ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (7,362)
  • 2010-2014  (4,306)
  • 1990-1994  (3,061)
Collection
Keywords
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    Deutsche Geophysikalische Gesellschaft
    Publication Date: 2024-05-22
    Language: German , English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Fachbereich Geowissenschaften, FU Berlin, Berlin
    In:  Herausgeberexemplar
    Publication Date: 2024-04-17
    Description: Prof. Dr. B. KREBS zum 60. Geburtstag. ... 3 ; Inhalt. ... 7 ; HAHN, G. & HAHN, R.: Nachweis des Septomaxillare bei Pseudobolodon krebsi n. sp. (Multituberculata) aus dem Malm Portugals. ... 9 ; BONAPARTE, J.F.: Approach to the Significance of the Late Cretaceous Mammals of South America. ... 31 ; KOENIGSWALD, W. von: Differenzierung im Zahnschmelz der Marsupialia im Vergleich zu den Verhältnissen bei den Placentalia (Mammalia). ... 45 ; STORCH, G. & MARTIN, T.: Eomanis krebsi, ein neues Schuppentier aus dem Mittel-Eozän der Grube Messel bei Darmstadt (Mammalia: Pholidota).... 83 ; ROTHAUSEN, K.: Die Schritte der Tetrapoden in die Meere des frühen Känozoikums. ... 99 ; FAHLBUSCH, V.: Fossile Kleinsäuger - gerät ihre Erforschung in die Sackgasse? ... 113 ; BUFFETAUT, E.: The significance of dinosaur remains in marine sediments: an investigation based on the French record. ... 125 ; RICHTER, A.: Der problematische Lacertilier llerdaesaurus (Reptilia, Squamata) aus der Unter-Kreide von Una und Galve (Spanien). ... 135 ; ZINKE, J. & RAUHUT, O.: Small theropods (Dinosauria, Saurischia) from the Upper Jurassic and Lower Cretaceous of the Iberian Peninsula. ... 163 ; RAUHUT, O. & KRIWET, J.: Teeth of a big Theropod Dinosaur from Porto das Barcas (Portugal).... 179 ; KOHRING, R. & REITNER, J.: Zur Eischalenstruktur von Varanus komodoensis OuwENS 1912. ... 187 ; LiLLEGRAVEN, J. A.: Age of upper reaches of Hanna Formation, northern Hanna Basin, south-central Wyoming. ... 203 ; WERNER, C.: Die kontinentale Wirbeltierfauna aus der unteren Oberkreide des Sudan (Wadi Milk Formation). ... 221 ; HEINRICH, W.-D.: Biostratigraphische Aussagen der Säugetierpaläontologie zur Alterstellung pleistozäner Travertinfundstätten in Thüringen. ... 251 ; FECHNER, G.: Der 'mitteloligozäne’ Septarienton bei Bad Freienwalde (nordöstl. Mark Brandenburg) und seine Dinoflagellaten-Zysten-Flora. ... 269 ; FECHNER, G.: Phytoplankton aus ästuarinen Ablagerungen des Miozäns der Bohrung "Groß-Apenburg" (Altmark). ... 283 ; MEHL, D., REITNER, J. & REISWIG, H.M.: Soft tissue organization of the deep water hexactinellid Schaudinnia arctica SCHULZE, 1900 from the Arctic Seamount Vesterisbanken (Central Greenland Sea). ... 301 ; MEHL, D. & ERDTMANN, B.-D.: Sanshapentella dapingi n.gen.n.sp.- a new hexactinellid sponge from the Early Cambrian (Tommotian) of China. ... 315 ; KEUPP, H. & ILG, A.: Paläopathologische Nachlese zur Ammoniten-Fauna aus dem Ober-Callovium der Normandie. ... 321 ; BANDEL, K. & RiEDEL F.: Classification of fossil and Recent Calyptraeoidea (Caenogastropoda) with a discussion on neomesogastropod phylogeny. ... 329 ; BECKER, R.T. & SCHREIBER, G.: Zur Trilobiten-Stratigraphie im Letmather Famennium (nördliches Rheinisches Schiefergebirge). ... 369 ; KOHRING, R. & SCHREIBER, G.: 'Latex-Micro-Molding' als neue Untersuchungsmethode von Bemstein-Inklusen - Vorläufige Mitteilung. ... 389 ; REITNER, J.: Mikrobialith-Porifera-Fazies eines Exogyren/Korallen-Patchreefs des Oberen Korallenooliths im Steinbruch Langenberg bei Oker (Niedersachsen). ... 397 ; MATYSZKIEWICZ, J.: Remarks on the Deposition of Pseudonodular Limestones in the Cracow Area (Oxfordian, Southern Poland). ... 419 ; BARON-SZABO, R.: Palökologie von nordspanischen Korallen des Urgon (Playa de Laga, Prov. Guemica). ... 441 ; SCHLÜTER, T.: Zur Verbreitung, Fazies und Stratigraphie der Karoo in Uganda. ... 453 ; KEUPP, H., BELLAS, S.M., FRYDAS, D. & KOHRING, R.: Aghia Irini, ein Neogenprofil auf der Halbinsel Gramvoüssa/NW-Kreta. ... 469 ; FRYDAS, D.: Stratigraphie und Taxonomie von Silicoflagellaten aus Diatomiten des Ober-Miozän von Zentral-Kreta (Griechenland). ... 483 ; FRYDAS, D.: Bericht über ein neues Silicoflagellaten-Vorkommen aus dem Piacenzium von Kreta, Griechenland. ... 495 ; RÖPSTORF, P. & REITNER, J.: Morphologie einiger Süßwasserporifera (Baikalospongia bacillifera, Lubomirskia baicalensis, Swartschewskia papyraced) des Baikal-Sees (Sibirien, Rußland.). ... 507 ; GLOY, U.: Bibliographie Institut für Paläontologie 1993. ... 527 ;
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:560 ; Paläontologie
    Language: German , English
    Type: doc-type:book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.12
    Chichester, [England] : Wiley
    Call number: 9781444328479 (e-book)
    Type of Medium: 12
    Pages: 1 Online-Ressource (XIII, 768 Seiten) , Illustrationen
    Edition: Second edition
    ISBN: 9781444328479 (e-book) , 978-1-4443-2847-9
    Language: English
    Note: Contents Contents Preface Acknowledgements Part 1: Making Sediment Introduction Clastic sediment as a chemical and physical breakdown product 1.1 Introduction: clastic sediments—'accidents' of weathering 1.2 Silicate minerals and chemical weathering 1.3 Solute flux: rates and mechanisms of silicate chemical weathering 1.4 Physical weathering 1.5 Soils as valves and filters for the natural landscape 1.6 Links between soil age, chemical weathering and weathered-rock removal 1.7 Provenance: siliciclastic sediment-sourcing Further reading 2 Carbonate, siliceous, iron-rich and evaporite sediments 2.1 Marine vs. freshwater chemical composition and fluxes 2.2 The calcium carbonate system in the oceans 2.3 Ooid carbonate grains 2.4 Carbonate grains from marine plants and animals 2.5 Carbonate muds, oozes and chalks 2.6 Other carbonate grains of biological origins 2.7 Organic productivity, sea-level and atmospheric controls of biogenic CaCO3 deposition rates 2.8 CaCO3 dissolution in the deep ocean and the oceanic CaCO3 compensation mechanism 2.9 The carbonate system on land 2.10 Evaporite salts and their inorganic precipitation as sediment 2.11 Silica and pelagic plankton 2.12 Iron minerals and biomineralizers 2.13 Desert varnish 2.14 Phosphates 2.15 Primary microbial-induced sediments: algal mats and stromatolites Further reading 3 Sediment grain properties 3.1 General 3.2 Grain size 3.3 Grain-size distributions 3.4 Grain shape and form 3.5 Bulk properties of grain aggregates Further reading Part 2: Moving Fluid Introduction 4 Fluid basics 4.1 Material properties of fluids 4.2 Fluid kinematics 4.3 Fluid continuity with constant density 4.4 Fluid dynamics 4.5 Energy, mechanical work and power Further reading 5 Types of fluid motion 5.1 Osborne Reynolds and flow types 5.2 The distribution of velocity in viscous flows: the boundary layer 5.3 Turbulent flows 5.4 The structure of turbulent shear flows 5.5 Shear flow instabilities, flow separation and secondary currents 5.6 Subcritical and supercritical flows: the Froude number and hydraulic jumps 5.7 Stratified flow generally 5.8 Water waves 5.9 Tidal flow—long-period waves Further reading Part 3: Transporting Sediment Introduction 6 Sediment in fluid and fluid flow—general 6.1 Fall of grains through stationary fluids 6.2 Natural flows carrying particulate material are complex 6.3 Fluids as transporting machines 6.4 Initiation of grain motion 6.5 Paths of grain motion 6.6 Categories of transported sediment 6.7 Some contrasts between wind and water flows 6.8 Cohesive sediment transport and erosion 6.9 A warning: nonequilibrium effects dominate natural sediment transport systems 6.10 Steady state, deposition or erosion: the sediment continuity equation and competence vs. capacity Further reading 7 Bedforms and sedimentary structures in flows and under waves 7.1 Trinity of interaction: turbulent flow, sediment transport and bedform development 7.2 Water-flow bedforms 7.3 Bedform phase diagrams for water flows 7.4 Water flow erosional bedforms on cohesive beds 7.5 Water wave bedforms 7.6 Combined flows: wave-current ripples and hummocky cross-stratification 7.7 Bedforms and structures formed by atmospheric flows Further reading 8 Sediment gravity flows and their deposits 8.1 Introduction 8.2 Granular flows 8.3 Debris flows 8.4 Turbidity flows 8.5 Turbidite evidence for downslope transformation from turbidity to debris flows Further reading 9 Liquefaction, fluidization and sliding sediment deformation 9.1 Liquefaction 9.2 Sedimentary structures formed by and during liquefaction 9.3 Submarine landslides, growth faults and slumps 9.4 Desiccation and synaeresis shrinkage structures Further reading Part 4: Major External Controls on Sedimentation and Sedimentary Environments Introduction 10 Major external controls on sedimentation 10.1 Climate 10.2 Global climates: a summary 10.3 Sea-level changes 10.4 Tectonics 10.5 Sediment yield, denudation rate and the sedimentary record Further reading Part 5: Continental Sedimentary Environments Introduction 11 Rivers 11.1 Introduction 11.2 River networks, hydrographs,patterns and long profiles 11.3 Channel form 11.4 Channel sediment transport processes, bedforms and internal structures 11.5 The floodplain 11.6 Channel belts, alluvial ridges and avulsion 11.7 River channel changes, adjustable variables and equilibrium 11.8 Alluvial architecture: product of complex responses 11.9 Alluvial architecture: scale, controls and time Further reading 12 Subaerial Fans: Alluvial and Colluvial 12.1 Introduction 12.2 Controls on the size (area) and gradient of fans 12.3 Physical processes on alluvial fans 12.4 Debris-flow-dominated alluvial fans 12.5 Stream-flow-dominated alluvial fans 12.6 Recognition of ancient alluvial fans and talus cones Further reading 13 Aeolian Sediments in Low-Latitude Deserts 13.1 Introduction 13.2 Aeolian system state 13.3 Physical processes and erg formation 13.4 Erg margins and interbedform areas 13.5 Erg and draa evolution and sedimentary architecture 13.6 Erg construction, stasis and destruction: climate and sea-level controls 13.7 Ancient desert facies Further reading 14 Lakes 14.1 Introduction 14.2 Lake stratification 14.3 Clastic input by rivers and the effect of turbidity currents 14.4 Wind-forced physical processes 14.5 Temperate lake chemical processes and cycles 14.6 Saline lake chemical processes and cycles 14.7 Biological processes and cycles 14.8 Modern temperate lakes and their sedimentary facies 14.9 Lakes in the East African rifts 14.10 Lake Baikal 14.11 The succession of facies as lakes evolve 14.12 Ancient lake facies Further reading 15 Ice 15.1 Introduction 15.2 Physical processes of ice flow 15.3 Glacier flow, basal lubrication and surges 15.4 Sediment transport, erosion and deposition by flowing ice 15.5 Glacigenic sediment: nomenclature and classification 15.6 Quaternary and modern glacial environments and facies 15.7 Ice-produced glacigenic erosion and depositional facies on land and in the periglacial realm 15.8 Glaciofluvial processes on land at and within the ice-front 15.9 Glacimarine environments 15.10 Glacilacustrine environments 15.11 Glacial facies in the pre-Quaternary geological record: case of Cenozoic Antarctica Further reading Part 6: Marine Sedimentary Environments Introduction 16. Estuaries 16.1 Introduction 16.2 Estuarine dynamics 16.3 Modern estuarine morphology and sedimentary environments 16.4 Estuaries and sequence stratigraphy Further reading 17. River and Fan Deltas 17.1 Introduction to river deltas 17.2 Basic physical processes and sedimentation at the river delta front 17.3 Mass movements and slope failure on the subaqueous delta 17.4 Organic deposition in river deltas 17.5 River delta case histories 17.6 River deltas and sea-level change 17.7 Ancient river delta deposits 17.8 Fan deltas Further reading 18. Linear Siliciclastic Shorelines 18.1 Introduction 18.2 Beach processes and sedimentation 18.3 Barrier-inlet-spit systems and their deposits 18.4 Tidal flats, salt marsh and chenier ridges 18.5 Ancient clastic shoreline facies Further reading 19 Siliciclastic Shelves 19.1 Introduction: shelf sinks and lowstand bypass 19.2 Shelf water dynamics 19.3 Holocene highstand shelf sediments: general 19.4 Tide-dominated, low river input, highstand shelves 19.5 Tide-dominated, high river input, highstand shelves 19.6 Weather-dominated highstand shelves Further reading 20 Calcium-carbonate-evaporite Shorelines, Shelves and Basins 20.1 Introduction: calcium carbonate 'nurseries' and their consequences 20.2 Arid carbonate tidal flats, lagoons and evaporite sabkhas 20.3 Humid carbonate tidal flats and marshes 20.4 Lagoons and bays 20.5 Tidal delta and margin-spillover carbonate tidal sands 20.6 Open-shelf carbonate ramps 20.7 Platform margin reefs and carbonate build-ups 20.8 Platform margin slopes and basins 20.9 Carbonate sediments, cycles and sea-level change 20.10 Displacement and destruction of carbonate environments: silicicl
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: 21/SR 93.0335(94,3)
    In: KTB Reports
    Type of Medium: Series available for loan
    Pages: VI, 200 Seiten , Illustrationen, Karten , 30 cm
    ISBN: 3928559133
    Series Statement: KTB-Report 94,3
    Language: German , English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-21
    Description: As network infrastructures with 10 Gb/s bandwidth and beyond have become pervasive and as cost advantages of large commodity-machine clusters continue to increase, research and industry strive to exploit the available processing performance for large-scale database processing tasks. In this work we look at the use of high-speed networks for distributed join processing. We propose Data Roundabout as alight weight transport layer that uses Remote Direct Memory Access (RDMA) to gain access to the throughput opportunities in modern networks. The essence of Data Roundabout is a ring shaped network in which each host stores one portion of a large database instance. We leverage the available bandwidth to (continuously) pump data through the high-speed network. Based on Data Roundabout, we demonstrate cyclo-join, which exploits the cycling flow of data to execute distributed joins. The study uses different join algorithms (hash join and sort-merge join) to expose the pitfalls and the advantages of each algorithm in the data cycling arena. The experiments show the potential of a large distributed main-memory cache glued together with RDMA into a novel distributed database architecture.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  ACM Transactions on Database Systems
    Publication Date: 2024-02-21
    Description: A grand challenge of distributed query processing is to devise a self-organizing architecture which exploits all hardware resources optimally to manage the database hot set, minimize query response time, and maximize throughput without single point global coordination. The Data Cyclotron architecture [Goncalves and Kersten 2010] addresses this challenge using turbulent data movement through a storage ring built from distributed main memory and capitalizing on the functionality offered by modern remote-DMA network facilities. Queries assigned to individual nodes interact with the storage ring by picking up data fragments, which are continuously flowing around, that is, the hot set. The storage ring is steered by the Level Of Interest (LOI) attached to each data fragment, which represents the cumulative query interest as it passes around the ring multiple times. A fragment with LOI below a given threshold, inversely proportional to the ring load, is pulled out to free up resources. This threshold is dynamically adjusted in a fully distributed manner based on ring characteristics and locally observed query behavior. It optimizes resource utilization by keeping the average data access latency low. The approach is illustrated using an extensive and validated simulation study. The results underpin the fragment hot set management robustness in turbulent workload scenarios. A fully functional prototype of the proposed architecture has been implemented using modest extensions to MonetDB and runs within a multirack cluster equipped with Infiniband. Extensive experimentation using both microbenchmarks and high-volume workloads based on TPC-H demonstrates its feasibility. The Data Cyclotron architecture and experiments open a new vista for modern distributed database architectures with a plethora of new research challenges.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  ACM Transactions on Database Systems
    Publication Date: 2024-02-21
    Description: Automatic recycling of intermediate results to improve both query response time and throughput is a grand challenge for state-of-the-art databases. Tuples are loaded and streamed through a tuple-at-a-time processing pipeline, avoiding materialization of intermediates as much as possible. This limits the opportunities for reuse of overlapping computations to DBA-defined materialized views and function/result cache tuning. In contrast, the operator-at-a-time execution paradigm produces fully materialized results in each step of the query plan. To avoid resource contention, these intermediates are evicted as soon as possible. In this article we study an architecture that harvests the byproducts of the operator-at-a-time paradigm in a column-store system using a lightweight mechanism, the recycler. The key challenge then becomes the selection of the policies to admit intermediates to the resource pool, to determine their retention period, and devise the eviction strategy when facing resource limitations. The proposed recycling architecture has been implemented in an open-source system. An experimental analysis against the TPC-H ad-hoc decision support benchmark and a complex, real-world application (SkyServer) demonstrates its effectiveness in terms of self-organizing behavior and its significant performance gains. The results indicate the potentials of recycling intermediates and charts a route for further development of database kernels.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: M 97.0502 ; M 97.0502 (2. Ex.)
    Type of Medium: Monograph available for loan
    Pages: III, 487 S.
    Classification:
    A.3.1.
    Language: English
    Location: Upper compact magazine
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: MR 24.95673
    In: Vol. K-2, [Hauptbd.]
    Type of Medium: Monograph available for loan
    Pages: XIII, 672 Seiten , Illustrationen, Karten
    ISBN: 0813752159
    Series Statement: Geology of Canada ...
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: MR 24.95674
    In: Vol. K-2, Plates
    Type of Medium: Map available for loan
    Pages: 8 Karten
    ISBN: 0813752159
    Series Statement: Geology of Canada ...
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...