun -- Dubin, Adrienne E -- Moshourab, Rabih A -- Wetzel, Christiane -- Petrus, Matt -- Mathur, Jayanti -- Begay, Valerie -- Coste, Bertrand -- Mainquist, James -- Wilson, A J -- Francisco, Allain G -- Reddy, Kritika -- Qiu, Zhaozhu -- Wood, John N -- Lewin, Gary R -- Patapoutian, Ardem -- 101054/Wellcome Trust/United Kingdom -- R01 DE022358/DE/NIDCR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 4;516(7529):121-5. doi: 10.1038/nature13980.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] Department of Neuroscience, Max-Delbruck Center for Molecular Medicine, Robert-Rossle Strasse 10, D-13092 Berlin, Germany [2] Klinik fur Anasthesiologie mit Schwerpunkt Operative Intensivmedizin, Campus Charite Mitte and Virchow-Klinikum Charite, Universitatsmedizin Berlin, Augustburgerplatz 1, 13353 Berlin, Germany. ; Department of Neuroscience, Max-Delbruck Center for Molecular Medicine, Robert-Rossle Strasse 10, D-13092 Berlin, Germany. ; Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA. ; 1] Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA. ; Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ion Channels/genetics/*metabolism ; Mechanoreceptors/metabolism ; Mechanotransduction, Cellular/genetics/*physiology ; Merkel Cells/physiology ; Mice ; Mice, Knockout ; Sensory Receptor Cells/physiology ; Skin/*innervation ; Touch/genetics/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meijaard, Erik -- Sheil, Douglas -- Cardillo, Marcel -- England -- Nature. 2014 Dec 4;516(7529):37. doi: 10.1038/516037d.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉People and Nature Consulting International, Jakarta, and CIFOR, Indonesia. ; Norwegian University of Life Sciences, As, Norway, and CIFOR, Indonesia. ; Australian National University, Canberra, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471870" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/*methods ; *Ecosystem ; *Goals ; *Wilderness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Callaway, Ewen -- England -- Nature. 2014 Dec 4;516(7529):18-9. doi: 10.1038/516018a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471860" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Birds/anatomy & histology/classification ; Body Size ; *Dinosaurs/anatomy & histology/classification ; Fossils/*anatomy & histology/radiography
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Callaway, Ewen -- England -- Nature. 2014 Dec 4;516(7529):15-6. doi: 10.1038/516015a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471858" target="_blank"〉PubMed〈/a〉
    Keywords: Africa, Western ; Animals ; CD8-Positive T-Lymphocytes/cytology/immunology ; Clinical Trials as Topic ; *Ebola Vaccines ; Ebolavirus/genetics/immunology ; Haplorhini ; Hemorrhagic Fever, Ebola/*prevention & control ; Humans ; Immunity, Active ; Vaccinia/genetics/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-12-05
    Description: The conserved family of Hedgehog (Hh) proteins acts as short- and long-range secreted morphogens, controlling tissue patterning and differentiation during embryonic development. Mature Hh carries hydrophobic palmitic acid and cholesterol modifications essential for its extracellular spreading. Various extracellular transportation mechanisms for Hh have been suggested, but the pathways actually used for Hh secretion and transport in vivo remain unclear. Here we show that Hh secretion in Drosophila wing imaginal discs is dependent on the endosomal sorting complex required for transport (ESCRT). In vivo the reduction of ESCRT activity in cells producing Hh leads to a retention of Hh at the external cell surface. Furthermore, we show that ESCRT activity in Hh-producing cells is required for long-range signalling. We also provide evidence that pools of Hh and ESCRT proteins are secreted together into the extracellular space in vivo and can subsequently be detected together at the surface of receiving cells. These findings uncover a new function for ESCRT proteins in controlling morphogen activity and reveal a new mechanism for the transport of secreted Hh across the tissue by extracellular vesicles, which is necessary for long-range target induction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matusek, Tamas -- Wendler, Franz -- Poles, Sophie -- Pizette, Sandrine -- D'Angelo, Gisela -- Furthauer, Maximilian -- Therond, Pascal P -- England -- Nature. 2014 Dec 4;516(7529):99-103. doi: 10.1038/nature13847.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Universite de Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France [2] CNRS, iBV, UMR 7277, 06100 Nice, France [3] INSERM, iBV, U1091, 06100 Nice, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471885" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Drosophila melanogaster/cytology/*embryology/metabolism ; Endosomal Sorting Complexes Required for Transport/*metabolism ; Extracellular Space/metabolism ; Hedgehog Proteins/*metabolism/*secretion ; Hemolymph/metabolism ; Imaginal Discs/cytology/embryology ; Protein Transport ; Signal Transduction ; Transport Vesicles/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Driscoll, Don -- Catford, Jane -- England -- Nature. 2014 Dec 4;516(7529):37. doi: 10.1038/516037e.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian National University, Canberra, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471871" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Husbandry ; Animals ; *Crops, Agricultural ; *Government Regulation ; *Introduced Species ; *Plant Weeds ; Weed Control/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-12-05
    Description: Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates; however, the regulatory circuits specifying these states and enabling transitions between them are not well understood. Here we set out to characterize transcriptional heterogeneity in mouse PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signalling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signalling pathways and chromatin regulators. Notably, either removal of mature microRNAs or pharmacological blockage of signalling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal and a distinct chromatin state, an effect mediated by opposing microRNA families acting on the Myc/Lin28/let-7 axis. These data provide insight into the nature of transcriptional heterogeneity in PSCs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256722/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256722/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, Roshan M -- Cahan, Patrick -- Shalek, Alex K -- Satija, Rahul -- DaleyKeyser, A Jay -- Li, Hu -- Zhang, Jin -- Pardee, Keith -- Gennert, David -- Trombetta, John J -- Ferrante, Thomas C -- Regev, Aviv -- Daley, George Q -- Collins, James J -- 1F32HD075541-01/HD/NICHD NIH HHS/ -- 1P50HG006193- 01/HG/NHGRI NIH HHS/ -- DP1 CA174427/CA/NCI NIH HHS/ -- DP1 OD003958/OD/NIH HHS/ -- DP1OD003958-01/OD/NIH HHS/ -- F32 HD075541/HD/NICHD NIH HHS/ -- K01 DK096013/DK/NIDDK NIH HHS/ -- K01DK096013/DK/NIDDK NIH HHS/ -- NIH-P30-HD18655/HD/NICHD NIH HHS/ -- P50 HG005550/HG/NHGRI NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- P50HG005550/HG/NHGRI NIH HHS/ -- R01 GM107536/GM/NIGMS NIH HHS/ -- R01GM107536/GM/NIGMS NIH HHS/ -- R24 DK092760/DK/NIDDK NIH HHS/ -- R24DK092760/DK/NIDDK NIH HHS/ -- T32 HL007623/HL/NHLBI NIH HHS/ -- T32HL007623/HL/NHLBI NIH HHS/ -- T32HL066987/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 4;516(7529):56-61. doi: 10.1038/nature13920.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA [2] Howard Hughes Medical Institute, Department of Biomedical Engineering, Center of Synthetic Biology, Boston University, Boston, Massachusetts 02215, USA. ; Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital and Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA. ; Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA. ; Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA. ; Center for Individualized Medicine, Department of Molecular Pharmacology &Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471879" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Death ; Cell Division ; Embryonic Stem Cells/cytology/physiology ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Mice ; MicroRNAs/metabolism ; Pluripotent Stem Cells/cytology/*physiology ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...