ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: The convective heat transfer from the surface of an ellipsoidal forebody of fineness ratio 3 and 20-inch maximum diameter was investigated in clear air for both stationary and rotating operation over a range of conditions including air speeds up to 240 knots, rotational speeds up to 1200 rpm, and angles of attack of 0 deg, 3 deg, and 6 deg. The results are presented in the form of heat-transfer coefficients and the correlation of Nusselt and Reynolds numbers. Both a uniform surface temperature and a uniform input heater density distribution were used. The experimental results agree well with theoretical predictions for uniform surface temperature distribution. Complete agreement was not obtained with uniform input heat density in the laminar-flow region because of conduction effects. No significant effects of rotation were obtained over the range of airstream and rotational speeds investigated. Operation at angle of attack had only minor effects on the local heat transfer. Transition from laminar to turbulent heat transfer occurred over a wide range of Reynolds numbers. The location of transition depended primarily on surface roughness and pressure and temperature gradients. Limited transient heating data indicate that the variation of surface temperature with time followed closely an exponential relation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-3837
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The trajectories of droplets i n the air flowing past a 36.5-percent-thick Joukowski airfoil at zero angle of attack were determined. The amount of water i n droplet form impinging on the airfoil, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface were calculated from the trajectories and cover a large range of flight and atmospheric conditions. With the detailed impingement information available, the 36.5-percent-thick Joukowski airfoil can serve the dual purpose of use as the principal element in instruments for making measurements in clouds and of a basic shape for estimating impingement on a thick streamlined body. Methods and examples are presented for illustrating some limitations when the airfoil is used as the principal element in the dye-tracer technique.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-4035
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The rate and area of cloud droplet impingement on several two-dimensional swept and unswept airfoils were obtained experimentally in the NACA Lewis icing tunnel with a dye-tracer technique. Airfoil thickness ratios of 6 to 16 percent; angles of attack from 0 deg to 12 deg, and chord sizes from 13 to 96 inches were included in the study. The data were obtained at 152 knots and are extended to other conditions by dimensionless impingement parameters. In general, the data show that the total and local collection efficiencies and impingement limits are primary functions of the modified inertia parameter (in which airspeed, droplet size, and body size are the most significant variables) and the airfoil thickness ratio. Local collection efficiencies and impingement limits also depend on angle of attack. Secondary factors affecting impingement characteristics are airfoil shape, camber, and sweep angle. The impingement characteristics obtained experimentally for the airfoils were within +/-10 percent on the average of the characteristics calculated from theoretical trajectories. Over the range of conditions studied, the experimental data demonstrate that a specific method can be used to predict the impingement characteristics of swept airfoils with large aspect ratios from the data for unswept airfoils of the same series.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-3839
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Trajectories were determined for water droplets or other aerosol particles in air flowing through 600 elbows especially designed for two-dimensional potential motion. The elbows were established by selecting as walls of each elbow two streamlines of a flow field produced by a complex potential function that establishes a two-dimensional flow around. a 600 bend. An unlimited number of elbows with slightly different shapes can be established by selecting different pairs of streamlines as walls. Some of these have a pocket on the outside wall. The elbows produced by the complex potential function are suitable for use in aircraft air-inlet ducts and have the following characteristics: (1) The resultant velocity at any point inside the elbow is always greater than zero but never exceeds the velocity at the entrance. (2) The air flow field at the entrance and exit is almost uniform and rectilinear. (3) The elbows are symmetrical with respect to the bisector of the angle of bend. These elbows should have lower pressure losses than bends of constant cross-sectional area. The droplet impingement data derived from the trajectories are presented along with equations so that collection efficiency, area, rate, and distribution of droplet impingement can be determined for any elbow defined by any pair of streamlines within a portion of the flow field established by the complex potential function. Coordinates for some typical streamlines of the flow field and velocity components for several points along these streamlines are presented in tabular form. A comparison of the 600 elbow with previous calculations for a comparable 90 elbow indicated that the impingement characteristics of the two elbows were very similar.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-3770
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TR-1215
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The trajectories of water droplets in the air flowing past an NACA 6511004 airfoil at a n angle of attack of 0 deg were determined. The amount of water in droplet form impinging on the airfoil , the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface were calculated from the trajectories and presented t o cover a large range of flight and atmospheric conditions. These impingement characteristics are compared briefly with those previously reported for the same airfoil at angles of attack of 4 deg and 8 deg.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-3586
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: A dye-tracer technique has been developed whereby the quantity of dyed water collected on a blotter-wrapped body exposed to an air stream containing a dyed-water spray cloud can be colorimetrically determined in order to obtain local collection efficiencies, total collection efficiency, and rearward extent of impingement on the body. In addition, a method has been developed whereby the impingement characteristics obtained experimentally for a body can be related to theoretical impingement data for the same body in order to determine the droplet size distribution of the impinging cloud. Several cylinders, a ribbon, and an aspirating device to measure cloud liquid-water content were used in the studies presented herein for the purpose of evaluating the dye-tracer technique. Although the experimental techniques used in the dye-tracer technique require careful control, the methods presented herein should be applicable for any wind tunnel provided the humidity of the air stream can be maintained near saturation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-3338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The convective heat transfer from the surface of a conical forebody having a hemispherical nose, an included angle of approximately 30 deg, and. a maximum diameter of 18.9 inches was investigated in a wind tunnel for both stationary and. rotating operation. The range of test conditions included free-stream velocities up to 400 feet per second, rotational speeds up to 1200 rpm, and. angles of attack of 0 deg and 6 deg. Both a uniform surface temperature and a uniform heater input power density were used. The Nusselt-Reynolds number relations provided good correlation of the heat-transfer data for the complete operating range at 0 deg angle of attack with and without spinner rotation, and for 6deg angle of attack with rotation. Rotational speeds up to 1200 rpm had no apparent effect on the heat-transfer characteristics of the spinner. The results obtained at 6 deg angle of attack with rotation were essentially the same as those obtained at 0 deg angle of attack without rotation. The experimental heat-transfer characteristics in the turbulent flow region were consistently in closer agreement with the results predicted for a two-dimensional body than with those predicted. for a cone. For stationary operation at 60 angle of attack, the measured heat-transfer coefficients in the turbulent flow region were from 6 to 13 percent greater on the lower surface (windward. side) than on the upper surface (sheltered side) for corresponding surface locations. The spinner-nose geometry appeared to cause early boundary-layer transition. Transition was initiated at a fairly constant Reynolds number (based on surface distance from nose) of 8.0 x 10(exp 4). Transition was completed at Reynolds numbers less than 5.0 x 10(exp 5) for all conditions investigated.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-4093
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: In an effort to increase the operational range of existing small icing tunnels, the use of truncated airfoil sections has been suggested. With truncated airfoils, large-scale or even full-scale wing-icing-protection systems could be evaluated. Therefore, experimental studies were conducted in the NACA Lewis laboratory icing 'tunnel with an NACA 651-212 airfoil section to determine the effect of truncating the airfoil chord on velocity distribution and impingement characteristics. A 6-foot-chord airfoil was cut successively at the 50- and 30-percent-chord stations to produce the truncated airfoil sections, which were equipped with trailing-edge flaps that were used to alter the flow field about the truncated sections. The study was conducted at geometric angles of attack of 00 and 40, an airspeed of about 156 knots, and volume-median droplet sizes of 11.5 and 18.6 microns. A dye-tracer technique was used in the impingement studies. With the trailing-edge flap on the truncated airfoil deflected so that the local velocity distribution in the impingement region was substantially the same as that for the full-chord airfoil, the local impingement rates and the limits of impingement for the truncated and full-chord airfoils were the same. In general, truncating the airfoils with flaps undeflected resulted in a subs'tantially altered velocity distribution and local impingement rates compared with those of the full-chord airfoil. The use of flapped truncated airfoils may permit impingement and icing studies to be conducted with full-scale leading-edge sections, ranging in size from tip to root sections.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-RM-E56E11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Droplet trajectories about a sphere in ideal fluid flow were calculated. From the calculated droplet trajectories the droplet impingement characteristics of the sphere were determined. Impingement data and equations for determining the collection efficiency, the area, and the distribution of impingement are presented in terms of dimensionless parameters. The range of flight and atmospheric conditions covered in the calculations was extended considerably beyond the range covered by previously reported calculations for the sphere.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-3587
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...