ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-27
    Description: This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.
    Keywords: Astronomy
    Type: Capabilities Roadmap Briefings to the National Research Council
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-27
    Description: If you go to the country, far from city lights, you can see about 3,000 stars on a clear night. If your eyes were bigger, you could see many more stars. With a pair of binoculars, an optical device that effectively enlarges the pupil of your eye by about 30 times, the number of stars you can see increases to the tens of thousands. With a medium-sized telescope with a light-collecting mirror 30 centimeters in diameter, you can see hundreds of thousands of stars. With a large observatory telescope, millions of stars become visible. This curriculum guide uses hands-on activities to help students and teachers understand the significance of space-based astronomy--astronomical observations made from outer space. It is not intended to serve as a curriculum. Instead, teachers should select activities from this guide that support and extend existing study. The guide contains few of the traditional activities found in many astronomy guides such as constellation studies, lunar phases, and planetary orbits. It tells, rather, the story of why it is important to observe celestial objects from outer space and how to study the entire electromagnetic spectrum. Teachers are encouraged to adapt these activities for the particular needs of their students. When selected activities from this guide are used in conjunction with traditional astronomy curricula, students benefit from a more complete experience.
    Keywords: Astronomy
    Type: NASA/EG-2001-01-122-HQ , NAS 1.19:01-122-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-27
    Description: Global astrometry is the measurement of stellar positions and motions. These are typically characterized by five parameters, including two position parameters, two proper motion parameters, and parallax. The Space Interferometry Mission (SIM) will derive these parameters for a grid of approximately 1300 stars covering the celestial sphere to an accuracy of approximately 4uas, representing a two orders of magnitude improvement over the most precise current star catalogues. Narrow angle astrometry will be performed to a 1uas accuracy. A wealth of scientific information will be obtained from these accurate measurements encompassing many aspects of both galactic (and extragalactic science. SIM will be subject to a number of instrument errors that can potentially degrade performance. Many of these errors are systematic in that they are relatively static and repeatable with respect to the time frame and direction of the observation. This paper and its companion define the modeling of the, contributing factors to these errors and the analysis of how they impact SIM's ability to perform astrometric science.
    Keywords: Astronomy
    Type: Proceedings of SPIE Space Systems Engineering and Optical Alignment Mechanisms; 5528; Article 118
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-26
    Description: Star formation and the creation of protostellar disks generally occur in a crowded environment. Nearby young stars and protostars can influence the disks of their closets neighbors by a combination of outflows and hard radiation. The central stars themselves can have a stellar wind and may produce sufficient UV and X-ray to ultimately destroy their surrounding disks. Here we describe the results of numerical simulations of the influence that an external UV source and a central star's wind can have on its circumstellar disk. The numerical method (axial symmetry assumed) is described elsewhere. We find that protostellar disks will be destroyed on a relatively short time scale (~ 10(sup 5)yr) unless they are well shielded from O-stars. Initially isotropic T-Tauri winds do not significantly influence their disks, but instead are focused toward the rotation axis by the disk wind from photoevaporation.
    Keywords: Astronomy
    Type: Gravitational Collapse: From Massive Stars to Planets; Dec 03, 2003 - Dec 12, 2003; Ensenada; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-26
    Description: Infrared photometry and spectroscopy covering a time span of a quarter-century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 micron in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 micron region throughout this span of time. In both stars, the changes in the 1-5 micron flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly simultaneous photometric data.
    Keywords: Astronomy
    Type: The Astrophysical Journal; 678; 1070-1078
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-26
    Description: The dust sublimation zone (DSZ) is the region of pre-main sequence (PMS) disks where dust grains most easily anneal, sublime, and condense out of the gas. Because of this, it is a location where crystalline material may be enhanced and redistributed throughout the rest of the disk. A decade-long program to monitor the thermal emission of the grains located in this region demonstrates that large changes in emitted flux occur in many systems. Changes in the thermal emission between 3 and 13.5 microns were observed in HD 31648 (MWC 480), HD 163296 (MWC 275), and DG Tau. This emission is consistent with it being produced at the DSZ, where the transition from a disk of gas to one of gas+dust occurs. In the case of DG Tau, the outbursts were accompanied by increased emission on the 10 micron silicate band on one occasion, while on another occasion it went into absorption. This requires lofting of the material above the disk into the line of sight. Such changes will affect the determination of the inner disk structure obtained through interferometry measurements, and this has been confirmed in the case of HD 163296. Cyclic variations in the heating of the DSZ will lead to the annealing of large grains, the sublimation of smaller grains, possibly followed by re-condensation as the zone enters a cooling phase. Lofting of dust above the disk plane, and outward acceleration by stellar winds and radiation pressure, can re-distribute the processed material to cooler regions of the disk, where cometesimals form. This processing is consistent with the detection of the preferential concentration of large crystalline grains in the inner few AU of PMS disks using interferometric spectroscopy with the VLTI.
    Keywords: Astronomy
    Type: 39th Annual DPS meeting; Oct 07, 2007 - Oct 12, 2007; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-26
    Description: SIM PlanetQuest will measure star positions to an accuracy of a few microarcseconds using precise white light fringe measurements. One challenge for SIM observation scenario is "star confusion," where multiple stars are present in the instrument field of view. This is especially relevant for observing dim science targets because the density of number of stars increases rapidly with star magnitude. We study the effect of star confusion on the SIM astrometric performance due to systematic fringe errors caused by the extra photons from the confusion star(s}. Since star confusion from multiple stars may be analyzed as a linear superposition of the effect from single star confusion, we quantify the astrometric errors due to single star confusion surveying over many spectral types, including AOV, FOV, K5III, and MOV, and for various visual magnitude differences. To the leading order, the star confusion effect is characterized by the magnitude difference, spectral difference, and the angular separation between the target and confusion stars.Strategies for dealing with star confusion are presented. For example, since the presence of additional sources in the field of view leads to inconsistent delay estimates from different channels, with sufficient signal to noise ratio, the star confusion can be detected using chi-square statistics of fringe measurements from multiple spectral channels. An interesting result is that the star confusion can be detected even though the interferometer cannot resolve the separation between the target and confusion stars when their spectra are sufficiently different. Other strategies for mitigating the star confusion effect are also discussed.
    Keywords: Astronomy
    Type: 2007 SPIE Optics and Photonics Conference; Aug 26, 2007 - Aug 30, 2007; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-26
    Description: This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in United States and foreign aeronautics and astronautics. It covers the years 1996 through 2000. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.
    Keywords: Astronomy
    Type: PB2009-106797 , NASA SP-2009-4030
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-26
    Description: We report the results of a high-energy multi-instrumental campaign with INTEGRAL, RXTE, and Swift of the recently discovered INTEGRAL source IGR J19294+ 1816. The Swift/XRT data allow us to refine the position of the source to R.A. (J2000) = 19h 29m 55.9s, Decl. (J2000) = +18 deg 18 feet 38 inches . 4 (+/- 3 inches .5), which in turn permits us to identify a candidate infrared counterpart. The Swift and RXTE spectra are well fitted with absorbed power laws with hard (Gamma approx 1) photon indices. During the longest Swift observation, we obtained evidence of absorption in true excess to the Galactic value, which may indicate some intrinsic absorption in this source. We detected a strong (P = 40%) pulsations at 12.43781 (+/- 0.00003) s that we interpret as the spin period of a pulsar. All these results, coupled with the possible 117 day orbital period, point to IGR J19294+ 1816 being an high-mass X-ray binary (HMXB) with a Be companion star. However, while the long-term INTEGRAL/IBIS/ISGRI 18-40 keV light curve shows that the source spends most of its time in an undetectable state, we detect occurrences of short (2000-3000 s) and intense flares that are more typical of supergiant fast X-ray transients. We therefore cannot make firm conclusions on the type of system, and we discuss the possible implication of IGR J19294+1816 being an Supergiant Fast X-ray Transient (SFXT).
    Keywords: Astronomy
    Type: Astronomy and Astrophysics; er 2; 2; 889-894
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-26
    Description: The current interests in extra-solar planet detection and space-based and ground-based interferometry for astronomical observations has led to the development of a number of nulling instrument designs at the Jet Propulsion Laboratory (JPL) and elsewhere. This paper summarizes briefly JPL's efforts in nulling interferometry to date and consists of illustrations of some key nulling activities. Basic layouts of nulling testbeds are described and key applications discussed.
    Keywords: Astronomy
    Type: IEEE Aerospace Conference - Interferometry and Large Optical Systems; Mar 03, 2007 - Mar 10, 2007; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...